Brückenkurs Mathematik

Größe: px
Ab Seite anzeigen:

Download "Brückenkurs Mathematik"

Transkript

1 Brückenkurs Mathematik Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi

2 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt 3 Implizite Darstellung

3 Was ist über ein beliebiges Dreieck bekannt? Flächeninhalt Winkelsumme Sinussatz Kosinussatz

4 Was ist über ein rechtwinkliges Dreieck zusätzlich bekannt? Satz von Pythagoras Satz von Thales Flächeninhalt Trigonometrische Formeln

5 Satz von Pythagoras

6 Trigonometrische Formeln Die Gegenkathete ist diejenige Seite, die gegenüber dem betrachteten Winkel liegt. Die Hypotenuse ist diejenige Seite, die gegenüber des rechten Winkels liegt. Die Ankathete ist diejenige Seite, die an dem betrachteten Winkel liegt. sin (Winkel) = Gegenkathete Hypotenuse cos (Winkel) = Ankathete Hypotenuse tan (Winkel) = Gegenkathete Ankathete

7 Beispiel

8 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt Was ist ein Vektor? Ein Vektor ist anschaulich ein Pfeil im Raum R 3 oder in der Ebene R 2 mit einer Richtung und einer Länge. Mathematisch korrekt versteht man unter einem Vektor einen geordneten 3-Tupel (bzw. einen 2-Tupel) x 1 x 2 x 3 R 3, ( x1 x 2 ) R 2.

9 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt Mit Vektoren kann man wie folgt rechnen: Addition: Seien x, y R 3 zwei beliebige Vektoren: x 1 y 1 x 1 + y 1 x + y = x 2 x 3 + y 2 y 3 = x 2 + y 2 x 3 + y 3. Skalare Multiplikation: Sei x R 3 ein beliebiger Vektor und λ R eine beliebige Zahl (=Skalar): λx = λ x 1 x 2 x 3 = λx 1 λx 2 λx 3.

10 Beispiel Geometrie des Dreiecks Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

11 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt Durch den Satz von Pythagoras erhält man die Länge eines Vektors in( der Ebene: ) x1 Sei x := R 2, dann ist die Länge des Vektors x, also der x 2 Abstand vom Nullpunkt gerade gegeben durch x := x x2 2.

12 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt Diese Längenberechnung kann man analog im dreidimensionalen Raum ausführen. x 1 Sei x := x 2 R 3, dann ist die Länge des Vektors x gerade x 3 gegeben durch: x := x x2 2 + x2 3.

13 Die Abbildung Geometrie des Dreiecks Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt : R 3 R + x x, die jedem Vektor eine Länge zuordnet, wird (euklidische) Norm genannt. Durch die Norm kann auch ein Abstand zwischen zwei Punkten definiert werden, indem man die Länge der Differenz der beiden Vektoren bestimmt: Seien x := x 1 x 2 x 3 R 3, y := y 1 y 2 y 3 R 3 zwei Vektoren, dann ist der Abstand zwischen x und y definiert durch x y = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 + (x 3 y 3 ) 2.

14 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt Die Länge eines Vektors können wir nun berechnen. Wie sieht es mit der Richtung aus, d.h. mit dem Winkel des Vektors zur (bspw.) x-achse? Den Winkel zwischen zwei Vektoren kann man mit Hilfe des Skalarprodukts messen: Skalarprodukt Das Skalarprodukt zwischen zwei Vektoren x, y R 3 ist wie folgt definiert:, : R 3 R 3 R, (x, y) x, y, und 3 x, y := x 1 y 1 + x 2 y 2 + x 3 y 3 = x k y k. k=1

15 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt Die Norm kann mit Hilfe des Skalarproduktes wie folgt definiert werden: x = x, x. Es gelten folgende Rechenregeln für das Skalarprodukt: Eigenschaften des Skalarproduktes Seien x, y, z R 3 und λ, µ R beliebig: Symmetrie: x, y = y, x. Linearität: λx + µy, z = λ x, z + µ y, z. Positive Definitheit: x, x 0 und x, x = 0 x = 0.

16 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt Der Winkel φ [0, 2π) zwischen zwei Vektoren x, y R 3 berechnet sich dann durch: cos(φ) = x, y x y. Dasselbe gilt ganz analog im R 2 (und allgemein im R n ). Spezialfälle φ = 0 cos(φ) = 1 x, y = x y x = λy, λ R +. φ = π 2 cos(φ) = 0 x, y = 0.

