Rechnen mit Potenzen

Größe: px
Ab Seite anzeigen:

Download "Rechnen mit Potenzen"

Transkript

1 ~ Seite :uscmm.n 0, , Cu 0, , H 0, a) 0 m b),6 0 m c) 0 6 m d), 0 7 m a) mm: me = 0,0 = : 8,6; VM: VE = 0,0 = : 0 b) mm 0,0mE 0, 6 me VM 0,0VE VE a) Die Erde egt an einem Tag (in 6 Tagen) ungefähr,7 0 6 km (9, km) zurück. b) Die Erde egt bei einem Umauf um die Sonne ungefähr eine Strecke von 9, km zurück. c) Die Geschwindigkeit der Erde ist nicht konstant und die Umaufbahn der Erde ist eine Eipse, kein Kreis. a) In einem Kubikzentimeter Wasser befinden sich ungefähr, 0 8 Moeküe. b) Das sind ca.,66 0 Wassermoeküe. Bei einer Tasse Kaffee (einer Fasche Fruchtsaft, einem Tankastzug mit Mich, dem Bodensee) enthät Liter Füssigkeit 0 g (, g; 0,00 g;, 0 g) Zucker. c) kw kw kg ZuSeite Der Unterschied beträgt,968 m. d) kg 0,0 Mt 0,007 MW Der für das Jahr 0 gepante C0Ausstoss beträgt kg. Die von Ö bedeckte Wasserfäche ist m (= 00 km) groß. a) Die Kante des Kristas ist 0,00000 mm ang. b) Das Voumen des Kristas beträgt, mm. c) Die Oberfäche des Kristas ist, 0 mm groß. Es sind mindestens 80,0 g Schwefewasserstoff hergestet worden. 0 a) Der Speicherpatz beträgt 7 60 Byte. b) Der Speicherpatz der Festpatte beträgt Byte. Rechnen mit Potenzen ZuSeite eine und große Einheiten Seite Das rote Licht hat eine Weenänge von m, das gebe Licht eine Weenänge von m und das baue Licht eine Weenänge von 0 7 m. a) 0,0 m 0,006m 0, m 0,000 m 0,009m 0, m 0,0000m 0, m 0, m b) 0,0 g 0,000 g 0,008 g 0,00067 g 0,00008 g 0,00006 g 0,00000 g 0, g 0,0000 g 0,0 Gigawatt sind 0 0 MW = Watt. a) a) xy xy e) a 7 x6 a) 9 8 b) c) y8 6 b!o 0, z b) a 6 b c) u 7 v d) xyz a6c xy rst b) 8 c) 7 d) a) W w w b) t 7 00 t OOOt e) 6 f) g) 8 h)

2 "'!!IV i) k) 0 ) m) n) o) p) 0000 q) a) X = 8 ; X = 8 b) x= C) Xi= 0; X = 0 d) X=; x = X=7; X = 7 x= X= 0 X= e) X= f) X= X =; X = x= , a) 6 89 b) 08,9 c) 06 d) 7 88, 8 8,7 0 8, ,08 Potenzgesetze Zu Seite 6 Zu Seite a) 8 b) c) a 8 d) x 0 a) 0,00 b) 0,000 c) 0,000 d) 0, b7 y' 0,008 0,008 0,00 0, c7 z 0,6 0,06 0, , , 0,006 0, , e) u f) r6 v s wi t60 e) 0, f) 0, , , a) a 9 b) r' 0, , c) u b9 s v8 0, , C? t w' 6 a) b)8 = = 6 c) d) = = 9 = 6 = = i8 a) b) c) a d) x 8 b6 y e) 7 f) 0,0 = 0, 8 =9 0, = 0, e) u f) r7 v7 s'7 7 a) b) 96 c) d) a) = 6 b) = c) 6 =6 d) = =8 = = 6 = 8 a) () = () = () = (). () = 9 () = (). (). () = 7 () = (). (). (). () = 8 () = (). (). (). (). () = b) Bei geraden Exponenten ist der Wert der Potenz positiv, bei ungeraden Exponenten negativ. 9 a) 6 b) 6 c) d) e) 0, , 0,008 a) x b) r s y9 e) w f) c6 g) a8 z6 d b6 i) t k) x u y7 6 a) 8 b) a 8 0 b' c' 0' d 9 eo c) p7 d) v 7 q u h) x y'8 c) p d) x 77 ~8 y60 u6 s v t8 WI

3 )tenzen mit ganzzahigen Exponenten Seite 7 b b b b a) ==I b b b b!!!_=b'' =bo b' x x X X x x x x x x x x X b) 7 x ~=x =x' x' 6 a) X= 6 x= e) X= x= 0, Potenzen der Form an b) x= 8 x= c) x = X= 0 d) x= x= 0 c) Y y y y y y y y y y y y y 8 6 L= y = y6 y ) a X y ) e X a a) 6 8 b) a 7 b f) b) z z d) 6 z z z z z z z z _::._=z'6 =xs z6 c) 8 T g) 0 0 c) 9 d) 0 h) T d) 6 ZuSeite8 a) Die Kantenänge des ersten Würfes beträgt cm, denn = 8. Die Kantenänge des zweiten Würfes beträgt cm, den = 7. b) Die Kantenänge eines Würfes mit dem Voumen cm ( 000 dm ; m ; 6 cm ) beträgt cm (0 dm ; m ; cm). 0; ; 0, ; 0,; 0,; 0 ; 7 ; 6 ; 8 ; 9 0 ; ; ; ; 7 ; x ( x ) ; V = ; z; a) 6 b) c) e) d) 0 f) g) h) 0, i) 0, k) _!_ ).!. m) n) o) p) 0 r) 0, q) 0, s) 0, e) ü 6 f) g) 9 h) a) 7 b) 6,00 c),79,600,99 7,00,667 6 a) x ( x) b) a (fa) c) z e) ab f) 8xy d) xy ( xyi ) a) a) b) c).!.!. 6 6 d) 9 6 b) ZuSeite9 a) Wenn das Gesetz für das Potenzieren von Potenzen auch für rationae Exponenten geten so, muss wegen der Eindeutigkeit geten: =,,/ und =Vs b)../6 =6;.J9 = 7; vs= ; V = ; V6 = ; V8I. = a) Va b) v; c) Vx ep.f; d) Vm f) Fz g) efy h) efb i) efi k) if;;f; ) v;;

4 ~. " a) d b) b e) a 6 f) z i) m k) (ab) a) b) e) f) i) 0, k) 0, n) 0, o) a) 7,876 b), e),87 f),6 i),07 a), b) 6,0 e) 0,9 f),6 i), k),7 c) s g) y" ~!) (xy) c) g)!) 0, c) 6,7 g) 0,89 c),7 g),00!),79 ~ d) x ~ h) bp d) 8 h) m)0, d),8 h),0 d),99 h) 6, m)0, a) X b) z e) s f) w 6 a) b) e) 6 f) 7 a),66 b),8 e) 0,0 f) 06, 8 a) ""8, b) "",6 e) 8' "",8 f) = i) "", k) "", Vermischte Übungen c) a d) y g) xn h) Yn c) g) 6 d) 8 c) 7,60 d),6 c) 9 "", d), "", g) 8 = h), =, 6!) 6 =96 m )tenzen der Form an Seite0 Man zeregt den Exponenten in ein Produkt aus Stanunbruch und ganzer Zah, benutzt das Gesetz zum Potenzieren von Potenzen und wendet die Definition a;, =Va an. a) VzZ =(Vz) e) VxJ =(Vx) i) ~(xy)' =(FYY a) a e) a 6 i) x b) if7 =(;JY) f) # =(.Jz) k) vcaw =(!!iab)" b) x f) z' k) (ab) c) if. =(Vs) g) ~ =(VYt ) o.jcxy)' =(VxYY c) c g) y8!) (xy) d) w =(Va)' h) efb' = (efb) d) x ' h) b ZuSeite a) 8 0 ;, 0 7 ;, 0 8 c) 0, 0 ;, 0 ;, 0 8 a) b) e) f) 60 a) 0,00 b) 0,0009 e) 0,6 f) 0,08 j) 0,009 k) 0,00067 a) m b) 7 0IO m e), 0 7 m f), 0 9 m a) 6, 0 7 ;, b), ;, ; 8, d),. 0 ;,98. 0 c) c) 0, g) 0, !) 0,009 c) m g),6 0 m d) b), ;,9. 0 d) 0,0 h) 0, m)0,66 d) 0 m h),9 0 m und 7, 0 m 6 a) Das Sonnensystem bewegt sich mit einer Geschwindigkeit von km/h. b) Es egt eine Strecke von ( ; 6,979 08;,007 00; 6,979 0 ) km zurück. a) Vx JY Vz b) i.w w Vc c) W w ifi d)./ vz v;;;;.c;; vp 7

