Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2

Größe: px
Ab Seite anzeigen:

Download "Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2"

Transkript

1 Formelsmmlug Gere urh zwei Pukte A( 3 ) u B( 3 ) g AB : 3 Eee urh rei Pukte A( 3 ), B( 3 ) u C( 3 ) [Eee i Prmeterform] E ABC : 3 s 3 Eee urh Gere u Pukt. Sei P( p p p 3 ) u g : We ie Eee urh ie Gere g u e Pukt g gehe soll, gilt: E P,g : s p p p 3 Eee urh zwei Gere. Sei g : u h : Erst üerprüfe wie ie Gere zueier liege: Sheie sih eie Gere, gilt E g,h : Si g u h prllel, gilt E g,h : Si g u h wishief oer ietish, git's keie Eee. s s 3 Eee urh P, u sekr. zu g. Sei P( p p p 3 ) u g : We ie Eee sekreht uf er Gere g stehe soll u urh e Pukt P geht, immt m e Rihtugsvektor er Gere ls Normlevektor für ie Koorite gleihug er Eee. Dmit ht m ie like Seite er Kooritegleihug. Setzt m jetzt oh P ei, ht m uh ie rehte Seite. Normlevektor = es gilt: us zwei Rihtugsvektore u = u + u + u 3 3 = v + v + v 3 3 = u u u wege u v = u u v v v u = u eier Eee. v v v = Hvoix Ai Geo Formelsmmlug

2 iese eie Gleihuge verrehet m so, ss oer oer 3 wegfällt. D z.bsp. 3 = wähle u u 3 errehe. Kooritegleihug eier Eee mit em Normlevektor = E : x + x + 3 x 3 = Zhl ie Zhl erhält m, iem m für x x u x 3 eie elieige Pukt er Eee eisetzt. Häufiges Prolem: Aus er Prmeterform eier Eee eie Kooritegleihug errehe: Aus e eie Rihtugsvektore e Normlevektor erehe (s.astz rüer), Stützvektor eisetze Normleform eier Eee mit em Normlevektor = E : [ x p p ] p = u eiem Pukt P(p p p 3 ). Hesse Norml Form ( HNF ) ruht m ur um Ast vom Pukt zu eier Gere uszurehe. ( Ast Pukt Eee) Läge eies Vektors = Betrg eies Vektors: sei ei Vektor er Form: = ie Läge vo ist: = 3 Lotfußpukt erhlt m, we m: eie Gere u eie Pukt gegee ht u eie Loteee ufstelle muss ( Loteee ). We m Gere u Loteee sheiet, erhält m e Lotfusspukt. eie Eee u eie Pukt gegee ht u eie Lotgere ufstelle muss ( Lotgere ). We m Eee u Lotgere sheiet, erhält m e Lotfusspukt. Loteee Gegee si eie Gere u ei Pukt. M stellt eie Eee uf, ie sekreht uf er Gere steht u urh e Pukt gehe soll. Als Normlevektor er Eee k m e Rihtugsvektor er Gere ehme, mit ht m ie like Seite er Kooritegleihug er Eee. We m u e Pukt eisetzt, erhält m uh ie rehte Seite. Lotgere Gegee si eie Eee u ei Pukt. M stellt eie Gere uf, ie sekreht uf er Eee steht u urh e Pukt geht. Stützvektor er Lotgere ist er Pukt. Rihtugsvektor er Lotgere ist er Normlevektor er Eee. Hvoix Ai Geo Formelsmmlug

3 Ast Pukt Pukt: Gegee seie ie Pukte A( 3 ) u B( 3 ) (A,B) = AB = 3 = 3 3 Ast Pukt Gere vo eiem Pukt P zu eier Gere g : M stellt eie Loteee uf ( er Normlevektor er Loteee ist er Rihtugsvektor er Gere, mit ht m ie like Seite er Kooritegleihug, um ie rehte Seite zu erhlte, setzt m P ei), iese Loteee sheiet m mit er Gere u erhält e Lotfusspukt L. Der Ast vo P zu L ist uh er gesuhte Ast vo P zur Gere g. Ast Pukt Eee vo eiem Pukt P( p p p 3 ) zu eier Eee E mit er Form: E : x + x + 3 x 3 = Zhl M stellt ie HNF er Eee uf: HNF E : (E,P) = x x 3 x 3 Zhl ² ² ² 3 p p 3 p 3 Zhl ² ² ² 3 = I ie HNF setzt m für x? e Pukt P ei.. Ast Gere Gere vo zwei Gere g : 7 9 u h : 8 s M wählt vo jeer Gere eie elieige Pukt, lso: G( +4r +5r 3+6r ) u H( 7+s 8+s 9+s ), stellt e Vektor GH uf (i em ie Prmeter r u s risteke) u stellt u s Sklrproukt vo GH mit eie Rihtugsvektore uf: GH RV g = u GH RV h = Aus iese eie Gleihuge k m u r u s erehe u erhält ie Pukte G u H er Gere g u h. Der Ast (G,H) ist u uh er gesuhte Ast er eie Gere. Bemerkug: Es git uh oh eie Formel um e Ast zweier wishiefe Gere zu erehe, mit erhält m er ie eie Lotfusspukte G u H iht. U iese eie Pukte si oft oh für ere She gut, z.bsp um eie ritte Gere ufzustelle, ie uf g u h sekreht steht, et... Ast Gere Eee: Flls Gere u Eee prllel si ( E RV g = ), immt m irgeeie Pukt er Gere (z.bsp. e Stützvektor) u erehet e Ast vo zur Eee. ( Ast Pukt Eee). Flls Gere u Eee iht prllel si, sheie sie sih, er Ast ist = Null. Ast Eee Eee: Flls ie eie Eee prllel si (Normlevektore si Vielfhe voeier), erehet m e Ast vo irgeeiem Pukt er eie Eee, zur ere Eee. ( Ast Pukt Eee). Flls ie Eee iht prllel si, sheie sie sih, er Ast ist = Null Ast Kugel Pukt: Ast Kugel Gere: Ast Kugel Eee: = Ast vom Mittelpukt zum Pukt, vo Kugelrius ziehe = Ast vom Mittelpukt zur Gere, vo Kugelrius ziehe = Ast vom Mittelpukt zur Eee, vo Kugelrius ziehe 3 Hvoix Ai Geo Formelsmmlug