17 Beispiel Geometrie des Dreiecks Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

18 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt Mit Hilfe des Skalarprodukts kann bestimmt werden, ob zwei Vektoren senkrecht zueinander stehen. Benötigt man einen dritten Vektor, der zu zwei gegebenen Vektoren senkrecht steht, kann man diesen mit Hilfe des Kreuzproduktes berechnen. : R 3 R 3 R 3 (x, y) x y, wobei x y = x 1 x 2 x 3 y 1 y 2 y 3 = x 2 y 3 y 2 x 3 x 3 y 1 x 1 y 3 x 1 y 2 x 2 y 1. Im Unterschied zu allen obigen Definitionen, die sich ganz analog in den n-dimensionalen Raum R n übertragen lassen, ist das Kreuzprodukt nur im R 3 definiert.

19 Beispiel Geometrie des Dreiecks Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

20 Implizite Darstellung In der gestrigen Vorlesung haben wir zum Schluß lineare Gleichungssysteme betrachtet, bspw. a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 23 x 2 + a 33 x 3 = b 3. Ein solches Gleichungssystem kann man wie folgt auch als Matrix * Vektor = Vektor auffassen: A := a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 x 1 x 2 x 3 = b 1 b 2 b 3 =: b.

21 Implizite Darstellung Zur Lösung eines Gleichungssystems wird dieses durch Addition von Vielfachen einer Zeile auf eine andere bzw. durch Vertauschen der Zeilen auf Stufenform gebracht. Dies entspricht in der Matrixschreibweise, dass die Koeffizientenmatrix in Dreiecksform umgeformt wird, d.h. Ã := Ein Vektor x 1 x 2 x 3 ã 11 ã 12 ã 13 0 ã 22 ã ã 33 x 1 x 2 x 3 b1 = b2 =: b. b3 ist genau dann eine Lösung der umgeformten Gleichung Ãx = b, wenn er Lösung der ursprünglichen Gleichung Ax = b ist.

22 Implizite Darstellung Lösungsmengen Sind die Diagonalelemente der Matrix à alle ungleich null, dann besitzt die Gleichung genau eine Lösung. Ist nach Äquivalenzumformungen eine ganze Zeile oder Spalte null, dann bildet die Lösungsmenge der Gleichung eine Gerade. Sind nach Äquivalenzumformungen zwei ganze Zeilen oder zwei Spalten null, dann bildet die Lösungsmenge eine Ebene.

23 Implizite Darstellung Beispiel x 1 x 2 x 3 =

24 Implizite Darstellung Beispiel x 1 x 2 x 3 =

25 Implizite Darstellung Beispiel x 1 x 2 x 3 =

26 Implizite Darstellung Geraden, Ebenen Eine Teilmenge G R 2 in der Ebene heißt Gerade, falls es a 1, a 2, b R mit (a 1, a 2 ) (0, 0) gibt, so dass G := { (x 1, x 2 ) R 2 a1 x 1 + a 2 x 2 = b }. Eine Teilmenge E R 3 im Raum heißt Ebene, falls es a 1, a 2, a 3, b R 3 mit (a 1, a 2, a 3 ) (0, 0, 0) gibt, so dass E := { (x 1, x 2, x 3 ) R 3 a1 x 1 + a 2 x 2 + a 3 x 3 = b }.

27 Implizite Darstellung Ebenen, Geraden und Punkte im Raum kann man also als Lösungsmengen von linearen Gleichungen darstellen. Analog lassen sich viele geometrische Objekte als Lösungsmengen von Gleichungen beschreiben: ( Kreis: ) Löse x x2 2 = r für beliebiges festes r > 0 und x1 R 2. x 2 Ellipse: Löse x2 1 ( ) x1 R 2. x 2 + x2 a 2 2 b 2 Hyperbel: Löse x2 1 ( ) x1 und R 2. x 2 a 2 x2 2 = 1 für beliebiges festes a, b R + und b 2 = 1 für beliebiges festes a, b R +

28 Implizite Darstellung Einheitskreis

29 Implizite Darstellung Ellipse

30 Implizite Darstellung Neben der impliziten Darstellung als Lösungsmenge kann man geometrische Objekte auch durch en beschreiben. Gerade Eine Teilmenge G R 2 ist genau dann eine Gerade, falls es zwei Vektoren v, w R 2 in der Ebene mit w 0 gibt, so dass gilt G = v + Rw = { x R 2 λ R : x = v + λw }. Ebene Eine Teilmenge E R 3 ist genau dann eine Ebene, falls es drei Vektoren u, v, w R 3 im Raum gibt, so dass gilt E = u+rv+rw = { x R 3 λ1, λ 2 R : x = u + λ 1 v + λ 2 w }.

