Blocksatzbildung. Einführung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 02/03 93

Größe: px
Ab Seite anzeigen:

Download "Blocksatzbildung. Einführung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 02/03 93"

Transkript

1 Blocksatzbildung Beispiel 3.9. [Berechnung optimaler Blockungen] egeben ist eine Folge Jeder egenstand hat eine Länge von egenständen. Die egenstände sollen in Blöcke eingeteilt werden, wobei die Idealgröße eines Blockes ist. Die esamtlänge der egenstände in einem Block darf nicht übersteigen.. Einführung in die raphentheorie FH Bonn-Rhein-Sieg, WS 2/3 92 Die egenstände dürfen nicht umsortiert werden. Ein Block ergibt sich also durch einen Index mit ist das letzte Element im Block. ist das erste Element im Block und Für die Abweichung der Länge!" # $&%! "(')+*, eines Blockes von wird eine Bewertung definiert, die monoton in der röße der Abweichung ist, z.b..- +/. Einführung in die raphentheorie FH Bonn-Rhein-Sieg, WS 2/3 93

2 1 1 I I 1 esucht ist eine Blockung, die eine möglichst kleine Bewertung hat, also eine Anzahl an Blöcken und eine Folge :9; < mit 9 #.- />=@? min % unter den Bedingungen! " # $&%! "('A)+*, CB für 7 7 A / 4 Einführung in die raphentheorie FH Bonn-Rhein-Sieg, WS 2/3 94 Beispielproblem: Länge der egenstände: D E@ FE@ Blockgröße: 1 gierige Einteilung: HD JIK E@ ELIK JIK, Bewertung: 81 andere Einteilung: HD IK FELIK E@ JIK, Bewertung: 33 Einführung in die raphentheorie FH Bonn-Rhein-Sieg, WS 2/3 95

3 1 Modellierung des Problems als Wegeproblem: NM SR <O <OT 7 7 FQP ewichte: X VU Q4 und W 7.- W $&%! *, CB $&%! *, K / Jeder Weg von 1 nach definiert dann eine zulässige Einteilung in Blöcke, wobei die Bewertung dieser Blockung gleich der Länge des Weges ist. Also: Finde einen Weg minimaler Länge von 1 nach. Auf diesem Prinzip basiert die Formatierung in TeX. Einführung in die raphentheorie FH Bonn-Rhein-Sieg, WS 2/3 96 Projektplanung mit Netzplantechnik Beispiel 3.1. [Netzplantechnik mit CPM] Bei der Durchführung umfangreicher Projekte ist es erforderlich, daß einzelne Teilaufgaben (Jobs) zeitlich genau aufeinander abgestimmt werden. Hierfür werden häufig Methoden der Netzplantechnik eingesetzt. Die bekannteste Methode der Netzplantechnik heißt CPM (Critical Path Method). Y hat eine zugeordnete Dauer ] sowie eine Menge ^ `_ Y von Vorgängern. ZY sei die Menge der Jobs eines Projekts. Jeder Job \[ Einführung in die raphentheorie FH Bonn-Rhein-Sieg, WS 2/3 97

4 Ein Job kann erst dann gestartet werden, wenn alle Jobs aus ^ beendet wurden. Wir gehen davon aus, daß Jobs parallel bearbeitet werden können. Man möchte z.b. wissen: Ab welchem Zeitpunkt kann mit einem Job begonnen werden? Wie lange wird ein Projekt dauern? Welche Jobs sind besonders kritisch in bezug auf die esamtdauer eines Projekts? Einführung in die raphentheorie FH Bonn-Rhein-Sieg, WS 2/3 98 Beispiel Zusammenbau eines Fahrrads: Job Beschreibung Dauer Vorg. a Rahmen vorbereiten (abel, Schutzbleche, usw.) 6 b Kettenführung anbringen 2 c angschaltung anbringen 3 b d Kettenblatt an Kurbel montieren 4 b e Vorderrad montieren und anpassen 6 a f Hinterrad montieren und anpassen 6 a,c g Kurbel am Rahmen anbringen 3 d h Endmontage (Lenker, Sattel, usw.) 12 e,f j Linkel Pedal anbringen 3 c,g k Rechtes Pedal anbringen 3 c,g Einführung in die raphentheorie FH Bonn-Rhein-Sieg, WS 2/3 99