4 Shitt Gere Eee: x, x u x 3 us er Gere i ie Kooritegleihug er Eee eisetze. M erhält für e Prmeter er Gere eie Zhl. Diese wieer i ie Eee eisetze Shittpukt. Shitt Gere Gere: Beie Gere gleihsetze. M erhält eie Prmeter. Beie Prmeter i eie Gere eisetze. We i eie Gere er gleihe Pukt `ruskommt ist s er Shittpukt. Asoste git's keie Shittpukt. Shitt Eee Eee: eie Eee si i Kooriteform gegee: eie Eeegleihuge so miteier verrehe, ss x, x oer x 3 wegfällt. Ahme x fällt weg, wählt m z.bsp. x 3 =t. Nu erhält m sofort uh x i Ahägigkeit vo t u eim Eisetze i ie erste Gleihug uh x i Ahägigkeit vo t. Diese Ergeisse vo x, x u x 3 üereiershreie u i eie Vektor ohe t u eie Vektor mit t useierziehe. Der eie Vektor wir er Stützvektor, er ere wir er Rihtugsvektor. Fertig ist ie Shittgere. eie Eee ist i Kooriteform, ie ere i Prmeterform gegee: x, x u x 3 us er Prmeterform Eee i ie Kooritegleihug er ere Eee eisetze. M erhält sows wie z.bsp. r=5 s. Nu setzt m r wieer i ie Prmetergleihug ei, m erhält im Normlfll vier Vektore: zwei mit s u zwei ohe Prmeter. Alle Vektore ohe Prmeter verrehet m zum Stützvektor er Shittgere, ie Vektore mit Prmeter s verrehet m zum Rihtugsvektor. Spiegel: Pukt Gere Der Pukt A soll er Gere g gespiegelt were, er Spiegelpukt sei A*. M stellt eie Loteee uf, ie sekreht uf g steht u urh P geht u errehet e Lotfußpukt ( Lotfußpukt). Nu spiegelt m A m Lotfußpukt u erhält A* ( Spiegel: Pukt Pukt). Spiegel: Pukt Eee Der Pukt A soll er Eee E gespiegelt were, er Spiegelpukt sei A*. M stellt eie Lotgere uf, ie sekreht uf E steht u urh P geht u errehet e Lotfußpukt ( Lotfußpukt). Nu spiegelt m A m Lotfußpukt u erhält A* ( Spiegel: Pukt Pukt). Spiegel: Gere P, g oer E Um eie Gere zu erhlte, ruht m zwei Pukte. M ruht lso uh zwei Pukte um ie Spiegelgere zu erhlte. Dzu immt m zwei Pukte vo er Ausggsgere, spiegelt eie Pukte (zwei ml Puktspiegelug urhführe) u erhält zwei Spiegelpukte. Mit iese eie Pukte ie Spiegelgere ufstelle. Spiegel: Eee P, g oer E We m eie Eee irgeetws spiegelt, si Eee u Spiegeleee uf jee Fll prllel. Dmit ruht m ur ie Zhl uf er rehte Seite er Kooritegleihug. M wählt lso irgeeie Pukt er Ausggseee, spiegelt ur iese Pukt m irgews, erhält e Spiegelpukt u k iese i ie Eeegleihug eisetze. 4 Hvoix Ai Geo Formelsmmlug

5 Kooritehse x Ahse: x Ahse: x 3 Ahse: lle Pukte uf er x Ahse he ie Form: P(x ) lle Pukte uf er x Ahse he ie Form: P( x ) lle Pukte uf er x 3 Ahse he ie Form: P( x 3 ) Kooriteeee Kooritegleihug Normlevektor Prmeterform x x Eee: x 3 = x x 3 Eee: x = x x 3 Eee: x = s s Spurpukte eier Eee si ie Shittpukte er Eee mit e Kooritehse. z.bsp. E : x +3x 4x 3 = S (6 ) S ( 4 ) S 3 ( 3) Prmeterform Spurgere si ie Shittgere eier Eee mit e Kooriteeee u gleihzeitig ie Veriugsgere er rei Spurpukte. Dher rehet m ie Spurgere eier Eee m eifhste us, iem m zuerst ie Spurpukte usrehet u je zwei Spurpukte zu eier Spurgere veriet. Sklrproukt Ds Sklrproukt zweier Vektore erehet m h folgeer Regel: w u v = u + v + w M erhält lso eie Zhl u keie Vektor. Flls s Ergeis vom Sklrproukt = ist, stehe ie Vektore sekreht ufeier! Fälshliherweise wir mhml uh ie Läge eies Vektors ls Sklrproukt ezeihet: M sgt lso, s Sklrproukt vo sei ² ² ². Dieses ist jeoh (wie gesgt) ie Läge vom Vektor oer er Betrg es Vektors. 5 Hvoix Ai Geo Formelsmmlug