31 Implizite Darstellung Kreis: { (r cos(φ), r sin(φ)) φ [0, 2π) }. Ellipse: { (a cos(φ), b sin(φ)) φ [0, 2π) }. Hyperbel: { (a cosh(t), b sinh(t)) t R }.

32 Implizite Darstellung Beispiel

33 Implizite Darstellung... und so geht es heute weiter: Übung: Übungsräume 13:00-14:30 Besprechung der Aufgaben: Audimax I 15:00-16:30

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Formelsammlung Mathematik Grundkurs Inhalt

Formelsammlung Mathematik Grundkurs Inhalt Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Dreiecke, Geraden, Lineare Gleichungssysteme

Dreiecke, Geraden, Lineare Gleichungssysteme Dreiecke, Geraden, Lineare Gleichungssysteme Jörn Loviscach Versionsstand: 18. April 2009, 19:46 1 Cosinussatz Mit Hilfe des Skalarprodukts kann man den Cosinussatz [law of cosines] zeigen. Seien a und

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

2 Geometrie und Vektoren

2 Geometrie und Vektoren Geometrie und Vektoren Vorbemerkung: Begriffe wie die folgenden werden hier als bekannt vorausgesetzt: Punkt, Strecke, Strahl, Gerade, Ebene, Kreis, Winkel, rechter Winkel, etc..1 Grundlegende Sätze Satz

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Lösungen der Übungsaufgaben III

Lösungen der Übungsaufgaben III Mathematik für die ersten Semester (. Auflage): Lösungen der Übungsaufgaben III C. Zerbe, E. Ossner, W. Mückenheim 6. Man konstruiere die Winkelhalbierende eines beliebigen Winkels analog zur Konstruktion

Mehr

Zusammenfassung zum Thema Vektor- und Matrizenrechnung

Zusammenfassung zum Thema Vektor- und Matrizenrechnung Zusammenfassung zum Thema Vektor- und Matrizenrechnung Mathematischer Vorkurs für Physiker und Naturwissenschaftler WS 2014/2015 Grundbegriffe der Linearen Algebra Viele physikalische Größen (Geschwindigkeit,

Mehr

Grundlagen der Vektorrechnung

Grundlagen der Vektorrechnung Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Lösung Semesterendprüfung (Nachprüfung)

Lösung Semesterendprüfung (Nachprüfung) MLAE Mathematik: Lineare Algebra für Ingenieure Frühlingssemester 6 Dr. Christoph Kirsch ZHAW Winterthur Lösung Semesterendprüfung (Nachprüfung Aufgabe : Aufgabe : a Gemäss Def. der Vorlesung müssen wir

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Vorkurs Mathematik Teil III. Lineare Algebra

Vorkurs Mathematik Teil III. Lineare Algebra Vorkurs Mathematik Teil III. Lineare Algebra Inhalt 0. Inhalt 1. Lineare Gleichungssysteme und Gauß-Verfahren. Vektorrechnung 3. Lagebestimmungen von Punkt, Geraden und Ebenen 4. Skalarprodukt, Längen

Mehr

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h.

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h. 8 Elemente der linearen Algebra 81 Der euklidische Raum R n Definition von R n Definition 81 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R R (n-mal), dh R n = {(x 1, x 2,, x n ) : x

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

erfanden zu den reellen Zahlen eine neue Zahl

erfanden zu den reellen Zahlen eine neue Zahl Vorlesung 9 Komplexe Zahlen Die Gleichung x 2 = 1 ist in R nicht lösbar, weil es keine Zahl gibt, deren Quadrat eine negative Zahl ist. Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl i,

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

Länge, Skalarprodukt, Geradengleichungen

Länge, Skalarprodukt, Geradengleichungen Länge, Skalarprodukt, Geradengleichungen Jörn Loviscach Versionsstand: 9. April 2010, 18:48 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.youtube.com/joernloviscach

Mehr

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn!