5 Die Abhängigkeiten der Jobs untereinander können wir in Form eines DAs repräsentieren. Die Knoten stellen hierbei die Jobs dar. Die Kanten stellen Vorgängerbeziehungen zwischen den Jobs dar. e a f h c j b d g k Einführung in die raphentheorie FH Bonn-Rhein-Sieg, WS 2/3 1 Die Jobs a und b können offensichtlich sofort begonnen werden. Der Job c kann begonnen werden, wenn a beendet ist und wenn d beendet ist. a ist nach einer Dauer von 6 beendet, d nach einer Dauer von 5, da d erst gestartet werden kann, wenn b beendet ist. Somit kann c zum Zeitpunkt 6 begonnen werden. Allgemein: Der frühste Starttermin eines Jobs ergibt sich durch einen Weg zu diesem Job mit maximaler esamtdauer. Hier liegen die Bewertungen nun auf den Knoten. Tafel: Frühste Starttermine für die Jobs des Beispiels. Einführung in die raphentheorie FH Bonn-Rhein-Sieg, WS 2/3 11

6 Die Critical-Path-Method CPM stellt eine Modellierung dar, bei der die Jobs die Kanten eines DAs sind. Die Knoten können als Fertigstellungsereignisse angesehen werden. Projektbeginn a 6 b 2 c 3 d 4 feg 3h e 6 h 12 f 6 j 3 Projektende g 3 k 3 Die Kanten a stellen einen längsten Weg vom Projektbeginn zum -ende dar (kritische Pfad). Die esamtlaufzeit des Projekts ist also 24. Einführung in die raphentheorie FH Bonn-Rhein-Sieg, WS 2/3 12 Für die Projektplanung sind u.a. die folgenden interessant: Projektdauer i : Länge eines längsten Weges (kritischer Pfad) vom Projektbeginn bis zum Projektende. Starttermin für Jobs : Länge eines längsten Weges bis zum Startknoten von. Zeitkritische Jobs: Alle Jobs, die auf einem kritischen Pfad liegen. Pufferzeit für Job : ij- Länge eines längsten Weges, der Kante enthält. Und warum verzögern sich Projekte trotz ausgefeilter Planungsmethoden? Siehe Übungen. Einführung in die raphentheorie FH Bonn-Rhein-Sieg, WS 2/3 13

7 Die Routen der geringsten Videoüberwachung Aus der Rheinischen Post vom : New Yorker Webpage sucht kamerafreie Wege New York (rpo). Wer in einer roßstadt lebt, kann sich kaum noch bewegen, ohne von diversen Überwachungskameras aufgenommen zu werden. Da war es zwangsläufig nur eine Frage der Zeit, bis sich Widerstand regt. Ein Projekt von US-Bürgerrechtsaktivisten berechnet Usern jetzt die Route mit der geringsten Video- Überwachung durch New York. Einführung in die raphentheorie FH Bonn-Rhein-Sieg, WS 2/3 14 Zusammenfassung des Kapitels Charakterisierung und Berechnung von Eulerwegen (Hierholzer- Algorithmus) Hamiltonsche Wege und Kreise (Berechnung ist schwer) Dijkstra-Algorithmus zur Ermittlung kürzester Wege Dynamische Programmierung zur Berechnung kürzester Wege in DAs Anwendungen: Blocksatzbildung und Netzplantechnik Einführung in die raphentheorie FH Bonn-Rhein-Sieg, WS 2/3 15

Blocksatzbildung. Beispiel 3.9. [Berechnung optimaler Blockungen] Gegeben ist eine Folge F = (1,..., n) von n Gegenständen.

Blocksatzbildung. Beispiel 3.9. [Berechnung optimaler Blockungen] Gegeben ist eine Folge F = (1,..., n) von n Gegenständen. Blocksatzbildung Beispiel 3.9. [Berechnung optimaler Blockungen] Gegeben ist eine Folge F = (1,..., n) von n Gegenständen. Jeder Gegenstand hat eine Länge l(i). Die Gegenstände sollen in Blöcke eingeteilt

Mehr

Blocksatzbildung. Beispiel 3.9. [Berechnung optimaler Blockungen] Gegeben ist eine Folge F = (1,..., n) von n Gegenständen.