6 Wikel zwishe zwei Eee: ( u u v si ie eie Normlevektore ) os( ) = u v u v Wikel zwishe zwei Gere: ( u u v si ie eie Rihtugsvektore er Gere ) os( ) = u v u v Wikel zwishe Gere u Eee: ( u ist er Rihtugsvektor er Gere, ist er Normlevektor er Eee ) si( ) = u u Mitte vo zwei Pukte A u B ( = Mitte eier Streke AB ) M = A B Shwerpukt eies Dreieks ABC M = 3 A B C Stihwortverzeihis Ast Eee Eee...3 Ast Gere Eee...3 Ast Gere Gere...3 Ast Kugel Eee...3 Ast Kugel Gere...3 Ast Kugel Pukt...3 Ast Pukt Eee...3 Ast Pukt Gere...3 Ast Pukt Pukt...3 Betrg eies Vektors... Eee urh rei Pukte... Eee urh Gere u Pukt... Eee urh P, u sekr. zu g... Eee urh zwei Gere... Gere urh zwei Pukte... Hesse Norml Form... HNF... Kooritehse...5 Kooriteeee...5 Kooritegleihug eier Eee... Läge eies Vektors... Loteee... Lotfußpukt... Lotgere... Mitte...6 Normleform eier Eee... Normlevektor... Prmeterform... Shitt Eee Eee...4 Shitt Gere Eee...4 Shitt Gere Gere...4 Shwerpukt...6 Sklrproukt...5 Spiegel: Eee P, g oer E...4 Spiegel: Gere P, g oer E...4 Spiegel: Pukt Eee...4 Spiegel: Pukt Gere...4 Spurgere...5 Spurpukte...5 Vektore sekreht...5 Wikel...6 Hä fäärtik! 6 Hvoix Ai Geo Formelsmmlug

7 Diese Formelsmmlug git s uh uter 7 Hvoix Ai Geo Formelsmmlug

Mathematikaufgabe 79

Mathematikaufgabe 79 Home Strtseite Impressum Kotkt Gästeuh Aufge: Betrhte wir wei sih sheiee Kreise mit utershielihe ie u gemeismer Tgete Berehe Sie s Verhältis er Bogeläge vom Shittpukt es jeweilige Kreises mit er Tgete

Mehr

BBS Nürnberg Grundwissen Mathematik 8. Jahrgangsstufe

BBS Nürnberg Grundwissen Mathematik 8. Jahrgangsstufe S Nürerg Grudwisse Mthetik 8. Jhrggsstufe Wisse ud Köe. Fuktioe eeihuge: D Defiitiosege f( Fuktiosvorshrift f( Fuktioster f( Fuktiosgleihug Fuktioswert vo ufge ud eispiele Eie Fuktio ist eie Zuordug, die

Mehr

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen Diskrete Mthemtik Teilrkeit Christoph Dohme 7. Mi 2006 Diskrete Mthemtik Teilrkeit Ihltsverzeichis. Eileitug 2. Der größte gemeisme Teiler 3. Divisio mit Rest 4. Der Eukli sche Algorithmus 5. Ds kleiste,

Mehr

Das Riemann-Integral und seine Eigenschaften

Das Riemann-Integral und seine Eigenschaften Ds Riem-Itegrl u seie Eigeshfte Defiitio. Sei ie Fuktio f beshräkt uf [, b]. Stimme ie beie Drboux-Itegrle überei, heißt f Riem-itegrierbr uf [, b] (oer R-itegierbr). Der gemeisme Wert heißt Riem- Itegrl

Mehr

5.6 Additionsverfahren

5.6 Additionsverfahren 5.6 Additiosverfhre Prizip Die eide Gleihuge werde so umgeformt, dss ei der Additio der eide Gleihuge eie Vrile wegfällt. Es müsse h der Umformug lso i eide Gleihuge gleih viele x oder gleih viele y (er

Mehr

( ) a ) ( ) n ( ) ( ) ( ) a. n n

( ) a ) ( ) n ( ) ( ) ( ) a. n n Pre-Study 7 orste Shreier 77 Wiederholu Diese Fre sollte Sie ohe Skript etworte köe: W ist der Sius zw. der Cosius immer NULL? Ws versteht m uter eier Phsevershieu? Ws wird im Eiheitskreis sekreht /wereht

Mehr

Abiturprüfung Baden-Württemberg: Mathematische Merkhilfe, 1. Auflage (2017) S. 1/8. Dreieck Flächeninhalt: Mindestens zwei Seiten sind gleich lang.

Abiturprüfung Baden-Württemberg: Mathematische Merkhilfe, 1. Auflage (2017) S. 1/8. Dreieck Flächeninhalt: Mindestens zwei Seiten sind gleich lang. Aiturprüfug Bde-Württemerg: Mthemtishe Merkhilfe,. Auflge (7) S. /8 Eee Figure Dreiek Fläheihlt: A g hg gleihshekliges Dreiek Midestes zwei Seite sid gleih lg. gleihseitiges Dreiek Alle drei Seite sid

Mehr

Integralrechnung kurzgefasst

Integralrechnung kurzgefasst Itegrlrehug kurzgefsst. Flähe uter eiem Grphe Die Eistiegsfrge lutet: Wie k m de Fläheihlt A eies Flähestüks erehe, ds egrezt wird - vom Grphe G f eier (stetige) Fuktio - vo der -Ahse - vo zwei Prllele

