Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 12 LÖSUNGEN

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 12 LÖSUNGEN"

Transkript

1 Universität Heidelberg / Institut für Informatik 7. Juli 24 Prof. Dr. Klaus Ambos-Spies Nadine Losert Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 2 LÖSUNGEN Aufgabe Verwenden Sie das in der Vorlesung angegebene Verfahren, um die kontextfreie Grammatik G = ({S, A, B, C, D}, {, }, P, S) mit den Regeln in Chomsky-Normalform zu überführen. S AB A A CD C C λ D D λ B B LÖSUNG. Zunächst geben wir eine zu G äquivalente separierte Grammatik G an: G = ({S, A, B, C, D,, }, {, }, P, S) mit den Regeln S AB A A CD C C λ D D λ B B Zur Bestimmung der Menge der eliminierbaren Variablen E = {X N : X λ P } von G deniert man nun induktiv die Mengen E = {X N : X λ P }

2 E n+ = E n {X N : w E n(x w P )} Für das kleinste n mit E n = E n+ gilt dann E = E n. Für die gegebene Grammatik G erhält man: E = {X N : X λ P } = {C, D} Also: E 2 = {C, D} {X N : w {C, D} (X w P )} = {C, D} {A, C, D} = {A, C, D} E 3 = {A, C, D} {X N : w {A, C, D} (X w P )} = {A, C, D} {A, C, D} = {A, C, D} E = E 2 = {A, C, D}. Eine zu G äquivalente λ-treue kontextfreie Grammatik G 2 ist dann: wobei P 2 folgende Regeln enthält: G 2 = ({S, S, A, B, C, D,, }, {, }, P 2, S ) S S S AB B A A CD C D C C D D B B Im dritten Schritt beseitigt man nun zu lange Regel D D und erhält die Grammatik mit den Regeln G 3 = ({S, S, A, B, C, D, Z, }, {, }, P 3, S ) S S S AB B A A CD C D C C D Z Z D B B Zuletzt müssen noch die Variablenumbenennungen beseitigt werden. Für die aus einer Variable X durch Umbenennungen erreichbaren Variablenmengen U(X) erhalten wir: U(S ) = {S, S, B, }, U(S) = {S, B, }, U(A) = {A, C, D, }, U(B) = {B, }, U(C) = {C, }, U(D) = {D} U(Z) = Z,

3 U() = {} und U() = {}. Wir erhalten die Grammatik mit den Regeln G 4 = ({S, S, A, B, C, D, Z, }, {, }, P 4, S ) S AB B S AB B A A C CD Z C C D Z Z D B B. Diese Grammatik ist in Chomsky-Normalform. Aufgabe 2 (a) Zeigen Sie mit Hilfe des Pumpinglemmas für kontextfreie Sprachen, dass die Sprache nicht kontextfrei ist. L = {ww : w Σ 2} (b) Geben Sie eine Grammatik vom Erweiterungstyp an, die L erzeugt. Zeigen Sie mit Hilfe des Pumpinglemmas für kontextfreie Sprachen, dass die Sprache nicht kontextfrei ist. L = {ww : w Σ 2} LÖSUNG. (a) Der Beweis ist indirekt. Widerspruchsannahme: L sei kontextfrei. Nach dem Pumpinglemma gibt es dann eine Zahl p, sodass jedes Wort z in L, dessen Länge p ist, sich in 5 Teile, z = uvwxy, zerlegen lässt, wobei diese Zerlegungen die folgenden Eigenschaften hat: (i) vx λ (ii) vwx < p (iii) Für alle n gilt: uv n wx n y L. Da das Wort z = p p p p in L liegt und z = 4p p gilt, gibt es also eine Zerlegung p p p p = z = uvwxy mit den obigen Eigenschaften. Vergleichen wir diese Zerlegung mit der Zerlegung z = z z 2 z 3 z 4 in die 4 Blöcke z = z 3 = p und z 2 = z 4 = p, so liegt wegen (ii) das Teilwort vwx von z entweder komplett in einem der Blöcke z i oder ist Teil von zwei benachbarten Blöcken z i z i+. Betrachtet man daher das Wort z = uwy = uv wx y, so hat dieses wegen (i) und (ii) eine der folgenden Gestalten: q p p p oder p q p p oder p p q p oder p p p q wobei q < p

4 bzw. q q p p oder p q q p oder p p q q wobei min(q, q ) < p. Wie man unmittelbar sieht, erhält man also in jedem Fall ein Wort z, das nicht von der Gestalt w w ist, also nicht in L liegt. Das widerspricht aber der Eigenschaft (iii) der Zerlegung z = uvwxy. (b) Eine Grammatik vom Erweiterungstyp, die L erzeugt, ist mit den Regeln G = ({S, A, B, C, C, C, C, C, C }, {, }, P, S) S λ AB A AC AC C C C C C x C x für x {,,,,, } C x C x für x {,,,,, } C x B BC x für x {,,,,, } BC B BC B BC BC BC BC. Die Funktionsweise der Grammatik ist wie folgt: Wörter ww der Länge höchstens 2 werden direkt generiert. Für längere Wörter wird zunächst mittels der Regel S AB das Wort AB generiert. A kennzeichnet fortan den Anfang des ersten Vorkommens, B den Anfang des zweiten Vorkommens von w in ww. Sukzessive können nun Buchstaben vorne an das erste Teilwort angehängt werden, indem diese von A erzeugt werden. Dabei erzeugt A jeweils gleichzeitig eine Variable C x, die sich merkt, welcher Buchstabe erzeugt wurde und mittels des dritten Regelblocks dann nach rechts durch das bereits erzeugte Wort wandert, bis sie direkt hinter B steht. Dort kann dann der gleiche Buchstabe im zweiten Teilwort erzeugt werden. Damit die Grammatik vom Erweiterungstyp ist, müssen dabei die letzten zwei Buchstaben des Teilworts w gemeinsam erzeugt werden, so dass es möglich ist, die Variablen B und C x später gemeinsam zu löschen bzw. durch die zwei zu erzeugenden Buchstaben im zweiten Teilwort zu ersetzen. Aufgabe 3 Die rechtslineare Grammatik G = ({S, X, Y, Z}, {,, 2}, P, S) verfüge über die folgenden Regeln: S X X Y Y 222Z Z S λ

5 (a) Bestimmen Sie die von G erzeugte Sprache L(G). (b) Geben Sie eine zu G äquivalente rechtslineare Grammatik in Chomsky-Normalform an. (c) Geben Sie einen deterministischen endlichen Automaten an, der L(G) akzeptiert. LÖSUNG: (a) Die Regeln - 3 müssen im Paket gefolgt von einer Anwendung der Regel 4 bzw. Regel 5 angewendet werden. Die Regeln S 222S 222 sind also zu dem gegebenen Produktionensystem äquivalent. Es wird daher die Sprache erzeugt. L(G) = {(222) n : n } (b) Man könnte das in der Vorlesung angegebene Verfahren zur Bestimmung der Chomsky- Normal-form auf die gegebene Grammatik G anwenden. Einfacher ist es, von L(G) ausgehend eine L(G) erzeugende rechtslineare Grammatik in Chomsky-Normalform direkt anzugeben. Unter Verwendung der in der Lösung von (a) angegebenen einfacheren zu P äquivalenten Regeln erhalten wir so: wobei P aus folgenden Regeln besteht: (c) Folgender DEA akzeptiert L(G): G = ({S, X, X 2, X 3, X 4, X 5 }, {,, 2}, P, S), S X X X 2 X 2 X 3 X 3 2X 4 X 4 2X 5 X 5 2S 2 z start S z X z Y z Y2 2 z Z3 2 z Z2 2 z Z Aufgabe 4 Die Sprache L bestehe aus allen nichtleeren Binärwörtern, in denen das Teilwort höchstens einmal vorkommt.

6 (a) Geben Sie eine rechtslineare Grammatik G an, die L erzeugt. (b) Geben Sie einen nichtdeterministischen endlichen Automaten M mit vier Zuständen an, der L akzeptiert. LÖSUNG. (a) Ein Wort, das höchstens ein Vorkommen des Teilwortes enthält, muss von der Form m n k l mit m, n, k, l sein. Eine rechtslineare Grammatik G, die genau die nichtleeren Wörter dieser Form erzeugt, ist G = ({S, A, B, C}, {, }, P, S) mit Regelmenge P = {S S A, A A B, B B C, C C }. (b) z start z 2 z 4 z 3 Aufgabe 5 Es sei L die reguläre Sprache L = {w {,, 2} : w enthält das Teilwort 22}. (a) Geben Sie eine rechtslineare Grammatik an, die L erzeugt. (b) Geben Sie einen nichtdeterministischen endlichen Automaten an, der L erkennt. Stellen Sie hierbei den Automaten durch sein Übergangsdiagramm dar. LÖSUNG: s. Klausur 22.

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 02.02.2012 INSTITUT FÜR THEORETISCHE 0 KIT 06.02.2012 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (III) 17.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Pumping-Lemma. Beispiel. Betrachte die kontextsensitive Grammatik G mit den Produktionen. S asbc abc CB HB HB HC HC BC ab ab bb bb bc bc cc cc.

Pumping-Lemma. Beispiel. Betrachte die kontextsensitive Grammatik G mit den Produktionen. S asbc abc CB HB HB HC HC BC ab ab bb bb bc bc cc cc. Pumping-Lemma Beispiel Betrachte die kontextsensitive Grammatik G mit den Produktionen S asbc abc CB HB HB HC HC BC ab ab bb bb bc bc cc cc. Sie erzeugt z.b. das Wort aabbcc: S asbc aabcbc aabhbc aabhcc

Mehr

Tutoraufgabe 1 (ɛ-produktionen):

Tutoraufgabe 1 (ɛ-produktionen): Prof aa Dr J Giesl Formale Systeme, Automaten, Prozesse SS 2010 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Hausaufgaben sollen in Gruppen von je 2 Studierenden aus dem gleichen Tutorium

Mehr

24. Kontextfreie Sprachen

24. Kontextfreie Sprachen 24. Kontextfreie Sprachen Obwohl das Wortproblem für kontextsensitive Sprachen entscheidbar ist, ist nicht bekannt, ob dieses auch tatsächlich d.h. in Polynomialzeit entscheidbar ist. Da man allgemein

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Kontextfreie Grammatiken Definition: Eine Grammatik G

Mehr

Kontextfreie Sprachen

Kontextfreie Sprachen Kontextfreie Sprachen Bedeutung: Programmiersprachen (Compilerbau) Syntaxbäume Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung

Mehr

A : z z A : z z : ( z, x, z ) δ

A : z z A : z z : ( z, x, z ) δ Informatik IV, SoS2003 1 Definition 1.1 Ein Quintupel A =(X,Z,z 0,δ,Z f )heißt nichtdeterministischer endlicher Automat (NEA): 1. X, Z sind endliche nichtleere Mengen. 2. z 0 Z 4. δ Z X Z Informatik IV,

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Wintersemester 2007 / 2008 Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik 29.10.2007 Reguläre Sprachen Ein (deterministischer) endlicher Automat

Mehr

Grundbegriffe der Informatik Tutorium 12

Grundbegriffe der Informatik Tutorium 12 Grundbegriffe der Informatik Tutorium 12 Tutorium Nr. 16 Philipp Oppermann 28. Januar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

(Prüfungs-)Aufgaben zu formale Sprachen

(Prüfungs-)Aufgaben zu formale Sprachen (Prüfungs-)Aufgaben zu formale Sprachen (siehe auch bei den Aufgaben zu endlichen Automaten) 1) Eine Grammatik G sei gegeben durch: N = {S, A}, T = {a, b, c, d}, P = { (S, Sa), (S, ba), (A, ba), (A, c),

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 17. DIE CHOMSKY-HIERARCHIE Theoretische Informatik (SoSe 2011) 17. Die Chomsky-Hierarchie 1 / 15 Einleitung Die

Mehr

Chomsky-Grammatiken 16. Chomsky-Grammatiken

Chomsky-Grammatiken 16. Chomsky-Grammatiken Chomsky-Grammatiken 16 Chomsky-Grammatiken Ursprünglich von Chomsky in den 1950er Jahren eingeführt zur Beschreibung natürlicher Sprachen. Enge Verwandschaft zu Automaten Grundlage wichtiger Softwarekomponenten

Mehr

4.2 Die Chomsky Normalform

4.2 Die Chomsky Normalform 4.2 Die Chomsky Normalform Für algorithmische Problemstellungen (z.b. das Wortproblem) aber auch für den Nachweis von Eigenschaften kontextfreier Sprachen ist es angenehm, von CFG in Normalformen auszugehen.

Mehr

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben

Mehr

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit. Zugangsnummer: 3288

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit.  Zugangsnummer: 3288 Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Wiederholung Kapitel 2 http://pingo.upb.de Zugangsnummer: 3288 Dozent: Jun.-Prof. Dr. D. Baumeister

Mehr

Motivation natürliche Sprachen

Motivation natürliche Sprachen Motivation natürliche Sprachen (Satz) (Substantivphrase)(Verbphrase) (Satz) (Substantivphrase)(Verbphrase)(Objektphrase) (Substantivphrase) (Artikel)(Substantiv) (Verbphrase) (Verb)(Adverb) (Substantiv)

Mehr

16. Die Chomsky-Hierarchie

16. Die Chomsky-Hierarchie 16. Die Chomsky-Hierarchie Die Chomsky-Sprachen sind gerade die rekursiv aufzählbaren Sprachen: CH = RA Da es nicht rekursive (d.h. unentscheidbare) r.a. Sprachen gibt, ist das Wortproblem für Chomsky-Grammatiken,

Mehr

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 23/4 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

Universität des Saarlandes Theoretische Informatik (WS 2015) Lösungsvorschlag 4

Universität des Saarlandes Theoretische Informatik (WS 2015) Lösungsvorschlag 4 Universität des Saarlandes Theoretische Informatik (WS 2015) Fakultät 6.2 Informatik Team der Tutoren Lösungsvorschlag 4 Aufgabe 4.1 (16 Punkte) Klassifizieren Sie die folgenden Sprachen nach den Kategorien

Mehr

3 kontextfreie Sprachen

3 kontextfreie Sprachen Hans U. Simon Bochum, den 7.10.2008 Annette Ilgen Beispiele zur Vorlesung Theoretische Informatik WS 08/09 Vorbemerkung: Hier findet sich eine Sammlung von Beispielen und Motivationen zur Vorlesung Theoretische

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto 24.03.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen WS 2010/2011 Name:................................

Mehr

Berechenbarkeit und Komplexität

Berechenbarkeit und Komplexität Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

Grundlagen der Informatik II

Grundlagen der Informatik II Grundlagen der Informatik II Tutorium 3 Professor Dr. Hartmut Schmeck Miniaufgabe * bevor es losgeht * Wie stellt man in einem regulären Ausdruck die Sprache dar, die das leere Wort enthält? a) Als λ b)

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 7 15. Juni 2010 Einführung in die Theoretische

Mehr

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009 Theoretische Informatik Rainer Schrader Institut für Informatik 9. Juli 2009 1 / 41 2 / 41 Gliederung die Chomsky-Hierarchie Typ 0- Typ 3- Typ 1- Die Programmierung eines Rechners in einer höheren Programmiersprache

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2004/05 ILKD Prof. Dr. D. Wagner 24. Februar 2005 1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Aufkleber Beachten

Mehr

Übungsaufgaben zu Formalen Sprachen und Automaten

Übungsaufgaben zu Formalen Sprachen und Automaten Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel

Mehr

Grundlagen der Informatik II

Grundlagen der Informatik II Grundlagen der Informatik II Tutorium 2 Professor Dr. Hartmut Schmeck Miniaufgabe * bevor es losgeht * Finden Sie die drei Fehler in der Automaten- Definition. δ: A = E, S, δ, γ, s 0, F, E = 0,1, S = s

Mehr

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekt mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Maike Buchin 18. Februar 2016 Stef Sijben. Probeklausur. Theoretische Informatik. Bearbeitungszeit: 3 Stunden

Maike Buchin 18. Februar 2016 Stef Sijben. Probeklausur. Theoretische Informatik. Bearbeitungszeit: 3 Stunden Maike Buchin 8. Februar 26 Stef Sijben Probeklausur Theoretische Informatik Bearbeitungszeit: 3 Stunden Name: Matrikelnummer: Studiengang: Geburtsdatum: Hinweise: Schreibe die Lösung jeder Aufgabe direkt

Mehr

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz.

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz. Chomsky-0-Grammatik Rek. Aufz. Satz T5.2.2: Wenn L durch eine Chomsky-0- Grammatik G beschrieben wird, gibt es eine NTM M, die L akzeptiert. Beweis: Algo von M: Schreibe S auf freie Spur. Iteriere: Führe

Mehr

Beschreibungskomplexität von Grammatiken Definitionen

Beschreibungskomplexität von Grammatiken Definitionen Beschreibungskomplexität von Grammatiken Definitionen Für eine Grammatik G = (N, T, P, S) führen wir die folgenden drei Komplexitätsmaße ein: Var(G) = #(N), Prod(G) = #(P ), Symb(G) = ( α + β + 1). α β

Mehr

8. Turingmaschinen und kontextsensitive Sprachen

8. Turingmaschinen und kontextsensitive Sprachen 8. Turingmaschinen und kontextsensitive Sprachen Turingmaschinen (TM) von A. Turing vorgeschlagen, um den Begriff der Berechenbarkeit formal zu präzisieren. Intuitiv: statt des Stacks bei Kellerautomaten

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung 09.11.2006 schindel@informatik.uni-freiburg.de 1 Äquivalenzklassen Definition und Beispiel Definition Für eine Sprache L Σ* bezeichnen

Mehr

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie Gliederung 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. 2.2. Reguläre Sprachen 2.3. Kontextfreie Sprachen 2/1, Folie 1 2015 Prof. Steffen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 27 29..24 FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Definition

Mehr

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ).

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Beweis: Für jedes a Σ muss jede Position in der Tabelle nur konstant oft besucht werden.

Mehr

Klausuraufgaben. 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b}

Klausuraufgaben. 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b} Klausuraufgaben 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b} L = {a n b m n > 0, m > 0, n m} a) Ist L kontextfrei? Wenn ja, geben Sie eine kontextfreie Grammatik für L an. Wenn nein,

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 4 26..25 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Grundbegriffe. Grammatiken

Grundbegriffe. Grammatiken Grammatiken Grammatiken in der Informatik sind ähnlich wie Grammatiken für natürliche Sprachen ein Mittel, um alle syntaktisch korrekten Sätze (hier: Wörter) einer Sprache zu erzeugen. Beispiel: Eine vereinfachte

Mehr

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 25. September 2013 Aufgabe 1 Geben Sie jeweils eine kontextfreie Grammatik an, welche die folgenden Sprachen erzeugt, sowie einen Ableitungsbaum

Mehr

I.5. Kontextfreie Sprachen

I.5. Kontextfreie Sprachen I.5. Kontextfreie prachen Zieht man in Betracht, dass BNF-yteme gerade so beschaffen sind, dass auf der linken eite immer genau ein Nichtterminal steht, so sind das also gerade die Ableitungsregeln einer

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Automatentheorie und formale Sprachen rechtslineare Grammatiken

Automatentheorie und formale Sprachen rechtslineare Grammatiken Automatentheorie und formale Sprachen rechtslineare Grammatiken Dozentin: Wiebke Petersen 17.6.2009 Wiebke Petersen Automatentheorie und formale Sprachen - SoSe09 1 Pumping lemma for regular languages

Mehr

Lösungsvorschläge Blatt 4

Lösungsvorschläge Blatt 4 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt 4 Zürich, 21. Oktober 2016 Lösung zu Aufgabe 10 (a) Wir zeigen mit

Mehr

Automaten und formale Sprachen Klausurvorbereitung

Automaten und formale Sprachen Klausurvorbereitung Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen

Mehr

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs)

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs) ank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert iese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 22/3 Vorname Nachname Matrikelnummer

Mehr

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Hier Aufkleber mit Name und Matrikelnr. anbringen

Mehr

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung

Mehr

Grundbegriffe der Informatik Tutorium 11

Grundbegriffe der Informatik Tutorium 11 Grundbegriffe der Informatik Tutorium 11 Tutorium Nr. 32 Philipp Oppermann 29. Januar 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Endliche Sprachen. Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für

Endliche Sprachen. Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für Endliche Sprachen Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für L. 447 Zusammenfassung Beschreibungsformen für reguläre Sprachen:

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2016 20.04.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

11.1 Kontextsensitive und allgemeine Grammatiken

11.1 Kontextsensitive und allgemeine Grammatiken Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert

Mehr

Mathematische Grundlagen der Informatik 2

Mathematische Grundlagen der Informatik 2 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Emanuel Duss emanuel.duss@gmail.com 12. April 2013 1 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Dieses Dokument basiert

Mehr

Formale Sprachen. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Formale Sprachen. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Das Alphabet Σ sei eine endliche

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2 Lösungsblatt 3. April 2 Einführung in die Theoretische Informatik

Mehr

Grundlagen der Informatik II

Grundlagen der Informatik II Grundlagen der Informatik II Dr.-Ing. Sven Hellbach S. Hellbach Grundlagen der Informatik II Abbildungen entnommen aus: Dirk W. Hoffmann: Theoretische Informatik; Hanser Verlag 2011, ISBN: 978-3-446-42854-6

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2 Lösungsblatt 23. Mai 2 Einführung in die Theoretische Informatik Hinweis:

Mehr

Sprachen und Automaten. Tino Hempel

Sprachen und Automaten. Tino Hempel Sprachen und Automaten 11 Tino Hempel Bisherige Automaten Automat mit Ausgabe/Mealy-Automat Akzeptor, Sprache eines Akzeptors Grenze: L = {a n b n } Kellerautomat erkennt L = {a n b n } Grenze:? T. Hempel

Mehr

Rekursiv aufzählbare Sprachen

Rekursiv aufzählbare Sprachen Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben

Mehr

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen (Kontextsensitive) Sprachen L 2 Menge aller kontextfreien

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 23.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Induktive Definition

Induktive Definition Rechenregeln A B = B A A (B C) = (A B) C A (B C) = (A B) C A (B C) = A B A C (B C) A = B A C A {ε} A = A A {ε} = A (A {ε}) = A (A ) = A A A = A + A A = A + A + {ε} = A Beispiel. Real-Zahlen = {0,..., 9}

Mehr

Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution

Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution Wiederholung Beschreibungsformen für reguläre Sprachen: DFAs NFAs Reguläre Ausdrücke:, {ε}, {a}, und deren Verknüpfung mit + (Vereinigung), (Konkatenation) und * (kleenescher Abschluss) Abschluss gegen