Blocksatzbildung. Beispiel 3.9. [Berechnung optimaler Blockungen] Gegeben ist eine Folge F = (1,..., n) von n Gegenständen. Blocksatzbildung Beispiel 3.9. [Berechnung optimaler Blockungen] Gegeben ist eine Folge F = (1,..., n) von n Gegenständen. Jeder Gegenstand hat eine Länge l(i). Die Gegenstände sollen in Blöcke eingeteilt

Mehr

Anwendungen. Für optimale Wege in DAGs gibt es eine Fülle von Anwendungen. Wir betrachten zwei:

Anwendungen. Für optimale Wege in DAGs gibt es eine Fülle von Anwendungen. Wir betrachten zwei: Anwendungen Für optimale Wege in DAGs gibt es eine Fülle von Anwendungen. Wir betrachten zwei: Optimale Einteilung in Blöcke (z.b. in der Textverarbeitung) Projektplanung Graphentheorie HS Bonn-Rhein-Sieg,

Mehr

Wir betrachten das folgende nicht gerichtete Netzwerk:

Wir betrachten das folgende nicht gerichtete Netzwerk: Beispiel 3.. Wir etrachten das folgende nicht gerichtete Netzwerk: v=a 9 4 c 5 2 1 6 4 d e 13 1 f 26 18 3 5 4 g 2 2 h i Einführung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 1/2 86 Bemerkung 3.6. Der

Mehr

Kreis- und Wegeprobleme. Kapitel 4. Kreis- und Wegeprobleme. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296

Kreis- und Wegeprobleme. Kapitel 4. Kreis- und Wegeprobleme. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296 Kapitel 4 Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 131 / 296 Inhalt Inhalt 4 Eulersche Graphen Hamiltonsche Graphen Abstände in Graphen Abstände in Netzwerken Peter Becker (H-BRS) Graphentheorie

Mehr

Berechnung von Abständen

Berechnung von Abständen 3. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 3.4. Es sei G = (V, E) ein Graph. Der Abstand d(v, w) zweier Knoten v, w V ist die minimale Länge eines Weges von v nach w.

Mehr

Wir wünschen Ihnen viel Erfolg!

Wir wünschen Ihnen viel Erfolg! Institut für Wirtschaftswissenschaftliche Forschung und Weiterbildung GmbH Institut an der FernUniversität in Hagen Name Straße PLZ, Ort IWW Studienprogramm Grundlagenstudium 1. Musterklausur: Führung

Mehr

Kapitel 4: Netzplantechnik Gliederung der Vorlesung

Kapitel 4: Netzplantechnik Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Netzplantechnik 5. Minimal spannende Bäume 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr

4. Kreis- und Wegeprobleme Abstände in Graphen

4. Kreis- und Wegeprobleme Abstände in Graphen 4. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 4.4. Es sei G = (V,E) ein Graph. Der Abstand d(v,w) zweier Knoten v,w V ist die minimale Länge eines Weges von v nach w. Falls

Mehr

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal 3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition

Mehr

Aufgaben zur Klausurvorbereitung

Aufgaben zur Klausurvorbereitung Vorlesung Graphen und Optimierung Sommersemester 2013/14 Prof. S. Lange Aufgaben zur Klausurvorbereitung Hier finden Sie eine Reihe von Übungsaufgaben, die wir an den beiden Vorlesungsterminen am 29.01.2014

Mehr

4. Kreis- und Wegeprobleme

4. Kreis- und Wegeprobleme 4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung

Mehr

Kapitel 7: Terminplanung

Kapitel 7: Terminplanung Kapitel 7: Terminplanung Episode 2: Terminplanung mit Netzplänen Prof. Dr. Martin G. Möhrle Institut für Projektmanagement und Innovation IPMI Universität Bremen Übersicht der Lerneinheit Episode 1: Terminplanung

Mehr

Hamiltonsche Graphen

Hamiltonsche Graphen Hamiltonsche Graphen Definition 3.2. Es sei G = (V, E) ein Graph. Ein Weg, der jeden Knoten von G genau einmal enthält, heißt hamiltonscher Weg. Ein Kreis, der jeden Knoten von G genau einmal enthält,

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

6. Flüsse und Zuordnungen

6. Flüsse und Zuordnungen 6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über solch eine Kante pro Zeiteinheit transportiert werden können. Wir können uns einen

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

2. Das single-source-shortest-path-problem

2. Das single-source-shortest-path-problem . Das single-source-shortest-path-problem Zunächst nehmen wir an, dass d 0 ist. Alle kürzesten Pfade von a nach b sind o.b.d.a. einfache Pfade.. Dijkstra s Algorithmus Gegeben: G = (V, A), (A = V V ),

Mehr

6. Flüsse und Zuordnungen

6. Flüsse und Zuordnungen 6. Flüsse und Zuordnungen Flußnetzwerke 6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über diese Kante pro Zeiteinheit transportiert

Mehr

Netzwerkoptimierung. Transport von m Startknoten direkt zu n Zielknoten Transport von m Startknoten über Umladeknoten zu n Zielknoten