Mehr

Ohm Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe

Ohm Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe Oh Gsiu Grudwisse Mthetik 8. Jhrggsstufe Wisse ud Köe. Fuktioe ezeihuge: Fuktiosvorshrift: Fuktioster kurz f( ist hier: Fuktiosgleihug = Grph eier Fuktio: ufge ud eispiele Eie Fuktio ist eie eideutige

Mehr

Flächeninhalt. Annahme: Funktion monoton; x 0, x 1,..., x n äquidistant. w(ξ i ) = P(D = ξ i ) = P(x i 1 < X x i ) f (ξ i ) (x i x i 1 )

Flächeninhalt. Annahme: Funktion monoton; x 0, x 1,..., x n äquidistant. w(ξ i ) = P(D = ξ i ) = P(x i 1 < X x i ) f (ξ i ) (x i x i 1 ) Fläheihl Berehe Sie ie Ihle er eeee Flähe! Kpiel Ierio f ( Flähe: A f ( + 2 Approimio urh Treppefukio Josef Leyol Mhemik für VW WS 27/8 Ierio / 35 iem-summe Josef Leyol Mhemik für VW WS 27/8 Ierio 2 /

Mehr

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt 7.. Aufgbe zu Sklrprodukt ud Vektorprodukt Aufgbe : Sklrprodukt Bereche die folgede Produkte: ) Aufgbe : Läge eies Vektors Bestimme die Läge ud de etsprechede Eiheitsvektor der folgede Vektore. =, b =,

Mehr

Mittelwerte. Sarah Kirchner & Thea Göllner

Mittelwerte. Sarah Kirchner & Thea Göllner Mittelwerte Srh Kirher The Göller Mittelwerte sid vershiedee mthemtish defiierte Kegröße. Uter dem Mittelwert zweier oder mehrerer Zhle versteht m meistes de Durhshitt, owohl viele dere Mittelilduge vorkomme.

Mehr

= 2. . Der gesuchte zur Ebene parallele Vektor ist dann: . Der Aufpunkt ist dann P 1, die beiden Richtungsvektoren

= 2. . Der gesuchte zur Ebene parallele Vektor ist dann: . Der Aufpunkt ist dann P 1, die beiden Richtungsvektoren ASW Lösue zu Übu 7 Mthemtik I Geometrie o Gerde ud Ebee rof DrBGrbowski Zu Aufbe Durh die Gleihu x y z sei eie Ebee im R eebe Gebe Sie eie Vektor der sekreht uf der Ebee steht! b Gebe Sie eie Vektor der

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Wiederholungsaufgaben Mathematik

Wiederholungsaufgaben Mathematik Wiederholugsufge Mthemtik Liee Shülerie ud Shüler, liee Elter, ei siherer Umgg mit de Theme ud Ihlte der Mittelstufe stellt die Bsis für eie erfolgreihe Mitreit im Mthemtikuterriht der Oerstufe dr. Aus

Mehr

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

Musterlösung zur Probeklausur zur Geometrie

Musterlösung zur Probeklausur zur Geometrie UNIVERSITÄT ULM Institut für Zhlentheorie un Whrsheinlihkeitstheorie Musterlösung zur Proeklusur zur Geometrie Prof. Dr. Helmut Mier, Hns- Peter Rek Gesmtpunktzhl: 3 Punkte, Punkte= % keine Age. Gi Definitionen

Mehr

Wirtschaftsmathematik - Übungen WS 2018

Wirtschaftsmathematik - Übungen WS 2018 Wirtshftsmthemtik - Üungen WS 8 Bltt : Linere Alger. Gegeen ist eine eine 3 3 Mtrix C =( ij ) mit un eine Mtrix B = A ) Shreien Sie ie Mtrix C n! Y _] j i für ij

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien Automten un formle Sprhen Notizen zu en Folien 1 Grunlgen un formle Beweise Venn-Digrmme (Folie 6) Im oeren Digrmm er Folie 6 sin zwei Mengen ngegeen: A un B. Es ist explizit ein Element von A ngegeen,

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo Polyome 9 Für Experte Komplexe

Mehr

Integralrechnung = 4. = n

Integralrechnung = 4. = n Computer ud Medie im Mthemtikuterriht WS 00/ Itegrlrehug. Allgemei Die Berehug vo Bogeläge, Shwerpukte ud Trägheitsmomete, der Areit ud des Effektivwertes eies elektrishe Wehselstromes, der Bhkurve vo

Mehr

Analytische Geometrie

Analytische Geometrie Pives Gymsim Mies J Mhemik Alyishe Geomeie Ueihsfzeihe de Mhemikleisskse / i de Shljhe / d / Noe Mez Am Solz He Ihlsvezeihis LÄNG BTRAG) INS VKTORS INHITSVKTOR SKALARPRODUKT WINKL ZWISCHN ZWI VKTORN NORMALNFORM

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

Wirtschaftsmathematik - Übungen SS 2018

Wirtschaftsmathematik - Übungen SS 2018 Wirtshftsmthemtik - Üungen SS 8 Bltt : Linere Alger. Gegeen sin ie Punkte P =( 3, ) un =(6, ). Bestimmen Sie ie Prmeterrstellung er Geren urh iese Punkte! Zeihnen Sie iese Gere! Wie lutet ie Koorintenrstellung

Mehr

ASW Lösungen zu Übung 6, MB,

ASW Lösungen zu Übung 6, MB, ASW Lösue u Übu MB Mthemtik I Geometrie vo Gerde ud bee rof DrBGrbowski Zu Aufbe Geebe sei eie Gerde im R : { } R Gebe Sie die Gerde i Normlform b R! b Gebe Sie die Gerde - R i ukt-richtusform! cliet der

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Wiederholung Analysis. Stetige Zufallsgrößen. Verteilungsfunktion. Intervallwahrscheinlichkeiten. ( ) da lim F( x) = 0. ist monoton wachsend

Wiederholung Analysis. Stetige Zufallsgrößen. Verteilungsfunktion. Intervallwahrscheinlichkeiten. ( ) da lim F( x) = 0. ist monoton wachsend Wiederholug Alysis Stetige Zufllsgröße F sei Stmmfuktio zu f f d= F F = f Bestimmtes Itegrl f ( d ) = F F Ueigetliche Itegrle f () tdt= F lim F f() t F = f() t dt ist mooto wchsed f () tdt= lim F F A=F()-F()

Mehr

SS 2018 Torsten Schreiber

SS 2018 Torsten Schreiber SS 08 orsten Shreier 8 Beim inneren Produkt ) wird komponentenweise multipliziert und die entstehenden Produkte nshließend. Somit hndelt es sih um keine d nur eine Zhl Sklr) ls Lösung heruskommt. Ds Sklrprodukt

Mehr

x + z y = 6 x 2 + z 2 y 2 = 36 x 3 + z 3 2y 3 = 1 x + z = y + 6 x 2 + z 2 = y x 3 + z 3 = 2y x 3 + x 2 y + xy 2 + y 3 = 0 x + xy + y = 1

x + z y = 6 x 2 + z 2 y 2 = 36 x 3 + z 3 2y 3 = 1 x + z = y + 6 x 2 + z 2 = y x 3 + z 3 = 2y x 3 + x 2 y + xy 2 + y 3 = 0 x + xy + y = 1 Gleihuge/Ugleihuge sltt Seite Gleihuge Aufge (Wurzel π37) Fide lle e (x, y, z) R 3 des Gleihugssystems M stellt ds System um zu x z y = 6 x z y = 36 x 3 z 3 y 3 = x z = y 6 x z = y 36 x 3 z 3 = y 3 Aus

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen Fchbereich Mthemtik Algebr ud Zhletheorie Christi Curill Grudlge der Mthemtik LPSI/LS-M) Lösuge Bltt WiSe 00/ - Curill/Koch/Ziegehge Präsezufgbe P3)-d) Für jede der vier Mege gilt, dss die dri ethltee

Mehr

Ergebnis: Abhängigkeit y(x) in der impliziten Form G(y) = F(x) + C. y =

Ergebnis: Abhängigkeit y(x) in der impliziten Form G(y) = F(x) + C. y = Lösugsmethode Differetilgleihuge erster Ordug Für gewisse Tpe vo Differetilgleihuge läßt sih ei Weg gee, uf dem m, die Lösug der Differetilgleihug uf Qudrture d.h. uf ds Ausrehe vo Itegrle, urükführe k..

Mehr

Kapitel VI. Eigenschaften differenzierbarer Funktionen

Kapitel VI. Eigenschaften differenzierbarer Funktionen Kpitel VI Eigeschfte differezierbrer Fuktioe S 6 (Fermt, 6-665) Die Fuktio f sei uf dem Itervll I defiiert ud ehme der iere Stelle ξ vo I eiem bsolute Extremum Ist f der Stelle ξ differezierbr, d gilt

Mehr

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt.

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt. Vektorlger Vektorlger Vektoren sind Grössen, die einen Betrg sowie eine Rihtung im Rum hen. Im Gegenstz zu den Vektoren estehen Sklre nur us einer Grösse ls Zhl. In Bühern wird nsttt v oft v geshrieen.

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN. Dienstag

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN. Dienstag Lösungen Dienstg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN Dienstg Blok.. - 4 3y 6 3-6y 3-3 y -. - 3y 4 - y 9 - y -93. y 0,,y Sämtlihe Lösungsmethoden liefern hier whre Aussgen. Z. Bsp. «0 0».

Mehr

Expertentipps für die Prüfung:

Expertentipps für die Prüfung: Epertetipps für die Prüfug: Alle Aufgbestelluge im Überblick! Wertvolle Hiweise uf Stolperflle! Elegte Rechetipps! Übersicht ller wichtige Formel! Mthemtik Bde-Württemberg Ihlt:. Pflichtteilufgbe........................................

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT Mthemtik: Mg. Schmid Wolfgng Areitsltt 5. Semester ARBEITSBLATT 5 ORTHOGONALITÄT Ws versteht mn zunächst einml unter orthogonl? Dies ist nur ein nderes Wort für norml oder im rechten Winkel. Ws uns hier

Mehr

Wirtschaftsmathematik - Übungen WS 2015/16

Wirtschaftsmathematik - Übungen WS 2015/16 Wirtshftsmthemtik - Üungen WS 25/6 Bltt 2: Linere Alger. Gegeen sin ie Punkte P =( 2, 2) un =(4, ). ) Bestimmen Sie ie Prmeterrstellung er Geren urh iese Punkte! Zeihnen Sie ie Gere! Wie lutet ie Koorintenrstellung

Mehr

Lineare Gleichungssysteme mit 3 und mehr Variablen

Lineare Gleichungssysteme mit 3 und mehr Variablen Linere Gleihungssysteme mit un mehr rilen Beispiel 1 mit rilen: 11 Zunähst estimmt mn ie rile, ie mn ls Erste eliminieren will. In iesem Fll soll von hinten nh vorn vorgegngen weren,.h. zuerst soll rile

Mehr

Matrix Theorie FACHBEREICH BAUINGENIEURWESEN PROF. DR. PETER SPARLA MATHEMATIK 1 1

Matrix Theorie FACHBEREICH BAUINGENIEURWESEN PROF. DR. PETER SPARLA MATHEMATIK 1 1 Mtrix Theorie FCHBEREICH BUINGENIEURWESEN PROF. DR. PETER SPRL MTHEMTIK htug! Dieses Folieskript soll de Studierede eiiges mehisher Shreibrbeit behme ud dzu beitrge, sih uf ds eigetlihe Fh ud seie vielfältige

Mehr

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis.