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn! Berechnungen in Dreiecken Allgemeines zu Dreiecken Innenwinkelsatz α + β + γ = 180 Besondere Dreiecke Gleichschenkliges Dreieck Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher

Mehr

Lineare Algebra: Theorie und Anwendungen

Lineare Algebra: Theorie und Anwendungen Lineare Algebra: Theorie und Anwendungen Sommersemester 2012 Bernhard Burgeth Universität des Saarlandes c 2010 2012, Bernhard Burgeth 1 VEKTOREN IN DER EBENE UND IM RAUM 2 1 Vektoren in der Ebene und

Mehr

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß). Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

Lineare Algebra in der Oberstufe

Lineare Algebra in der Oberstufe Lineare Algebra in der Oberstufe Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. April 2016 Stefan Ruzika 1: Schulstoff 11. April 2016 1 / 21 Übersicht Ziel dieses Kapitels

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Sommersemester 2016 Carsten Krupp BBA Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer, 2004 Piehler, Sippel, Pfeiffer: Mathematik zum Studieneinstieg,

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen

Mehr

14 Skalarprodukt Abstände und Winkel

14 Skalarprodukt Abstände und Winkel 4 Skalarprodukt Abstände und Winkel Um Abstände und Winkel zu definieren benötigen wir einen neuen Begriff. Zunächst untersuchen wir die Länge eines Vektors v. Wir schreiben dafür v und sprechen auch von

Mehr

mentor Lernhilfe: Mathematik 10. Klasse Baumann

mentor Lernhilfe: Mathematik 10. Klasse Baumann mentor Lernhilfe: Mathematik 10. Klasse Geometrie: Winkelfunktionen, Trigonometrie, Additionstheoreme, Vektorrechnung von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 10. Klasse Baumann schnell

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

Vektoren - Basiswechsel

Vektoren - Basiswechsel Vektoren - Basiswechsel Grundprinzip Für rein geometrische Anwendungen verwendet man üblicherweise die Standardbasis. Damit ergibt sich in den Zahlenangaben der Koordinaten kein Unterschied zu einem Bezug

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Aufgaben zu Kapitel 20

Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Verständnisfragen Aufgabe 20 Sind die folgenden Produkte Skalarprodukte? (( R ) 2 ( R 2 )) R : v w,, v v 2 w w 2 (( R ) 2 ( R 2 )) R : v w, 3 v v 2 w w + v

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2016 / 2017 Carsten Krupp BBA und IBS Vorkurs Mathematik - Wintersemester 2016 / 2017 Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer,

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben /3 Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier

Mehr

Brückenkurs Elementarmathematik

Brückenkurs Elementarmathematik Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3

Mehr

Analytische Geometrie

Analytische Geometrie Kapitel 2 Analytische Geometrie 21 Vektoren Die Elemente des kartesischen Produktes R n, d h die n Tupel oder Zeilenvektoren (a 1,, a n ) mit a k R für k n, interpretiert man als Punkte eines n dimensionalen

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 5 Verwandle große Schwierigkeiten in kleine und kleine in gar keine Chinesische Weisheit Das Lösen von

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix

5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix 5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix Jörn Loviscach Versionsstand: 20. März 2012, 16:02 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben / Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra 11 Komplexe Zahlen Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra Addition ebener Vektoren Sei Ê 2 = {(x, y) : x, y Ê}. Ê 2 können wir als Punkte in der Ebene

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Skalarprodukte (Teschl/Teschl Kap. 13)

Skalarprodukte (Teschl/Teschl Kap. 13) Skalarprodukte (Teschl/Teschl Kap. ) Sei V Vektorraum über R. Ein Skalarprodukt auf V ist eine Abbildung V V R, (x, y) x, y mit den Eigenschaften () x, y = y, x (symmetrisch), () ax, y = a x, y und x +

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Patricia Doll, Selmar Binder, Lukas Bischoff, Claude Denier ETHZ D-MATL SS 07 11.04.2007 1 Vektorräume 1.1 Definition des Vektorraumes (VR) 1.1.1 Grundoperationen Um

Mehr

Lehrskript Mathematik Q12 Analytische Geometrie

Lehrskript Mathematik Q12 Analytische Geometrie Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Übungsaufgaben Vektoren

Übungsaufgaben Vektoren Kallenrode, www.sotere.uos.de Übungsaufgaben Vektoren 1. Gegeben sind die Einheitsvektoren in Zylinderkoordinaten e ϱ = cos ϕ sin ϕ, e ϕ = sin ϕ cos ϕ und e z = 0 0 0 0 1 und Kugelkoordinaten: sin ϑ cos

Mehr

Lineare Algebra I. Eine Vorlesung von Prof. Dr. Klaus Hulek

Lineare Algebra I. Eine Vorlesung von Prof. Dr. Klaus Hulek Lineare Algebra I Eine Vorlesung von Prof. Dr. Klaus Hulek hulek@math.uni-hannover.de c Klaus Hulek Institut für Mathematik Universität Hannover D 30060 Hannover Germany E-Mail : hulek@math.uni-hannover.de