Netzwerkoptimierung. Transport von m Startknoten direkt zu n Zielknoten Transport von m Startknoten über Umladeknoten zu n Zielknoten Netzwerkoptimierung beinhaltet Planungsprobleme, die mittels Netzwerken abgebildet werden können. Häufig handelt es sich dabei um (ganzzahlige) lineare Optimierungsprobleme mit einer speziellen Struktur:

Mehr

6 Flüsse und Matchings

6 Flüsse und Matchings 6. Flüsse in Netzwerken Flußnetzwerke 6 Flüsse und Matchings In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über diese Kante pro Zeiteinheit transportiert werden

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 10.06.2016 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

Netzwerke: Optimierung und Maßzahlen

Netzwerke: Optimierung und Maßzahlen Netzwerke: Optimierung und Maßzahlen Graph X für folgende Beispiele: Knoten v1 bis v7 Kante e(v i,v j ) in Minuten Die Graphentheorie als Instrument der Netzwerkanalyse Grundbegriffe und Eigenschaften

Mehr

Breitensuche BFS (Breadth First Search)

Breitensuche BFS (Breadth First Search) Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;

Mehr

Übungen zu Rechnerkommunikation

Übungen zu Rechnerkommunikation Übungen zu Rechnerkommunikation Wintersemester 00/0 Übung 6 Mykola Protsenko, Jürgen Eckert PD. Dr.-Ing. Falko Dressler Friedrich-Alexander d Universität Erlangen-Nürnberg Informatik 7 (Rechnernetze und

Mehr

Michael Wendt. Projektplanung mit ereignisorientierter Netzplantechnik. Ein Einblick in die

Michael Wendt. Projektplanung mit ereignisorientierter Netzplantechnik. Ein Einblick in die Michael Wendt Projektplanung mit ereignisorientierter Netzplantechnik Ein Einblick in die Motivation Netzplantechnik Grundbegriffe Methode des kritischen Pfads Program Evaluation and Review Technique Grundbegriffe

Mehr

1 DFS-Bäume in ungerichteten Graphen

1 DFS-Bäume in ungerichteten Graphen Praktikum Algorithmen-Entwurf (Teil 3) 06.11.2006 1 1 DFS-Bäume in ungerichteten Graphen Sei ein ungerichteter, zusammenhängender Graph G = (V, E) gegeben. Sei ferner ein Startknoten s V ausgewählt. Startet

Mehr

1 DFS-Bäume in ungerichteten Graphen

1 DFS-Bäume in ungerichteten Graphen Praktikum Algorithmen-Entwurf (Teil 3) 31.10.2005 1 1 DFS-Bäume in ungerichteten Graphen Sei ein ungerichteter, zusammenhängender Graph G = (V, E) gegeben. Sei ferner ein Startknoten s V ausgewählt. Startet

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

Aufgaben Netzplantechnik

Aufgaben Netzplantechnik Aufgaben Netzplantechnik Aufgabe (Teil ): Vorgangsknotennetz a) In der Netzplantechnik wird zwischen Gesamtpuffer, freiem Puffer, freiem Rückwärtspuffer und unabhängigem Puffer unterschieden. Erklären

Mehr

Aufgabe 1 (15 Punkte): Multiple Choise Fragen zum Prozessmanagement

Aufgabe 1 (15 Punkte): Multiple Choise Fragen zum Prozessmanagement Klausur Hochschule Furtwangen Fakultät Wirtschaftsinformatik Studiengang: WIB Wirtschaftsinformatik Bachelor (3. Sem.) Modul: Geschäftsprozesse Prüfer: Prof. Dr. Guido Siestrup WS 2009/2010 Prüfungsdaten

Mehr

NETZPLANTECHNIK. Bei der Planung organisatorischer Abläufe mithilfe der Netzplan-Technik geht man schrittweise vor: 1. Ermittlung der Teilaktivitäten

NETZPLANTECHNIK. Bei der Planung organisatorischer Abläufe mithilfe der Netzplan-Technik geht man schrittweise vor: 1. Ermittlung der Teilaktivitäten Bei der Planung organisatorischer Abläufe mithilfe der Netzplan-Technik geht man schrittweise vor: Untergliederung in einzelne Aufgaben und Aktivitäten 1. Ermittlung der Teilaktivitäten 2. Zeitplanung

Mehr

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen 6. Flüsse in Netzwerken Berechnung maximaler Flüsse Satz 6.4. Ersetzt man in Algorithmus 6.1 den Schritt 2 durch 2a. Wähle den Knoten, der zuerst in eingefügt wurde. Setze. dann berechnet der arkierungsalgorithmus

Mehr

Modul Management von Dienstleistungsprozessen Klausurkolloquium

Modul Management von Dienstleistungsprozessen Klausurkolloquium Modul 32691 Management von Dienstleistungsprozessen Klausurkolloquium Klausur März 2014 (WS 2013/2014) Hagen, den 21.05.2014 Aufgabe 2 Netzplan & ServiceBlueprint a) Zeichnen Sie den Netzplan für den Workshop

Mehr

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0.

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. 8.4 Digraphen mit negativen Kantengewichten 8.4.1 Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. k 4 5 1 s 1 3 2 C k 0 k 3 1 1 1 k 1 k 2 v Sollte ein Pfad von s nach C und

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 24.02.2011 M. Poloczek Klausur Algorithmentheorie WS 2010/2011 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen

Mehr

Informatik II: Algorithmen und Datenstrukturen SS 2013

Informatik II: Algorithmen und Datenstrukturen SS 2013 Informatik II: Algorithmen und Datenstrukturen SS 2013 Vorlesung 11b, Mittwoch, 3. Juli 2013 (Editierdistanz, dynamische Programmierung) Prof. Dr. Hannah Bast Lehrstuhl für Algorithmen und Datenstrukturen

Mehr

Task& Data-Flow Graphs

Task& Data-Flow Graphs Task& Data-Flow Graphs M. Thaler, TG208, tham@zhaw.ch www.zhaw.ch/~tham Februar 16 1 1 Um was geht es? Parallele Algorithmen was sind Möglichkeiten zur Darstellung? was sind Möglichkeiten zur Analyse?

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 02.07.2015 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 06.04.2009 Klausur Algorithmentheorie WS 2008/2009 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen maximal

Mehr

Vorlesung 4 BETWEENNESS CENTRALITY

Vorlesung 4 BETWEENNESS CENTRALITY Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/

Mehr

Map Matching. Problem: GPS-Punkte der Trajektorie weisen einen relativ großen Abstand zueinander auf.

Map Matching. Problem: GPS-Punkte der Trajektorie weisen einen relativ großen Abstand zueinander auf. Map Matching Problem: GPS-Punkte der Trajektorie weisen einen relativ großen Abstand zueinander auf. Ergebnis mit minimaler Fréchet-Distanz Annahme: Fahrer wählen bevorzugt kürzeste Wege im Straßennetz.

Mehr

Controlling Termine. Grundlagen. Terminplanung. Kapazitätsplanung. Fortschrittskontrolle. Controlling K T - Q. Inhalt

Controlling Termine. Grundlagen. Terminplanung. Kapazitätsplanung. Fortschrittskontrolle. Controlling K T - Q. Inhalt Termine Grundlagen Terminplanung Kapazitätsplanung Fortschrittskontrolle Inhalt Folie :1 Methoden der Terminplanung Folie :2 Einige Begriffsbestimmungen gemäß DIN 69 900 Teil 1 : Dauer Zeitpunkt Termin

Mehr

Seminar Logik, Komplexität, Spiele: Strukturkomplexität von Graphen und Graph Searching Games SS 2010

Seminar Logik, Komplexität, Spiele: Strukturkomplexität von Graphen und Graph Searching Games SS 2010 Seminar Logik, Komplexität, Spiele: Strukturkomplexität von Graphen und Graph Searching Games SS 2010 Roman Rabinovich Mathematische Grundlagen der Informatik Prof. Dr. Erich Grädel RWTH Aachen 1.0.2010

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 05 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute Einführung Grundlagen von Algorithmen Grundlagen

Mehr

16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87

16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 16. November 2011 Zentralitätsmaße H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 Darstellung in spektraler Form Zentralität genügt Ax = κ 1 x (Herleitung s. Tafel), daher ist x der Eigenvektor

Mehr

Lernmodul 7 Algorithmus von Dijkstra

Lernmodul 7 Algorithmus von Dijkstra Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer

Mehr

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen 11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen - Ma5hias Thimm (thimm@uni-koblenz.de) 1 Algorithmen und Datenstrukturen 11.1. BERECHNUNG MAXIMALER FLÜSSE

Mehr

OPERATIONS RESEARCH I LINEARE PLANUNGS RECHNUNO UND NETZPLANTECHNIK

OPERATIONS RESEARCH I LINEARE PLANUNGS RECHNUNO UND NETZPLANTECHNIK BODO RUNZHEIMER OPERATIONS RESEARCH I LINEARE PLANUNGS RECHNUNO UND NETZPLANTECHNIK SIMPLEX-METHODE -TRANSPORT-METHODE STRUKTURANALYSE ZEITPLANUNG ZEIT-KOSTEN PLANUNG- ANWENDUNGSMÖGLICHKEITEN 5., VERBESSERTE

Mehr

1. Einführung 2. Strukturplanung 3. Netzplandarstellung. 4. Zeitplanung. 31. CPM (=Critical Path Method) 32. MPM (=Metra Potential Methode) Agenda (3)

1. Einführung 2. Strukturplanung 3. Netzplandarstellung. 4. Zeitplanung. 31. CPM (=Critical Path Method) 32. MPM (=Metra Potential Methode) Agenda (3) Agenda (3) 1. Einführung 2. Strukturplanung 3. Netzplandarstellung 31. CPM (=Critical Path Method) 32. MPM (=Metra Potential Methode) 4. Zeitplanung Netzplantechnik, Teil 2 1 Darstellung von Vorgang und

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 16 Programm: Einführung

Mehr

Der Ablauf. Der Projektablauf. 1. Festlegen der Arbeitspakete/Vorgänge. A) welche sind voneinander abhängig? B) welche können parallel ablaufen?

Der Ablauf. Der Projektablauf. 1. Festlegen der Arbeitspakete/Vorgänge. A) welche sind voneinander abhängig? B) welche können parallel ablaufen? Der Ablauf Der Projektablauf 1. Festlegen der Arbeitspakete/Vorgänge A) welche sind voneinander abhängig? B) welche können parallel ablaufen? 2. Dauer bestimmen 3. Meilensteine (Ereignisse) festlegen 1

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Anwendungen dynamischer Programmierung in der Biologie

Anwendungen dynamischer Programmierung in der Biologie Anwendungen dynamischer Programmierung in der Biologie Überblick Algorithmus zum Finden der wahrscheinlichsten Sekundärstruktur eines RNS Moleküls Sequence Alignment Verbesserung von Sequence Alignment

Mehr

8.4 Projektmanagement und Netzplantechnik

8.4 Projektmanagement und Netzplantechnik olie 96 Projektmanagement. rundlagen. Netzplantechnik (PM). PM-eispiel. Projektmanagement und Netzplantechnik. PM-Übungsbeispiel Literaturempfehlungen Schwarze,. (00): Projektmanagement mit Netzplantechnik,

Mehr

Klausurteil Operations Management Sommersemester 2017

Klausurteil Operations Management Sommersemester 2017 Prof. Dr. Stefan Helber Leibniz Universität Hannover Klausurteil Operations Management Sommersemester 2017 Hinweise: Der Klausurteil besteht aus drei Aufgaben, die alle von Ihnen zu bearbeiten sind. Die

Mehr

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Große Übung vom 01.11.2012 Christiane Schmidt Diese Folien Braucht man nicht abzuschreiben Stehen im Netz unter www.ibr.cs.tu-bs.de/ courses/ws1213/aud/index.html Mailingliste

Mehr

Kapitel 6: Aufwandsschätzung und Ablaufplanung

Kapitel 6: Aufwandsschätzung und Ablaufplanung Kapitel 6: Aufwandsschätzung und Ablaufplanung Episode 2: Ablaufplanung Prof. Dr. Martin G. Möhrle Institut für Projektmanagement und Innovation IPMI Universität Bremen 6. Kapitel: Aufwandsschätzung und

Mehr

Name:... Vorname:... Matr.-Nr.:... Studiengang:...

Name:... Vorname:... Matr.-Nr.:... Studiengang:... Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Netzwerkalgorithmen 16.07.2013 Name:.....................................

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe 3. Elementare Graphalgorithmen und Anwendungen 4. Minimal spannende Bäume 5. Kürzeste Pfade 6. Traveling Salesman Problem 7. Flüsse

Mehr

Softwaremanagement Projektplanung Hellsehen für Fortgeschrittene Schätzen heißt nicht raten!

Softwaremanagement Projektplanung Hellsehen für Fortgeschrittene Schätzen heißt nicht raten! Softwaremanagement Projektplanung Hellsehen für Fortgeschrittene Schätzen heißt nicht raten! Lehrstuhl Softwaretechnologie, Dr. Birgit Demuth Aktualisierte Folien des SS 2015 Softwaremanagement SS 2016

Mehr

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1 Lösungen zu den Übungsaufgaben im Kapitel 4 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe 1: Berechnen Sie für den in Abbildung

Mehr

Algorithmen zur Visualisierung von Graphen Lagenlayouts Teil 2

Algorithmen zur Visualisierung von Graphen Lagenlayouts Teil 2 Algorithmen zur Visualisierung von Graphen Teil 2 INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Tamara Mchedlidze Martin Nöllenburg Ignaz Rutter 18.12.2012 Geg.: gerichteter Graph D = (V,

Mehr

2. Spiele. Arten von Spielen. Kombinatorik. Spieler haben festgelegte Handlungsmöglichkeiten, die durch die Spielregeln definiert werden.

2. Spiele. Arten von Spielen. Kombinatorik. Spieler haben festgelegte Handlungsmöglichkeiten, die durch die Spielregeln definiert werden. . Spiele Arten von Spielen. Spiele. Spiele Arten von Spielen Kombinatorik Spieler haben festgelegte Handlungsmöglichkeiten, die durch die Spielregeln definiert werden. Kombinatorische Spiele als Suchproblem

Mehr

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar.

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar. Gegeben sei ein Netzwerk N = (V, A, c, s, t) wie in der Vorlesung. Ein maximaler s-t-fluss kann immer mit Hilfe einer Folge von höchstens A Augmentationsschritten gefunden werden. Wendet man den Dijkstra-Algorithmus

Mehr

Management von Software Projekten

Management von Software Projekten Management von Software Projekten INSO Forschungsgruppe Industrielle Software Leitung Prof. Grechenig VU 183.166 2h Sommer 09 www.inso.tuwien.ac.at Das Material dieser Vorlesungseinheit ist teilweise Quellen

Mehr

Def. 1.1: Graph, Knoten, Kanten, adjazent. Notwendige Bedingungen für Isomorphie. Das 3-Brunnen Problem, der vollständige bipartite Graph K 3,3

Def. 1.1: Graph, Knoten, Kanten, adjazent. Notwendige Bedingungen für Isomorphie. Das 3-Brunnen Problem, der vollständige bipartite Graph K 3,3 Stand: 27. Januar 2004 1. Kapitel: Was ist ein Graph? Beispiel: Mannschafts-Wettkämpfe Def. 1.1: Graph, Knoten, Kanten, adjazent Nullgraphen, vollständige Graphen K n, komplementäre Graphen Isomorphie

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek

Mehr

6. Planare Graphen und Färbungen

6. Planare Graphen und Färbungen 6. Planare Graphen und Färbungen Lernziele: Den Begriff der Planarität verstehen und erläutern können, wichtige Eigenschaften von planaren Graphen kennen und praktisch einsetzen können, die Anzahl von

Mehr

Kapitel 9: Lineare Programmierung Gliederung

Kapitel 9: Lineare Programmierung Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute Einführung Grundlagen von Algorithmen

Mehr

1 Einführung. 2 Grundlagen von Algorithmen. 3 Grundlagen von Datenstrukturen. 4 Grundlagen der Korrektheit von Algorithmen

1 Einführung. 2 Grundlagen von Algorithmen. 3 Grundlagen von Datenstrukturen. 4 Grundlagen der Korrektheit von Algorithmen Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 0 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Einführung Grundlagen von Algorithmen Grundlagen

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Inhalt von Terminplanung. Projektmanagement Terminplanung. Inhalt Skript. 1 Netzplan. 2 Anordnungsbeziehungen. 3 Berechnung.

Inhalt von Terminplanung. Projektmanagement Terminplanung. Inhalt Skript. 1 Netzplan. 2 Anordnungsbeziehungen. 3 Berechnung. Inhalt von Terminplanung 1 Inhalt Skript 1 Netzplan 2 Anordnungsbeziehungen 3 Berechnung 4 PC-Erstellung 5 Darstellungsformen Begriffe der Terminplanung 2 Einige Begriffsbestimmungen gemäß DIN 69 900 Teil

Mehr

Flüsse in Netzwerken

Flüsse in Netzwerken Proseminar Theoretische Informatik, Prof. Wolfgang Mulzer, SS 17 Flüsse in Netzwerken Zusammenfassung Gesa Behrends 24.06.2017 1 Einleitung Unterschiedliche technische Phänomene wie der Flüssigkeitsdurchfluss

Mehr

Vereinfachung und Schematisierung von Polygonen

Vereinfachung und Schematisierung von Polygonen Vorlesung Algorithmische Kartografie Vereinfachung und Schematisierung von Polygonen INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann Martin Nöllenburg 28.04.2015 1 Übersicht

Mehr

Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009

Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009 Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009 I NSTITUT F U R T HEORETISCHE I NFORMATIK, P ROF. D R. D OROTHEA WAGNER KIT Universita t des Landes Baden-Wu rttemberg und nationales

Mehr

Analyse eines zweistufigen, regionalen Clusteralgorithmus am Beispiel der Verbundenen Wohngebäudeversicherung

Analyse eines zweistufigen, regionalen Clusteralgorithmus am Beispiel der Verbundenen Wohngebäudeversicherung Analyse eines zweistufigen, regionalen Clusteralgorithmus am Beispiel der Verbundenen Wohngebäudeversicherung Zusammenfassung der Diplomarbeit an der Hochschule Zittau/Görlitz Maria Kiseleva Motivation

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

6. Transitive Hülle. 6.1 Min-Plus-Matrix-Produkt und Min-Plus-Transitive Hülle Ring Z(+, ) Semiring N(+, )

6. Transitive Hülle. 6.1 Min-Plus-Matrix-Produkt und Min-Plus-Transitive Hülle Ring Z(+, ) Semiring N(+, ) 6. Transitive Hülle 6.1 Min-Plus-Matrix-Produkt und Min-Plus-Transitive Hülle Ring Z(+, ) Semiring N(+, ) Gruppe Halbgruppe Halbgruppe Halbgruppe Wir betrachten den (kommutativen) Semiring über R { } mit

Mehr

3.6 Branch-and-Bound-Verfahren

3.6 Branch-and-Bound-Verfahren 36 Branch-and-Bound-Verfahren Die Branch-and-Bound -Methode beruht darauf, auf eine intelligente Weise alle zulässigen Lösungen eines kombinatorischen Optimierungsproblems aufzulisten und mit Hilfe von

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 15.01.2015 INSTITUT FÜR THEORETISCHE 0 KIT 15.01.2015 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1 1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1

Mehr

6. Spiele Arten von Spielen. 6. Spiele. Effizienzverbesserung durch Beschneidung des Suchraums

6. Spiele Arten von Spielen. 6. Spiele. Effizienzverbesserung durch Beschneidung des Suchraums 6. Spiele Arten von Spielen 6. Spiele Kombinatorische Spiele als Suchproblem Wie berechnet man eine gute Entscheidung? Effizienzverbesserung durch Beschneidung des Suchraums Spiele mit Zufallselement Maschinelles

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7 Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt

Mehr

Kürzeste Wege in einem gewichteten Graphen. Anwendungen

Kürzeste Wege in einem gewichteten Graphen. Anwendungen Kürzeste Wege in einem gewichteten Graphen Dazu werden die Gewichte als Weglängen interpretiert. Der kürzeste Weg zwischen zwei Knoten in einem zusammenhängenden Graphen ist derjenige, bei dem die Summe

Mehr

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Andreas Moser Dietmar Ebner Christian Schauer Markus Bauer 9. Dezember 2003 1 Einführung Der in der Vorlesung gezeigte Algorithmus für das Steiner

Mehr

Programmierkurs Python II

Programmierkurs Python II Programmierkurs Python II Stefan Thater & Michaela Regneri Universität des Saarlandes FR 4.7 Allgemeine Linguistik (Computerlinguistik) Übersicht Topologische Sortierung (einfach) Kürzeste Wege finden

Mehr

Die Ungarische Methode für das Assignmentproblem

Die Ungarische Methode für das Assignmentproblem Die Ungarische Methode für das Assignmentproblem Seminar: Kombinatorische Optimierung SS08, Christof Schulz 11.07.2008 Hauptquellen: The Hungarian Method for the Assignment Problem von H.W. Kuhn (1955)

Mehr

3. Analyse der Kamerabewegung Video - Inhaltsanalyse

3. Analyse der Kamerabewegung Video - Inhaltsanalyse 3. Analyse der Kamerabewegung Video - Inhaltsanalyse Stephan Kopf Bewegungen in Videos Objektbewegungen (object motion) Kameraoperationen bzw. Kamerabewegungen (camera motion) Semantische Informationen

Mehr

Diplomhauptprüfung. "Systems Engineering" Sommersemester Teil A: Fragenkatalog Zeit: 15 min. Hilfsmittel: Taschenrechner. Nachname: Vorname:

Diplomhauptprüfung. Systems Engineering Sommersemester Teil A: Fragenkatalog Zeit: 15 min. Hilfsmittel: Taschenrechner. Nachname: Vorname: Technische Universität München 18. Juli 2005 Lehrstuhl für Raumfahrttechnik HS MW 0350 Prof. Dr. rer. nat. Ulrich Walter Dozent: Prof. Dr.-Ing. Eduard Igenbergs Diplomhauptprüfung "Systems Engineering"

Mehr