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis. . Wurzel Ds Wurzelziehe (Rdiziere) ist die Umkehrug des Potezieres. Durch Berechug der etsprechede Wurzel etsteht wieder der Wert der Bsis. poteziere Wurzel ziehe. Die Qudrtwurzel Ds Ziehe der Qudrtwurzel

Mehr

1. Funktionen einer reellen Variablen

1. Funktionen einer reellen Variablen . Fuktioe eier reelle Variable Wohe_7. Grafishe Darstellug im kartesishe Kooriatesystem Eie Fuktio y f() lässt sih als Kurve im rehtwiklige Kooriatesystem arstelle. Eifahe Äeruge es Fuktiosverlaufs / Kurvebils

Mehr

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet:

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet: 9 Vektorprodukt 9.1 Ds Vektorprodukt Gegeen seien zwei (komplnre) Vektoren und, die eine Eene ufspnnen. Suht mn einen Vektor n, der uf diese Eene senkreht steht, dnn muss n orthogonl zu und n orthogonl

Mehr

1. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik

1. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik Budeswettewer Mthemtik Wisseshftszetrum Postfh 0 8 Bo Fo: 08-77 Fx: 08-77 e-mil: ifo@udeswettewer-mthemtik.de www.udeswettewer-mthemtik.de Korrekturkommissio Krl Fegert Aufge ud Lösuge. Rude 00 Üer Kommetre

Mehr

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten:

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten: gnz klr: Mthemtik 2 - s Ferienheft mit Erfolgsnzeiger 3 Rettungsring Eigenshften von reieken & Viereken Eigenshften von reieken Ein reiek ht immer 3 Ekpunkte, 3 Seiten un 3 Innenwinkel. ie eshriftung eines

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Konstruktion mit Zirkel und Lineal

Konstruktion mit Zirkel und Lineal Alert Ludigs Universität Freiurg Institut für Mthemtik Ateilung für Reine Mthemtik Prof Dr D Wolke Dipl Mth S Feiler Üungen ur Vorlesung Ergänungen ur Elementren Zhlentheorie Wintersemester 9/ 9 Üungsltt

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 07 Torste Schreier e Wert eier etermite köe wir is zu eiem Formt vo mittels dem Verfhre vo Srrusestimme. Für Mtrize, die ei höheres Formt he, köe wir die etermite mit dem estimme. zu sollte Sie im erste

Mehr

Parametrische Koordinatenposition (r, θ, φ) auf der Kugeloberfläche mit einem Radius r ... θ π. φ π/2. Based on material by Werner Purgathofer

Parametrische Koordinatenposition (r, θ, φ) auf der Kugeloberfläche mit einem Radius r ... θ π. φ π/2. Based on material by Werner Purgathofer Bse o mteril y Werer rgthofer er/ber 8.4-8.5 8.8-8. 8.-8. Möglihe D-Ojetreräsettio Grhishe Szee eihlte solie geometrishe Ojete Bäme Blme Wole Felse Wsser Reräsettioe Oerflähe Iemoelle rozerle Moelle hysilish

Mehr

5.6 Gleichsetzungsverfahren

5.6 Gleichsetzungsverfahren .6 Gleihsetzungsverfhren Verfhren: Beide Gleihungen des Gleihungssystems werden nh derselen Vrilen ufgelöst und die entsprehenden Terme werden einnder gleihgesetzt. Beispiele (G x ) ) () x + y () x - y

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras 7 Die Stzgruppe des Pythgors In Klssenstufe 7 hen wir uns ei den Inhlten zur Geometrie insesondere mit Dreieken und ihren Eigenshften eshäftigt. In diesem Kpitel wirst du erkennen, dss es ei rehtwinkligen

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2006

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2006 Ldeswettbewerb thetik de-württeberg usterlösuge 1 Rude 2006 ufgbe 1 Die Ziffer vo 1 bis 5 solle so i eier Reihe geordet werde, dss jedes Pr behbrter Ziffer eie Zhl ergibt, die ei Produkt zweier eistelliger

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

Größter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches

Größter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches Größter gemeinsmer Teiler un kleinstes gemeinsmes Vielfhes 1 Der größte gemeinsme Teiler (ggt) Zu jeer Zhl knn mn ihre Teilermenge ngeen. Τ0 {1; 2; ; 5; 6; 10; 15; 0} Τ {1; 2; ; ; 6; } Die gemeinsmen Teiler

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

7 Ungleichungen und Intervalle

7 Ungleichungen und Intervalle Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,

Mehr

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik DIFFERENTIATION Ableitugsregel (f + g) = f + g (cf) = c f, c R ( ) = (c) =, c R Dmit köe wir Polyome bleite: Beispiel. ( 5 + 3 + ) = ( 5 ) + 3( ) + () = 5 4 + 3 = 5 4 + 6 Produkte- ud

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

Ausarbeitung zum Satz von Brahmagupta. Thimo Wanders Dozent: Dr. Marco Sobiech Proseminar Lineare Algebra

Ausarbeitung zum Satz von Brahmagupta. Thimo Wanders Dozent: Dr. Marco Sobiech Proseminar Lineare Algebra usreitung zum Stz von rhmgupt Thimo Wners ozent: r. Mro Soieh Proseminr Linere lger Sommersemester 2018 Inhltsverzeihnis 1 Einleitung 2 1.1 Nottion..................................... 2 2 Sehnenviereke

Mehr

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6 Mthemtik für die Physik II, Sommersemester 2018 Lösuge zu Serie 6 26 Utersuche die folgede Fuktioefolge uf puktweise beziehugsweise gleichmäßige Kovergez, d.h. bestimme jeweils ob diese vorliegt ud gebe

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

a) Behauptung: Es gibt die folgenden drei stabilen Matchings:

a) Behauptung: Es gibt die folgenden drei stabilen Matchings: Musterlösung - ufgenltt 1 ufge 1 ) ehuptung: Es git ie folgenen rei stilen Mthings: ies knn mn ntürlih für ein so kleines eispiel urh etrhten ller möglihen 3! = 6 Mthings eweisen. Mn knn er uh strukturierter

Mehr

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016 Tutorium Mthemti i der gymsile Oerstufe 3. Verstltug: Berechug vo Whrscheilicheite 6. ovemer 6. Komitori Permuttio: Elemete werde i eie Reihefolge gestellt Vritio: us Elemete werde usgewählt ud i eie Reihefolge

Mehr

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie Thema: Bilaze, eizwert, Stadardbildgsethalpie fgabe: Bestimme Sie de obere, molare eizwert o eies Kohlewasserstoffgases as de a eiem Drhflss-Kalorimeter (Bild 1) gemessee Date. T 1, m w Gas Lft V g T G

Mehr

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2018 Dienstg 5.6 $Id: dreiek.tex,v 1.43 2018/06/05 15:41:51 hk Exp $ 2 Dreieke 2.1 Dreiekserehnung mit Seiten und Winkeln Am Ende der letzten Sitzung htten wir den sogennnten Kongruenzstz

Mehr

Terme und Formeln Potenzen II

Terme und Formeln Potenzen II Terme ud Formel Poteze II Die eizige schriftliche Überlieferug der Mthemtik der My stmmt us dem Dresder Kodex. Ds Zhlesystem der Mys beruht uf der Bsis 0. Als Grud dfür wird vermutet, dss die Vorfhre der

Mehr

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt.

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt. . Kovergez.. Eiführug i ds Prizip der Folge Eie Folge ist eie durchummerierte (Idex) Abfolge vo Zhle die eie Abbildug der türliche Zhle uf eie dere Zhlemege drstellt. Beispiel: : = k uch ls Abbildug: f

Mehr

Matrizen und Determinanten

Matrizen und Determinanten . Mtrize.. Defiitio Mtrize u Determite Uter eier Mtri stellt m sih eie Nottiosweise vo Liere Gleihugssysteme oer Vektore vor. Eie m Mtri esteht us m Elemete, welhe ei Rehtekiges Shem mit m wgreht geore

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

Vektorrechnung. Ronny Harbich, 2003

Vektorrechnung. Ronny Harbich, 2003 Vektorrechug Ro Hrich, 2003 Eiführug Ihlt Defiitio Betrg Sklrmultipliktio Nullvektor Gegevektor Eiheitsvektor Additio Sutrktio Gesetze Defiitio Ei Vektor ist eie Mege vo Pfeile, die gleichlg (kogruet),

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

15 Trigonometrie des rechtwinkligen Dreiecks

15 Trigonometrie des rechtwinkligen Dreiecks Mthemtik PM Trigmetrie des rehtwiklige Dreieks 5 Trigmetrie des rehtwiklige Dreieks Trigmetrie (v trig [griehish]; Dreiek, ud metrei [griehish]; messe) 5 Eiführug (Gegeüerstellug Pythgrs ud Trigmetrie)

Mehr

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort Einführung in ie Progrmmierung Vorlesung 4: Topologil Sort : Hintergrun Bertrn Meer Letzte Üerreitung 3. Jnur 4 3 Topologil sort 4 Prouziere eine zu einer gegeenen Prtiellen Ornung komptile Vollstänige

Mehr

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass)

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass) onstruktion des regulären Fünfeks mit dem rostigen Zirkel (rusty ompss) Vrinte 1 Oliver ieri ie hier vorliegende Methode zur onstruktion eines regulären Fünfeks unter Zuhilfenhme eines rostigen Zirkels

Mehr

Ein Kreis mit dem Mittelpunkt M=(1 2) geht durch den Punkt P=(4-2). Bestimme den Radius des Kreises und die Kreisgleichung.

Ein Kreis mit dem Mittelpunkt M=(1 2) geht durch den Punkt P=(4-2). Bestimme den Radius des Kreises und die Kreisgleichung. 9 Lösuge Beispiel 1: Bestimme Mittelpukt ud Radius des Kreises k: x²+4x+y²-2y-11=0. Diese Gleichug formt ma um i die Form (x-x M )²+(y-y M )²=r². I dieser Gleichug sid x M ud y M die Koordiate des Mittelpuktes

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

Lineare Algebra. Übungsblatt November Aufgabe 1. (4=2+2 Punkte) Sei V ein K-Vektorraum und seien v 1,..., v n V.

Lineare Algebra. Übungsblatt November Aufgabe 1. (4=2+2 Punkte) Sei V ein K-Vektorraum und seien v 1,..., v n V. Goethe-Univesität Fnkfut Institut fü Mthemtik Linee Alge Wintesemeste 28/9 Pof. D. Jko Sti Mtin Lütke Üungsltt 5 3. Noveme 28 Aufge. (42+2 Punkte) Sei V ein K-Vektoum un seien v... v n V. () Sei K α n

Mehr

1 Planarbeit Planarbeit

1 Planarbeit Planarbeit Erreiten Sie sih shrittweise ie folgenen Themen. Notieren Sie gegeenenflls zu jeem Them Frgen. Lösen Sie jeweils ie zugehörige Kontrollufge. Kontrollieren Sie Ihre Lösung mit er Musterlösung. Lösen Sie

Mehr

Die Logarithmusfunktion

Die Logarithmusfunktion Ihltsverzeichis Ihltsverzeichis...1 Die Logrithusfuktio...2 Eiführug...2 Eiige Beispiele...2 Spezielle Logrithe...3 Die Ukehrfuktio der Epoetilfuktio...3 Die Eigeschfte der Logrithusfuktio...4 Defiitiosereich

Mehr

Glossar zum Brückenkurs "Mathematik für Wirtschaftswissenschaftler" 1

Glossar zum Brückenkurs Mathematik für Wirtschaftswissenschaftler 1 Glossr zum Brückekurs "Mthemtik für Wirtschftswisseschftler" GLOSSAR Abbildug Eie eideutige Zuordug f zwische zwei Mege X ud Y heißt Abbildug oder Fuktio us X i Y. M schreibt: f: X Y. f heißt Abbildug

Mehr

Johann-Philipp-Reis-Schule

Johann-Philipp-Reis-Schule Joh-Philipp-Reis-Schule Berufliche Schule es Wetterureises i Frieerg Mthemti für Fchoerschule Mthemtische Gruregel Frierich Buchert Joh-Philipp-Reis-Schule Stuieiretor Im Wigert 9 Frieerg Joh-Philipp-Reis-Schule

Mehr

Geometrie. Inhaltsverzeichnis. 8.1 Der Satz von Ptolemäus und sein klassischer Beweis. Der Satz von Ptolemäus. 8 Der Satz von Ptolemäus

Geometrie. Inhaltsverzeichnis. 8.1 Der Satz von Ptolemäus und sein klassischer Beweis. Der Satz von Ptolemäus. 8 Der Satz von Ptolemäus Der Stz von Ptolemäus 1 Geometrie Der Stz von Ptolemäus Autor: Peter Anree Inhltsverzeihnis 8 Der Stz von Ptolemäus 1 8.1 Der Stz von Ptolemäus un sein lssisher Beweis........... 1 8.2 Verhältnis er Digonlen

Mehr

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a.

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a. HUNKLOIHDWKHPDWLN Dies ist keie Fomelsmmlug im klssische Si - die vewedete Bezeichuge wede icht eklät ud Voussetzuge fü die ültigkeit de Fomel wede i de Regel icht gegee. 7HLO,6WRIIJHELHWHHULWWHOVWXIH

Mehr

Grundlagen Mathematik 9. Jahrgangsstufe

Grundlagen Mathematik 9. Jahrgangsstufe Grudlge Mthetik 9. Jhrggsstufe ALGEBRA. Uter der (Qudrt-)Wurzel Zhl, die qudriert ergit : der positive Zhl versteht diejeige positive heißt dei der Rdikd.. Rtiole Zhle Q = lle Brüche zw. edliche oder uedlich

Mehr

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen Deprtment Mthemtik Tg der Mthemtik 5. Juli 008 Klssenstufen 9, 10 Aufge 1. Die Zhl 6 wird us 3 gleihen Ziffern mit Hilfe der folgenden mthemtishen Symole drgestellt: + Addition Sutrktion Multipliktion

Mehr

Kapitel I Zahlenfolgen und -reihen

Kapitel I Zahlenfolgen und -reihen Kpitel I Zhlefolge ud -reihe D (Zhlefolge) Ist jeder Zhl geu eie Zhl R,,,, eie (reelle) Zhlefolge bilde M schrieb: Die heiße Glieder der Zhlefolge zugeordet, so sgt m, dss die Zhle B Eie Zhlefolge ist

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Techikerschule Aufge für Klusure ud Aschlussprüfuge Epoetilgleichuge, Logrithmusgleichuge Grudlgewisse: Recheregel zur Epoetil- ud Logrithmusrechug. Hiweise ud Formelsmmlug siehe Seite - 5. Bereche Sie.

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

Brückenkurs Mathematik Dr. Karl TH Nürnberg

Brückenkurs Mathematik Dr. Karl TH Nürnberg Brükekurs Mthemtik Dr. Krl TH Nürerg Qudrtishe Gleihuge Ugleihuge Copyright : Huert Krl Alle Rehte vorehlte. Diese Puliktio drf ohe die usdrüklihe shriftlihe Geehmigug des Autors weder gz oh uszugsweise

Mehr

Definition einer Gruppe

Definition einer Gruppe Defiitio eier Gruppe Uter eier Gruppe versteht i der Mthetik eie Ahl vo Eleete, die durch Regel i Beiehug stehe. Bediguge für eie thetische Gruppe: I. Verküpfug weier beliebiger Eleete (ud dit uch ds Qudrt

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7. Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergit. x x für 0 9 9 * : Wurzelexpoet, N ud : Rdikd, 0 x: Wurzel(wer t) Poteziere: Bsis ud Expoet sid gegee,

Mehr