Mehr

Das Skalarprodukt zweier Vektoren

Das Skalarprodukt zweier Vektoren Beim Skalarprodukt zweier Vektoren werden die Vektoren so multipliziert, dass sich ein Skalar eine Zahl ergibt. Die Berechnung des Skalarproduktes ist ziemlich einfach, aber die weiteren Eigenschaften

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Skalarprodukt. Das gewöhnliche Skalarprodukt ist für reelle n-tupel folgendermaßen erklärt: Sind. und v := reelle n-tupel, dann ist

Skalarprodukt. Das gewöhnliche Skalarprodukt ist für reelle n-tupel folgendermaßen erklärt: Sind. und v := reelle n-tupel, dann ist Orthogonalität p. 1 Skalarprodukt Das gewöhnliche Skalarprodukt ist für reelle n-tupel folgendermaßen erklärt: Sind u := u 1 u 2. u n reelle n-tupel, dann ist und v := v 1 v 2. v n u v := u 1 v 1 + u 2

Mehr

Selbsttest Mathematik des FB 14 der Universität Kassel

Selbsttest Mathematik des FB 14 der Universität Kassel Selbsttest Mathematik des F 1 der Universität Kassel Der folgende Selbsttest soll Ihnen helfen Ihre mathematischen Fähigkeiten besser einzuschätzen, um zu erkennen, ob Ihre Mathematikkenntnisse für einen

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Vektorrechnung. 1. Vektoren im R 2, R 3 Größen in Physik und Technik:

Vektorrechnung. 1. Vektoren im R 2, R 3 Größen in Physik und Technik: Vektorrechnung 1. Vektoren im R 2, R 3 Größen in Physik und Technik: - skalare Größen: Länge [m], Zeit [sec], Masse [kg], Energie [N m], elektr. Spannung [V ],... gekennzeichnet durch: Maßzahl ( R) [Maßeinheit]

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

= ( n x j x j ) 1 / 2

= ( n x j x j ) 1 / 2 15 Skalarprodukte 77 15 Skalarprodukte 15.1 Einführung. a) Ab jetzt sei stets K = R oder K = C, da Wurzeln eine wichtige Rolle spielen werden. b) Nach dem Satz des Pythagoras ist die Länge eines Vektors

Mehr

Mathematik für Chemische Technologie 2

Mathematik für Chemische Technologie 2 Mathematik für Chemische Technologie 2 Themenüberblick: Funktionen mehrerer unabhängigen Veränderlichen Vektoralgebra Lineare Gleichungssysteme und Determinanten Fehlerrechnung Schwerpunkt des Sommersemesters

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

Rechnen mit Quadratwurzeln

Rechnen mit Quadratwurzeln 9. Grundwissen Mathematik Algebra Klasse 9 Rechnen mit Quadratwurzeln Die Quadratwurzel aus a ist diejenige nichtnegative Zahl aus R, deren Quadrat wieder a ergibt. a nennt man Radikand. Man schreibt dafür

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Lineare Algebra Zusammenfassung

Lineare Algebra Zusammenfassung Lineare Algebra Zusammenfassung Gruppen, Körper, Vektorräume Gruppen Def.: Eine Gruppe (G, )besteht aus einer nicht-leeren Menge G und einer Verknüpfung zwischen Elementen dieser Gruppe. Folgende Eigenschaften

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

Vektorprodukt. Institut für Mathematik Humboldt-Universität zu Berlin & &

Vektorprodukt. Institut für Mathematik Humboldt-Universität zu Berlin & & Vektorprodukt Institut für Mathematik Humboldt-Universität zu Berlin 18.02.2004 & 17.02.2005 & 11.07.2005 zu den Vorlesungen Lineare Algebra und analytische Geometrie I (L) im WS 2003/2004, Mathematik

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Matrizen und Drehungen

Matrizen und Drehungen Matrizen und Drehungen 20. Noember 2003 Diese Ausführungen sind im wesentlichen dem Skript zur Vorlesung Einführung in die Theoretische Physik I und II on PD Dr. Horst Fichtner entnommen. Dieses entstand

Mehr

Länge, Skalarprodukt, Vektorprodukt

Länge, Skalarprodukt, Vektorprodukt Länge, Skalarprodukt, Vektorprodukt Jörn Loviscach Versionsstand: 20. April 2009, 19:39 1 Überblick Ein Vektorraum muss nur eine Minimalausstattung an Rechenoperationen besitzen: die Addition zweier Vektoren

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr