Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Wechselströme (WS) Frühjahrssemester Physik-Institut der Universität Zürich

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Wechselströme (WS) Frühjahrssemester Physik-Institut der Universität Zürich"

Transkript

1 Anleiung zum Physikprakikum für Obersufenlehrpersonen Wechselsröme (WS) Frühjahrssemeser 2017 Physik-nsiu der Universiä Zürich

2 nhalsverzeichnis 11 Wechselsröme (WS) Einleiung Ziel des Versuches Theoreischer Teil mpedanz einer Spule mpedanz eines Kondensaors Kahodensrahloszilloskop (KO) Experimeneller Teil Aufgabensellung Prinzip der Srom- und Spannungsmessung mi dem KO Besimmen der ndukiviä (Spule mi Eisenkern) Besimmen der Kapaziä Frequenzabhängigkei von Z L und Z C Versuchsberich

3 11 Wechselsröme (WS) Vorlesungsabschni 4, Elekriziä und Magneismus 4.2 Saionäre elekrische Sröme Bewege Ladungen - Sröme Spannungsquellen, Srom - Spannungscharakerisiken, Kirchhoff sche Geseze 4.4. Zeiabhängige elekrische und magneische Felder Die Maxwell schen Gleichungen Zeiabhängige Sröme in Sromkreisen 11.1 Einleiung Neben den Ohm schen Widersänden spielen in Wechselsromkreisen Kondensaoren (Kapaziäen) und Spulen (ndukiviäen) eine wichige Rolle. Für Ohm sche Widersände gil immer noch R = kons., mi andern Woren, in Ohm schen Leiern sind Srom und Spannung in Phase. n diesem Versuch unersuchen wir die folgenden Fragen: Welche Wirkungen haben ndukiviäen und Kapaziäen im Wechselsromkreis? Wie sind Srom und Spannung bei diesen Elemenen verknüpf? Welchen Einfluss ha die Frequenz der Wechselspannung? Diesen Fragen wollen wir nachgehen, indem wir an einfachen Schalkreisen mi einem oder zwei Elemenen Spannungs- und Srommessungen durchführen. Wir beschränken uns dabei auf harmonische Sröme und Spannungen: V () = V 0 cos ω, () = 0 cos(ω ϕ) Ziel des Versuches Dabei bedeuen: V 0 = Spannungsampliude 0 = Sromampliude ω = 2πν = 2π/T = Kreisfrequenz ϕ = Phasenverschiebung zwischen Srom und Generaorspannung Mi einem Kahodensrahloszilloskop (KO) lassen sich Spannungen als Funkionen der Zei bequem beobachen und besimmen. Oszilloskope werden deshalb häufig bei der Fehlersuche und Einsellung von elekrischen Geräen (z.b. Radio, Fernseher, Mikrowellen- und Radargeräe) eingesez. Bei der Überwachung von biologischen Funkionen, die sich in Form von elekrischen Signalen manifesieren, kann ein KO als Überwachungsgerä dienen (z.b. EEG 1,EKG 2 ). Für kompliziere Anwendungen sind spezielle Geräe enwickel worden, deren Funkionsweise sich aber nich grundsäzlich von der eines einfachen Geräes unerscheide. 1 EEG = Elekroenzephalographie, Verfahren zur Messung und Aufzeichnung der elekr. Akiviä des Gehirns. 2 EKG = Elekrokardiographie, Medizinische Mehode zur Aufzeichnung der elekr. Vorgänge am Herzen. 11.1

4 Um die zeiliche Abhängigkei der Sröme und Spannungen zu beobachen und um uns mi der Funkionsweise und der Bedienung eines KO verrau zu machen, werden in diesem Versuch sämliche Sröme und Spannungen mi dem KO gemessen. Dabei geh es um: Elekrische Sromkreise die Regeln von Kirchhoff den Wechselsromwidersand oder die mpedanz Messen von Spannung und Srom in Abhängigkei der Zei mpedanzen vom Ohm schen Widersand, einer Spule und eines Kondensaors 11.2 Theoreischer Teil mpedanz einer Spule Ein Wechselspannungsgeneraor mi der elekromoorischen Kraf V () = V 0 cos ω werde mi einer Spule der ndukiviä L in Serie geschale. Wir nehmen an, dass ihr Ohm scher Widersand vernachlässigbar, also R Spule 0 sei (ideale Spule). L Die ndukiviä der Spule is durch ihre Länge l, die Querschnisfläche A und die Windungszahl N besimm. Für eine lange Spule gil: Abbildung 11.1: Sromkreis mi Spule der ndukiviä L. N 2 A L = µ 0 [L] = 1 V s = 1H (Henry) (11.1) l A L kann sark vergrösser werden, wenn ein magneisierbarer Kern in die Spule geschoben wird. Es gil dann: N 2 A L = µµ 0 l Hier is µ 0 = 4π 10 7 (Vs/Am) die ndukionskonsane und µ die magneische Permeabiliä des Eisens (µ Fe 1). Für den obigen Kreis gil die 2. Kirchhoffsche Regel (Maschenregel). Diese liefer den Zusammenhang zwischen der Spannung V () und dem Srom (). Sie laue: V 0 cos ω L d d = 0 Die Lösung dieser Differenialgleichung erhäl man nach einmaliger negraion: () = V 0 ωl sin ω = V 0 ωl cos(ω ϕ) wobei ϕ = +π 2 Der Srom is gegen die Spannung um ϕ = π/2 phasenverschoben (vgl. Abbildung 11.2) (11.2)