Mehr

Zusammenfassung Grundzüge der Informatik 4

Zusammenfassung Grundzüge der Informatik 4 Zusammenfassung Grundzüge der Informatik 4 Sommersemester 04 Thorsten Wink 21. September 2004 Version 1.2 Dieses Dokument wurde in L A TEX 2εgeschrieben. Stand: 21. September 2004 Inhaltsverzeichnis 1

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München akultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 6 11. Juni 2010 Einführung in die Theoretische

Mehr

Einführung in die Computerlinguistik Formale Grammatiken rechtslineare und kontextfreie Grammatiken Kellerautomaten

Einführung in die Computerlinguistik Formale Grammatiken rechtslineare und kontextfreie Grammatiken Kellerautomaten Einführung in die Computerlinguistik Formale Grammatiken rechtslineare und kontextfreie Grammatiken Kellerautomaten Dozentin: Wiebke Petersen 13. Foliensatz Wiebke Petersen Einführung CL 1 Formale Grammatik

Mehr

Kontextfreie Grammatiken

Kontextfreie Grammatiken Kontextfreie Grammatiken Bisher haben wir verschiedene Automatenmodelle kennengelernt. Diesen Automaten können Wörter vorgelegt werden, die von den Automaten gelesen und dann akzeptiert oder abgelehnt

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 10.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie

Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Teil V Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Zwei Sorten von Grammatiken Kontextsensitive Grammatik (CSG) (Σ, V, P, S), Regeln der Form αaβ αγβ α, β (Σ V ),

Mehr

1 Die Chomsky-Hirachie

1 Die Chomsky-Hirachie Hans U. imon Bochum, den 7.10.2008 Annette Ilgen Beispiele zur Vorlesung Theoretische Informatik W 09/10 Vorbemerkung: Hier findet sich eine ammlung von Beispielen und Motivationen zur Vorlesung Theoretische

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs

Mehr

Ein Satz der deutschen Sprache besitzt ein Subjekt, ein Prädikat und ein Objekt (SPO).

Ein Satz der deutschen Sprache besitzt ein Subjekt, ein Prädikat und ein Objekt (SPO). 1 Grammatiken Autor: Tilman Blumenbach Letzte Änderung: 28. Juni 2012 18:15 Ziel von Grammatiken Wollen die Struktur von Sprachen modellieren und charakterisieren. Beispiel Ein Satz der deutschen Sprache

Mehr

Deterministischer Kellerautomat (DPDA)

Deterministischer Kellerautomat (DPDA) Deterministische Kellerautomaten Deterministischer Kellerautomat (DPDA) Definition Ein Septupel M = (Σ,Γ, Z,δ, z 0,#, F) heißt deterministischer Kellerautomat (kurz DPDA), falls gilt: 1 M = (Σ,Γ, Z,δ,

Mehr

Formale Sprachen. Script, Kapitel 4. Grammatiken

Formale Sprachen. Script, Kapitel 4. Grammatiken Formale Sprachen Grammatiken Script, Kapitel 4 erzeugen Sprachen eingeführt von Chomsky zur Beschreibung natürlicher Sprache bedeutend für die Syntaxdefinition und -analyse von Programmiersprachen Automaten

Mehr

Automaten und formale Sprachen. Lösungen zu den Übungsblättern

Automaten und formale Sprachen. Lösungen zu den Übungsblättern Automaten und formale Sprachen zu den Übungsblättern Übungsblatt Aufgabe. (Sipser, exercise.3) M = ({q, q2, q3, q4, q5}, {u, d}, δ, q3, {q3}) δ: u d q q q 2 q 2 q q 3 q 3 q 2 q 4 q 4 q 3 q 5 q 5 q 4 q

Mehr

2.4 Kontextsensitive und Typ 0-Sprachen

2.4 Kontextsensitive und Typ 0-Sprachen Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik

Mehr

Berechenbarkeitstheorie 7. Vorlesung

Berechenbarkeitstheorie 7. Vorlesung 1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster W 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Das Pumpinglemma

Mehr

Einführung in die Computerlinguistik deterministische und nichtdeterministische endliche Automaten

Einführung in die Computerlinguistik deterministische und nichtdeterministische endliche Automaten Einführung in die Computerlinguistik deterministische und nichtdeterministische endliche Automaten Dozentin: Wiebke Petersen Foliensatz 4 Wiebke Petersen Einführung CL 1 Äquivalenz von endlichen Automaten

Mehr

Kapitel 3: Grundlegende Ergebnisse aus der Komplexitätstheorie Gliederung

Kapitel 3: Grundlegende Ergebnisse aus der Komplexitätstheorie Gliederung Gliederung 1. Berechenbarkeitstheorie 2. Grundlagen 3. Grundlegende Ergebnisse aus der Komplexitätstheorie 4. Die Komplexitätsklassen P und NP 5. Die Komplexitätsklassen RP und BPP 3.1. Ressourcenkompression

Mehr

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven WS06/07 Referentin: Katharina Blinova Formale Sprachen Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven 1. Allgemeines 2. Formale Sprachen 3. Formale Grammatiken 4. Chomsky-Hierarchie 5.

Mehr

Musterlösung zur Nachklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Musterlösung zur Nachklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Nachklausur Theoretische Grundlagen der Informatik Wintersemester 203/4 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 8. Reguläre Sprachen II Malte Helmert Gabriele Röger Universität Basel 24. März 24 Pumping Lemma Pumping Lemma: Motivation Man kann zeigen, dass eine Sprache regulär ist, indem man

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Kapitel 3: Reguläre Grammatiken und Endliche. Automaten

Kapitel 3: Reguläre Grammatiken und Endliche. Automaten Kapitel 3: Reguläre Grammatiken und Endliche Automaten Prof.-Dr. Peter Brezany Institut für Softwarewissenschaft Universität Wien, Liechtensteinstraße 22 090 Wien Tel. : 0/4277 38825 E-mail : brezany@par.univie.ac.at

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik echnische Universität München Fakultät für Informatik Prof. obias Nipkow, Ph.D. ascha öhme, Lars Noschinski ommersemester 2011 Lösungsblatt 5 6. Juni 2011 Einführung in die heoretische Informatik Hinweis:

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 6. Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/07 6. Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 6. Vorlesung 10.11.2006 schindel@informatik.uni-freiburg.de 1 Kapitel IV Kontextfreie Sprachen Kontextfreie Grammatik Informatik III 6. Vorlesung

Mehr

Modul Formale Sprachen Bachelor Informatik 3. Semester

Modul Formale Sprachen Bachelor Informatik 3. Semester Modul Formale Sprachen Bachelor Informatik 3. Semester Lehrinhalte: Das Modul führt in die Grundlagen der Automatentheorie sowie der Theorie formaler Sprachen ein. Es vermittelt grundlegende Aussagen und

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 22.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto 26.09.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen SS 2011 Name:................................

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 0. ORGANISATORISCHES UND ÜBERBLICK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 0. ORGANISATORISCHES UND ÜBERBLICK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2014 0. ORGANISATORISCHES UND ÜBERBLICK Theoretische Informatik (SoSe 2014) 0. Organisatorisches und Überblick 1 / 16

Mehr

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat Formale Grundlagen der Informatik 1 Kapitel 5 Über reguläre Sprachen hinaus und (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 21. April 2015 Der Kellerautomat - Formal Definition (Kellerautomat

Mehr

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Hochschuldozent Dr. Christian Schindelhauer Paderborn, den 21. 2. 2006 Lösungen zur 1. Klausur in Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Name :................................

Mehr