5 V V 0 V 0 ωl φ ω = 0 cos (ω -φ) Abbildung 11.2: Spannung und Srom in Abhängigkei von der Zei bei einer Spule. Vergleich man die Gleichung (11.2) für sin ω = 1 mi der Definiion des Widersandes ( = V/R), so erkenn man, dass die Grösse ωl die Rolle eines Widersandes spiel. Man nenn ωl die mpedanz Z L oder den Wechselsromwidersand einer idealen Spule (R Spule 0) mi der ndukiviä L: Z L = ωl d.h. Z L ω (11.3) Allgemein wird der Wechselsromwidersand für ein Elemen i folgendermassen definier: Z i = V 0 = Spannungsampliude 0 Sromampliude (11.4) Frage 1: Eine 10 cm lange Spule habe eine Querschnisfläche A von 4 cm 2 und 2000 Windungen. Wie gross is ihre ndukiviä L (Gleichung (11.1))? mpedanz eines Kondensaors Wie die Selbsindukion sell auch der Kondensaor einen Wechselsromwidersand dar. Die 2. Kirchhoffsche Regel laue für den nebensehenden Sromkreis: V 0 cos ω = V C = Q C Wir leien diese Gleichung einmal nach der Zei ab: ωv 0 sin ω = ( ) dq C d = Abbildung 11.3: Sromkreis mi Kondensaor der Kapaziä C. C und erhalen: = ωcv 0 sin ω = ωcv 0 cos (ω ϕ) wobei ϕ = π 2 (11.5) 11.3

6 Daraus folg für die mpedanz Z C eines Kondensaors: Z C = 1 d.h. Z C 1 (11.6) ωc ω Der Srom is gegen die Spannung um ϕ = π/2 phasenverschoben (vgl. Abbildung 11.4). V V 0 V 0 ω C φ ω = 0 cos (ω -φ) Abbildung 11.4: Spannung und Srom in Abhängigkei von der Zei bei einem Kondensaor Kahodensrahloszilloskop (KO) m Versuch sollen alle Sröme und Spannungen mi dem KO gemessen werden. Wir wollen deshalb die prinzipielle Arbeisweise vom Kahodensrahloszilloskop kurz beschreiben (Abb. 11.5). y Kahode Anode Plaenpaare Elekronensrahl Leuchschirm x Heizung Leuchfleck _ + Vy V x Abbildung 11.5: Schemaische Darsellung von einem Kahodensrahloszilloskop. n einem evakuieren Glaskolben werden die aus der geheizen Kahode (glühender Drah) emiieren Elekronen gegen die mi einem kleinen Loch versehene Anode beschleunig. So wird ein feiner Elekronensrahl erzeug. Der Srahl durchläuf dann 2 senkrech zueinandersehende Plaenpaare und riff schliesslich auf den Leuchschirm, wo er einen Leuchfleck erzeug. Wird an das eine oder andere Plaenpaar eine Spannung angeleg, so söss die negaiv geladene Plae den Srahl ab, während die posiive ihn anzieh. Dadurch wird der Srahl in horizonaler respekive verikaler Richung abgelenk. Die Ablenkung is proporional zur angelegen Spannung: Ablenkung x V x, Ablenkung y V y. Für den normalen Gebrauch des Oszilloskops wird inern an das x-plaenpaar eine sogenanne Sägezahnspannung angeleg, welche linear mi 11.4

7 der Zei bis zu einem Maximalwer anseig und sehr rasch auf den Anfangswer zurückgeh (Abbildung 11.6). V x Abbildung 11.6: Sägezahnspannung für x-ablenkung. Der Leuchfleck beweg sich deshalb mi konsaner Geschwindigkei von links nach rechs und spring rasch wieder nach links zurück. Leg man nun an das y-plaenpaar eine beliebige Spannung (z.b. eine Sinusspannung) an, so gib die Kurve auf dem Schirm eine grafische Darsellung der Spannung V y (). Um gleichzeiig zwei Spannungen zu messen, wird im Versuch ein 2-Srahl- KO verwende. So lassen sich z.b. Phasenverschiebungen leich zeigen (siehe Experimeneller Teil). Heue werden auch moderne digiale Oszilloskope verwende. Diese verwandeln die Spannungen in digiale Were und speichern diese. Daraus werden dann die ensprechenden Kurven berechne und auf dem Bildschirm dargesell Experimeneller Teil Aufgabensellung 1. Besimmen der Kapaziä eines Kondensaors 2. Besimmen der ndukiviä einer Spule mi Eisenkern 3. Unersuchen der Frequenzabhängigkei des Wechselsromwidersandes von Kondensaor und Spule Prinzip der Srom- und Spannungsmessung mi dem KO Zuers wird die Bedienung des KO vom Assisenen erklär und demonsrier. Generaor KO (V Z ) Kanal 1 Z Mi dem KO lassen sich nur Spannungen direk messen. Ein Srom kann indirek aus dem Spannungsabfall an einem Ohm schen Widersand R besimm werden: = V R R, 0 = V R0 R (11.7) R KO (V R ) Kanal 2 Abbildung 11.7: Schalung für die Messung von Srom und Spannung mi dem KO. 11.5

8 R muss dabei wesenlich kleiner sein als Z, dami die Spannungsmessung an Z nich verfälsch wird. Falls R Z, so is V Z + V R V Z und die Spannung an Z kann, wie skizzier, gemessen werden. Mi dem 2-Srahl-KO können Srom und Spannung gleichzeiig dargesell werden Besimmen der ndukiviä (Spule mi Eisenkern) Generaoreinsellung: Generaor KO (V L ) Kanal 1 L V 0 = 5V ν = 1000Hz R = 22Ω R KO (V R ) Kanal 2 Abbildung 11.8: Schalung zur Messung der ndukiviä der Spule. Vorgehen: 1. Man beobache auf dem KO-Schirm die Phasenverschiebung zwischen Srom und Spannung, indem man die beiden Kurven übereinander schieb. Das Resula is zu skizzieren. 2. Man miss mi dem KO die Ampliuden von V L und V R. 3. Nach Gleichung (11.7) berechne man die Sromampliude. 4. Nach Gleichung (11.4) läss sich dann Z L besimmen. 5. Berechnen Sie L mi Gleichung (11.3), wobei ω = 2πν is Besimmen der Kapaziä Vorgehen: 1. Man beobache auf dem KO-Schirm die Phasenverschiebung zwischen Srom und Spannung, indem man die beiden Kurven übereinander schieb. Das Resula is zu skizzieren. 2. Man miss mi dem KO die Ampliuden der Spannungen V C und V R. 3. Nach Gleichung (11.7) berechne man die Sromampliude. 4. Nach Gleichung (11.4) läss sich dann Z C besimmen. 5. Berechnen Sie C aus Gleichung (11.6), wobei ω = 2πν is. 11.6

9 Generaoreinsellung: Generaor KO (V C ) Kanal 1 C V 0 = 5V ν = 500Hz R = 22Ω R KO (V R ) Kanal 2 Abbildung 11.9: Schalung zur Messung der Kapaziä Frequenzabhängigkei von Z L und Z C Verwenden Sie die gleichen Schalungen wie für die Besimmung der ndukiviä und der Kapaziä. Verwenden Sie die Spule mi Eisenkern. Messen Sie die Srom- und Spannungsampliuden in Funkion der Frequenz. Wählen Sie folgende Frequenzwere für Z L ν = 500/l000/2000/3000 Hz, für Z C ν = 20/50/150/250/500/750 Hz, und sellen Sie die Messwere in einer übersichlichen Tabelle zusammen. Z L (ν) und Z C (ν) werden nach Gleichung (11.4) berechne und als Funkionen von ω auf Millimeerpapier aufgezeichne Versuchsberich Der Berich soll das Folgende enhalen: 1. Berechnung der ndukiviä (Frage l). 2. Skizzen der Versuchsanordnungen. 3. Skizzen der beobacheen Phasenverschiebungen bei Kapaziä und ndukiviä. 4. Berechnung der gesuchen Kapaziä. 5. Berechnung der gesuchen ndukiviä. 6. Frequenzabhängigkei von Z L und Z C : Tabelle der Messwere grafische Darsellungen von Z L (ν) und Z C (ν) 11.7

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Elektrodynamik II - Wechselstromkreise

Elektrodynamik II - Wechselstromkreise Physik A VL36 (18.1.13 Elekrodynamik II - Wechselspannung und Wechselsrom Wechselspnnung durch Indukion Drehsrom Schalungen mi Wechselsrom Kirchhoff sche h egeln Maschenregel bei Indukiviäen und Kapaziäen

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kapazitäten (C) Frühjahrssemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kapazitäten (C) Frühjahrssemester Physik-Institut der Universität Zürich nleiung zum Physikprakikum für Obersufenlehrpersonen Kapaziäen (C) Frühjahrssemeser 2017 Physik-Insiu der Universiä Zürich Inhalsverzeichnis 9 Kapaziäen (C) 9.1 9.1 Einleiung........................................

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Versuch 1 Schaltungen der Messtechnik

Versuch 1 Schaltungen der Messtechnik Fachhochschule Merseburg FB Informaik und Angewande Naurwissenschafen Prakikum Messechnik Versuch 1 Schalungen der Messechnik Analog-Digial-Umsezer 1. Aufgaben 1. Sägezahn-Umsezer 1.1. Bauen Sie einen

Mehr

Coulomb - Gesetz. Elektrisches Feld. Faradayscher Käfig

Coulomb - Gesetz. Elektrisches Feld. Faradayscher Käfig Coulomb Gesez Elekrische Ladung Q: Teilchen können eine posiive () oder negaive () Ladung Q aufweisen nur ganzzahlige Vielfache der Elemenarladung e sind möglich e = 1,6 10 19 C [Q] = 1 As = 1 C = 1 Coulomb

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden Physik Übung * Jahrgangssufe 9 * Versuche mi Dioden Geräe: Nezgerä mi Spannungs- und Sromanzeige, 2 Vielfachmessgeräe, 8 Kabel, ohmsche Widersände 100 Ω und 200 Ω, Diode 1N4007, Leuchdiode, 2 Krokodilklemmen

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

Versuch 13: Elektronenstrahloszilloskop

Versuch 13: Elektronenstrahloszilloskop Versuch 13: Elekronensrahloszilloskop Der Versuch vermiel eine Einführung in die Funkionsweise des Elekronensrahloszilloskops anhand der wichigsen Anwendungsmöglichkeien dieses in der Messechnik sehr vielseiig

Mehr

HÖHERE TECHNISCHE BUNDESLEHRANSTALT SAALFELDEN Höhere Abteilung für Elektrotechnik und Informationstechnik. Angewandte Elektrotechnik AET

HÖHERE TECHNISCHE BUNDESLEHRANSTALT SAALFELDEN Höhere Abteilung für Elektrotechnik und Informationstechnik. Angewandte Elektrotechnik AET HÖHEE EHNSHE BNDESEHANSA SAAFEDEN Höhere Abeilung für Elekroechnik und nformaionsechnik Angewande Elekroechnik AE Formelsammlung Wechselsromechnik Komplexe Wechselsromrechung eil Michael WASE nhalsverzeichnis

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum HAW Hamburg Fakulä Life Sciences - Physiklabor Physikalisches Prakikum Auf- und Enladungen von Kondensaoren in -Gliedern Messung von Kapaziäen Elekrische Schalungen mi -Gliedern finde man z. B. in Funkionsgeneraoren

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Wechselstromlehre. (Lothar Melching) 1 Komplexe Zahlen Arithmetik Polarkoordinaten... 2

Wechselstromlehre. (Lothar Melching) 1 Komplexe Zahlen Arithmetik Polarkoordinaten... 2 Wechselsromlehre (Lohar Melching) Inhalsverzeichnis Komplexe Zahlen 2. Arihmeik.............................. 2.2 Polarkoordinaen........................... 2 2 Widersände 3 2. Ohmscher Widersand........................

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

4 Bauteile kennenlernen

4 Bauteile kennenlernen 4 Baueile kennenlernen 4.1 Widersand Widersände sind Baueile mi einem gewünschen Widersandsverhalen. Sie sezen der Elekronensrömung Widersand engegen. Man unerscheide zwischen linearen und nichlinearen

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben Grundlagen der Elekroechnik II Übungsaufgaben 24) ransiene -eihenschalung Die eihenschalung einer Indukiviä ( = 100 mh) und eines Widersands ( = 20 Ω) wird zur Zei = 0 an eine Gleichspannungsquelle geleg.

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Prookoll zu nfängerprakiku Besiung der FRDY Konsanen durch Elekrolyse Gruppe 2, Tea 5 Sebasian Korff 3.7.6 nhalsverzeichnis 1. Einleiung -3-1.1 Die Faraday Konsane -3-1.2 Grundlagen der Elekrolyse -4-2.

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

1 Rasterelektronenmikroskop (vorbereitete Aufgabe, 1. Prüfungsteil)

1 Rasterelektronenmikroskop (vorbereitete Aufgabe, 1. Prüfungsteil) nur für den inernen Gebrauch Beispiel für eine mündliche Abiurprüfung im Fach Physik MündlicheAbiurprüfung Seie 1 von 6 Hilfsmiel: Zugelassener Taschenrechner, Wörerbuch der deuschen Rechschreibung. 1

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeparmen E13 WS 211/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peer Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körsgens, David Magerl, Markus Schindler, Moriz v. Sivers Vorlesung 1.11.211,

Mehr

oder Masse Zeit Zeit = n oder m t t

oder Masse Zeit Zeit = n oder m t t 1. WIEDERHOLUNG GRUNDLAGEN 1.1 DEFINITIONEN Ergänze bzw. füge die ensprechenden Symbole ein: Sromsärke allgemein = z.b. Menge oder Masse Zei Zei = n oder m Ladung(smenge) Elekrische Sromsärke I = = Q Zei

Mehr

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen 1. Mai 216 Elekronik 1 Marin Weisenhorn Übungsserie: Single-Supply, Gleichricher Dioden Anwendungen Aufgabe 1. Gleichricher In dieser Gleichricherschalung für die USA sei f = 6 Hz. Der Effekivwer der Ausgangspannung

Mehr

Aufnahme von Durchlasskurven mit dem Oszilloskop (OSZ)

Aufnahme von Durchlasskurven mit dem Oszilloskop (OSZ) Seie 1 Aufnahme von Durchlasskurven mi dem Themengebie: Elekrodynamik und Magneismus 1 Sichwore, Taskopf, Funkionsgeneraor, Schwingkreis, Resonanz, Bandbreie, Dämpfung, Güe, Tiefpass, Hochpass, Grenzfrequenz

Mehr

Versuch 25 Oszilloskop

Versuch 25 Oszilloskop Physikalisches Grundprakikum der Universiä Heidelberg - Prakikum I Versuch 5 Oszilloskop III Moivaion Ziel dieses Versuchs is nich die Unersuchung eines physikalischen Gesezes oder die Besimmung einer

Mehr

Elektrische Ladung. Elektrische Kraft

Elektrische Ladung. Elektrische Kraft Elekrische Ladung die elekrische Ladung is ses an einen maeriellen Träger gebunden Körper können außer einer Masse auch eine elekrische Ladung aufweisen Ladungsräger: Elekronen, Proonen, Ionen posiive

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

1. Einführung und Grundlagen

1. Einführung und Grundlagen . Einführung und Grundlagen. Srom und Spannung. Der Ohmsche Widersand.3 Widersandsnezwerke.4 Kondensaoren und -Nezwerke.5 ndukiviäen und -Nezwerke.6 Komplexe Widersände, mpedanzen.7 - und -Nezwerke.8 Fourier-eihen.9

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 INSIU FÜR NGENDE HYSI hysikalisches rakikum für Suierene er Ingenieurswissenschafen Universiä Hamburg, Jungiussraße 11 elier-ärmepumpe 1 Ziel äleleisung, ärmeleisung un ie Leisungsziffer einer elier-ärmepumpe

Mehr

Grundschaltung, Diagramm

Grundschaltung, Diagramm Grundschalung, Diagramm An die gegebene Schalung wird eine Dreieckspannung von Vs (10Vs) angeleg. Gesuch: Spannung an R3, Srom durch R, I1 Der Spannungsverlauf von soll im oberen Diagramm eingezeichne

Mehr

1 Grundwissen Elektrik

1 Grundwissen Elektrik 1 Grundwissen Elekrik 1.1 Elekrisches Feld Elekrische Felder exisieren in der Umgebung von Ladungen. Die Feldrichung is dabei die Richung der Kraf auf eine posiive Probeladung. Die Feldlinien verlaufen

Mehr

Medikamentendosierung A. M.

Medikamentendosierung A. M. Medikamenendosierung A M Inhalsverzeichnis 1 Einleiung 2 2 Ar der Einnahme 3 3 Tropfenweise Einnahme 4 31 Differenialgleichung 4 32 Exake Lösung 5 33 Näherungsweise Lösung 5 4 Periodische Einnahme 7 41

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Abb.4.1: Aufbau der Versuchsapparatur

Abb.4.1: Aufbau der Versuchsapparatur 4. xperimenelle Unersuchungen 4. Aufbau der Versuchsanlage Für die Unersuchungen zum Schwingungs- und Resonanzverhalen sowie Soffausauschprozess wurde eine Versuchsanlage aufgebau. In der Abbildung 4.

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Flugzeugaerodynamik I Lösungsblatt 2

Flugzeugaerodynamik I Lösungsblatt 2 Flugzeugaerodynamik I Lösungsbla 2 Lösung Aufgabe Bei der vorliegenden Aufgabe handel es sich um die Nachrechenaufgabe der Skele Theorie. a) Der Koeffizien A 1 is durch die Wölbung des gegebenen Skeles

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

Energietechnisches Praktikum I Versuch 11

Energietechnisches Praktikum I Versuch 11 INSI FÜR HOCHSPANNNGSECHNIK Rheinisch-Wesfälische echnische Hochschule Aachen niv.-prof. Dr.-Ing. Armin Schneler INSI FÜR HOCHSPANNNGS ECHNIK RHEINISCH- WESFÄLISCHE ECHNISCHE HOCHSCHLE AACHEN Energieechnisches

Mehr

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei 2 Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei Einführung Lerninhal Einführung 3 Das Programm yzet erlaub es,

Mehr

Versuch Bauen Sie einen einstufigen Verstärker mit einem n-p-n-transistor nach folgender Schaltung auf!

Versuch Bauen Sie einen einstufigen Verstärker mit einem n-p-n-transistor nach folgender Schaltung auf! 1 Versuch 35 Transisorversärker 1. Aufgaben 1.1 Bauen Sie einen einsufigen Versärker mi einem n-p-n-transisor nach folgender Schalung auf! 1.2 Besimmen Sie die größe unverzerr versärke ingangswechselspannung

Mehr

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz Wachsum Exponenielles Wachsum Aufgabensammlung Teil 2a Auch mi Verwendung von Mehoden aus der Analysis: Wachsumsraen Differenialgleichungen Auch mi CAS-Einsaz Sand: 23. Februar 2012 Daei Nr. 45811 INTERNETBIBLIOTHEK

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

4. Zeitabhängige Spannungen und Ströme in Netzwerken

4. Zeitabhängige Spannungen und Ströme in Netzwerken 86 4 Zeiabhängige Spannungen und Sröme 4 Zeiabhängige Spannungen und Sröme in Nezwerken m vorigen Abschni wurde dargeleg, wie durch zeiliche Änderung des magneischen Flusses Spannungen in Leiern induzier

Mehr

Versuche mit Oszilloskop und Funktionsgenerator

Versuche mit Oszilloskop und Funktionsgenerator Fachhochschule für Technik und Wirschaf Berlin EMT- Labor Versuche mi Oszilloskop und Funkionsgeneraor Sephan Schreiber Olaf Drzymalski Messung am 4.4.99 Prookoll vom 7.4.99 EMT-Labor Versuche mi Oszilloskop

Mehr

Laplacetransformation in der Technik

Laplacetransformation in der Technik Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen

Mehr

Die Halbleiterdiode. Demonstration der Halbleiterdiode als Ventil.

Die Halbleiterdiode. Demonstration der Halbleiterdiode als Ventil. R. Brinkmann hp://brinkmanndu.de Seie 1 26.11.2013 Diffusion und Drif Die Halbleierdiode Versuch: Demonsraion der Halbleierdiode als Venil. Bewegliche Ladungsräger im Halbleier: im n Leier sind es Elekronen,

Mehr

Regelungstechnik 1 - Grundglieder: Analyse im Zeit und Frequenzbereich

Regelungstechnik 1 - Grundglieder: Analyse im Zeit und Frequenzbereich Regelungsechnik - Grundglieder: Analyse im Zei und Frequenzbereich Vorberachungen: Das Überragungsverhalen von linearen Regelkreiselemenen wird vorwiegend durch Sprunganworen bzw. Übergangsfunkionen sowie

Mehr

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt Elekronische Sseme - 3. Kapaziä und Indukiviä 1 -------------------------------------------------------------------------------------------------------------- G. Schaer 26. Mai 24 3. Kapaziä und Indukiviä

Mehr

Vom singenden Draht zum DVB-C

Vom singenden Draht zum DVB-C Vom singenden Drah zum DVB-C Is digiale Kommunikaion effiziener? Gerolf Ziegenhain TU Kaiserslauern Übersich Einleiung Begriffsklärung Ziel Analoge Modulaion AM FM Muliplexverfahren Digiale Modulaion QPSK

Mehr

Versuchsprotokoll. Datum:

Versuchsprotokoll. Datum: Laborveruch Elekroechnik I eruch 2: Ozillokop und Funkiong. Hochchule Bremerhaven Prof. Dr. Oliver Zielinki / Han Sro eruchprookoll Teilnehmer: Name: 1. 2. 3. 4. Tea Daum: Marikelnummer: 2. Ozillokop und

Mehr

Schriftliche Abiturprüfung 2007 Sachsen-Anhalt Physik 13 n (Leistungskursniveau)

Schriftliche Abiturprüfung 2007 Sachsen-Anhalt Physik 13 n (Leistungskursniveau) Schrifliche Abiurprüfung 2007 Sachsen-Anhal Physik 13 n (Leisungskursniveau) Thema 2: Bewegungen in raviaionsfeldern 1 Eigenschafen des raviaionsfeldes Erläuern Sie den Feldbegriff anhand des raviaionsfeldes.

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

Praktikum Elektronik für FB Informatik

Praktikum Elektronik für FB Informatik Fakulä Elekroechnik Hochschule für Technik und Wirschaf resden Universiy of Applied Sciences Friedrich-Lis-Plaz, 0069 resden ~ PF 2070 ~ 0008 resden ~ Tel.(035) 462 2437 ~ Fax (035) 462 293 Prakikum Elekronik

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

V1.1 Analog-Oszilloskop

V1.1 Analog-Oszilloskop V1.1 Analog-Oszilloskop 1. Theorie Oszilloskope dienen haupsächlich dazu, die Zeifunkion U = f() von Signalen oder veränderlichen Spannungen sichbar zu machen. Mi Einsellreglern für die Spannungshöhe (Y)

Mehr

Versuch Operationsverstärker

Versuch Operationsverstärker Seie 1 1 Vorbereiung 1.1 Allgemeines zu Operaionsversärkern Ein Operaionsversärker is ein Versärker mi sehr großer Versärkung. Er wird in der Regel gegengekoppel berieben, so dass auf Grund seiner großen

Mehr

3. Physikschulaufgabe. - Lösungen -

3. Physikschulaufgabe. - Lösungen - Realschule. Physikschulaufgabe Klasse I - Lösungen - hema: Aom- u. Kernphysik, Radioakiviä. Elekrisches Feld: Alphasrahlung: Sind (zweifach) posiiv geladene Heliumkerne. Sie werden im elekrischen Feld

Mehr

3.5 Überlagerung von harmonischen Schwingungen

3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen Zwei Schwingungen u 1 und u längs gleicher Richung können superponier werden. u 1 = u sin(ω 1 + ϕ 1 ) (3.9)

Mehr

c) d) zu den Feldlinien verläuft. e) f) g) h) den Feldlinien verläuft. den ein Weicheisenkern geschoben wird. Eisenkern Induktionsspule

c) d) zu den Feldlinien verläuft. e) f) g) h) den Feldlinien verläuft. den ein Weicheisenkern geschoben wird. Eisenkern Induktionsspule nwendungsaufgaben - Indukion 1 Enscheide jeweils, ob das Messgerä eine pannung anzeig. Begründe bei den Beispielen a bis c mihilfe der Lorenzkraf und bei den Beispielen d bis k mihilfe des Indukionsgesezes.

Mehr

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007 TR Transformator Blockpraktikum Herbst 2007 (Gruppe 2b) 25 Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 11 Unbelasteter Transformator 2 12 Belasteter Transformator 3 13 Leistungsanpassung 3 14 Verluste

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

Elementare RC- und RL-Glieder

Elementare RC- und RL-Glieder ANGEWANDTE ELEKTRONIK EINFÜHRNG WS 09/0 Elemenare RC- und RL-Glieder. Der Sromluß durch einen Kondensaor Abb.. veranschaulich einen Kondensaor, der durch Anschalen an eine Spannungsquelle geladen und anschließend

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

BIOLOGIE. K + Na + Cl - A - Thema: Ruhepotential 1. außen. innen. 0 mvolt. Fiktiver Ausgangszustand

BIOLOGIE.  K + Na + Cl - A - Thema: Ruhepotential 1. außen. innen. 0 mvolt. Fiktiver Ausgangszustand Ruhepoenial 1 A - 0,001 µm 2 0,001 µm 3 0,001 µm 3 0 mvol Fikiver Ausgangszusand 1. Um die Ionenwanderungen an einer Nervenzellmembran anschaulicher verfolgen zu können, sellen wir uns einen winzigen Ausschni

Mehr

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung Labor Elekronische Prof. Dr. P. Suwe Dipl.-ng. B. Ahrend Versuch 3: Halbleierbauelemene im Schalberieb 1 Theorie Bipolare Transisoren und Feldeffekransisoren lassen sich sowohl zum Versärken von Klein-

Mehr

Grundlagen der Elektrotechnik 3

Grundlagen der Elektrotechnik 3 Grundlagen der Elekroechnik 3 Kapiel 3. Schalvorgänge - Die aplace Transformaion Prof. Dr.-Ing. I. Willms Grundlagen der Elekroechnik 3 S. Fachgebie Nachrichenechnische Syseme 3.. Einführung Nuzung einer

Mehr

Grundlagen der Elektrotechnik für Maschinenbauer

Grundlagen der Elektrotechnik für Maschinenbauer Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Schwingungen. 1 Schwingung als periodischer Vorgang

Schwingungen. 1 Schwingung als periodischer Vorgang -I.D1- D Schwingungen 1 Schwingung als periodischer Vorgang 1.1 Definiion Voraussezungen für das Ensehen einer mechanischen Schwingung sind eine zur Gleichgewichslage gerichee rückreibende Kraf und die

Mehr

d zyklische Koordinaten oder Terme der Form F(q, t) dt

d zyklische Koordinaten oder Terme der Form F(q, t) dt 6 Woche.doc, 3.11.10.5 "Reep" u Lösung von Bewegungspoblemen mi Hilfe de Lagange- Gleichungen II.. Beispiele 1. Wähle geeignee ( Zwangbedingungen, Smmeie) veallgemeinee Koodinaen ( 1,,..., f ) n (, ) n.

Mehr

8. Betriebsbedingungen elektrischer Maschinen

8. Betriebsbedingungen elektrischer Maschinen 8. Beriebsbedingungen elekrischer Maschinen Neben den Forderungen, die die Wirkungsweise an den Aufbau der elekrischen Maschinen sell, müssen bei der Konsrukion noch die Bedingungen des Aufsellungsores

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

Versuch: Phosphoreszenz

Versuch: Phosphoreszenz Versuch O8 PHOSPHORESZENZ Seie 1 von 6 Versuch: Phosphoreszenz Anleiung für folgende Sudiengänge: Biowissenschafen, Pharmazie Raum: Physik.24 Goehe-Universiä Frankfur am Main Fachbereich Physik Physikalisches

Mehr

Coulomb Oersted Ampére Ohm Kirchhoff Gauß Faraday Maxwell

Coulomb Oersted Ampére Ohm Kirchhoff Gauß Faraday Maxwell FO chwerpunkfach Elekroechnik in der Fachoberschule Klassen + Organisaionsform A Heinrich-Emanuel-Merck-chule Darmsad Fachoberschule Didakisches Konzep www.hems.de Technik komm ohne Physik aus, wie der

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 4: Schutzbeschaltung elektronischer Bauelemente

Leistungselektronik Grundlagen und Standardanwendungen. Übung 4: Schutzbeschaltung elektronischer Bauelemente ehrsuhl für Elekrische Anriebssyseme und eisungselekronik Technische Universiä München Arcissraße 21 D 8333 München Email: eal@ei.um.de Inerne: hp://www.eal.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.: +49

Mehr

Messgrößen. a81 a00002. a81 a000021

Messgrößen. a81 a00002. a81 a000021 Elekrische Energie is heuzuage die handlichse aller Energieformen. Sie läss sich vielseiig nuzen und nahezu überall bereihalen, sofern ein diches Nez von Krafwerken, Überlandleiungen, Umspannsaionen, Kabeln

Mehr

2 Messsignale. 2.1 Klassifizierung von Messsignalen

2 Messsignale. 2.1 Klassifizierung von Messsignalen 7 2 Messsignale Messwere beinhalen Informaionen über physikalische Größen. Die Überragung dieser Informaionen erfolg in Form eines Signals. Allerdings wird der Signalbegriff im äglichen Leben mehrdeuig

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Übungsblatt 4 Lösungsvorschläge

Übungsblatt 4 Lösungsvorschläge Insiu für Theoreische Informaik Lehrsuhl Prof. Dr. D. Wagner Übungsbla 4 Lösungsvorschläge Vorlesung Algorihmenechnik im WS 09/10 Problem 1: Flüsse [vgl. Kapiel 4.1 im Skrip] ** Gegeben sei ein Nezwerk

Mehr

8.2 Die Theorie stetiger Halbgruppen im Banachraum

8.2 Die Theorie stetiger Halbgruppen im Banachraum 8.2 Die Theorie seiger Halbgruppen im Banachraum 3 8.2 Die Theorie seiger Halbgruppen im Banachraum Im weieren sellen wir einige allgemeine Aussagen der Theorie seiger Halbgruppen in Banachräumen zusammen.

Mehr

Stand: 25. Juni 2001 Seite 3-1

Stand: 25. Juni 2001 Seite 3-1 Formelsammlng hema Bereiche eie Wechselspannng Begriffsdefiniion 3- eiger- nd iniendiagramm 3- mrechnng Bogenmaß Gradmaß 3-3 Kreisfreqenz 3-3 Effekivwer 3-3 hasenverschiebngswinkel 3-3 Mahemaische Darsellng

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimenalphysik 1 1 Fakulä für Physik Technische Universiä München Bernd Kohler & Daniel Singh Bla 1 - Lösung WS 214/215 23.3.215 Ferienkurs Experimenalphysik 1 ( ) - leich ( ) - miel ( )

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

DSS1. Digitaler Sprachspeicher Einschub mit RAM- und Flash- Speicherbänken. Abb. DSS1 (L- Nr. 2.600) 16 Speicheradressen für Sprachaufzeichnung:

DSS1. Digitaler Sprachspeicher Einschub mit RAM- und Flash- Speicherbänken. Abb. DSS1 (L- Nr. 2.600) 16 Speicheradressen für Sprachaufzeichnung: mi RAM- und Flash- peicherbänken Abb. (L- Nr. 2.600) Auf einen Blick: 16 peicheradressen für prachaufzeichnung: - bis zu 8 Bänke im RAM- peicher (flüchig) - bis zu 8 Bänke im Flash- peicher (permanen)

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2.

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. AO TIF 5. Nich-akgeseuere Flipflops 5.. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Erklärungen: Im peicherfall behalen die Ausgänge

Mehr