5 ~ " u Seite a) ~"' 0 0, 0, 0, 0,0 0 b) f(x) = x 0, ' Potenzfunktionen mit geraden Exponenten a) Nach (; ) Stunden sind 00 (600; 0 00) Bakterien vorhanden. b) Nach vier Stunden sind es über eine Miion Bakterien. a) Eine Bakterie egt eine Strecke von 8 µm (,0 mm;,096 cm) zurück. b) Sie benötigt 7 8,7 s =98,7 h (07,86 s = 9,7690 h) Nach ( 8; ; ) Jahren beträgt der Hozbestand rund 8 ( ; 8 ; 9) Raummeter. Nach Monaten sind es voraussichtich Kaninchen. Das Guthaben nach 6 ( 0; ) Jahren beträgt 0 8,08 EUR (,76 EUR; 8,6 EUR). a) Die Zeitung wäre nach zehn Fatungen 6 cm dick. b) Die Zeitung müsste theoretisch fünfzehnma gefatet werden. Potenzfunktionen Zu Seite a) Jeder Seitenänge x wird genau ein Fächeninhat y zugeordnet. Die Zuordnung ist eindeutig, aso eine Funktion. b) y =x a) f: y = x oder f(x) = x b) f() = ; f(,) =,7; f(,) =,6; f() = ; f(7,) =,87 a) :SeiDiatte 0 0, 0, 0, 0, 0,0 b) f(x) = x 0, ± 0, 0, 0, 0 00 ZuSeite a) b) c) Beide Graphen sind achsensymmetrisch zur yachse. d) Die Graphen von fund g faen bis zum Ursprung und steigen dann wieder an. Die Steigung wird immer größer, dementsprechend wird vom Ursprung aus nach inks gesehen das Gefäe immer größer. e) (0 0), ( ), ( ) f) Der Wertebereich besteht aus der Menge der positiven reeen Zahen einschießich 0. a) Das Steigungsverhaten beider Graphen ist geich, bis auf einen keinen Bereich um 0 herum ist das Gefäe und die Steigung von g stärker as von f. b) Beide Graphen würden durch die Punkte (00), ( ) und ( ) veraufen. Der Graph von h veriefe zwischen den Graphen von f und g, k ist zwischen und keiner as g, sonst größer. a) P, Q(0, 0,008) und R iegen auf dem Graphen von f. b) P, Q und R(,,906) iegen auf dem Graphen von f. Potenzfunktionen mit ungeraden Exponenten ZuSeite6 a) b) c) (0 0) ; ( ) ; ( ) d) Der Graph von g veräuft durch den. und. Quadranten, er steigt immer. Der Wertebereich ist die Menge der reeen Zahen. e) Die Funktionswerte haben den geichen Betrag, aber entgegengesetztes Vorzeichen. g() = 8; g() = 8; g(,) =,7; g(,) =,7; g(0,) = 0,; g(0,) = 0, f) Der Graph von g ist punktsymmetrisch zum Ursprung. a) Die Steigung beider Graphen ist immer größer geich Nu. Außer einer keinen Umgebung um den Ursprung steigt der Graph von g stärker as der Graph von f. b) Die Graphen nähern sich im. Quadranten für xwerte zwischen0, und 0 der x Achse stark an, schneiden diese dann im Ursprung, beiben zwischen 0 und 0, noch dicht an der xachse und steigen dann stark an. 8 9

6 T c) Der Graph von h veriefe ähnich, er würde sich für xwerte zwischen 0, und 0, noch stärker der xachse nähern und außerhab dieses Bereiches noch stärker steigen as die Graphen von f und g. d) Die Punkte (0 0), ( ) und ( ) iegen auf aen drei Graphen. a) P und R iegen auf dem Graphen von f. b) Q, Rund S(, 7,97) iegen auf dem Graphen von f. a) P(6 6), Q( 6), P'(66), Q'( 6) b) P( ), Q( ), P'( ), Q'( ) c) P(0, I 0,06), Q(0,0,), P'(0,0,06), Q'(0, 0,) d) P(0,0,00008), Q(0, 0,000000), P'(0, I 0,00008), Q'(O, I 0,000000) Potenzfunktionen mit geraden negativen Exponenten Zu Seite 7 a) 0, 0, 0, 0, ~x) 0, 6 6 0, b) Die Division durch 0 ist nicht zuässig. c) Der Graph ist achsensymmetrisch zur yachse. d) Der Wertebereich von f ist die Menge der positiven reeen Zahen. e) Für immer größere und immer keinere Werte von x nähert sich der Graph von f immer mehr der xachse. f) Nähern sich die xwerte 0, werden die zugehörigen ywerte immer größer. y,7,, 0,7 0, 0,06 0,066 0,97 0,096,60 6 0, 0,7,,,7 6,60 0,096 0,97 0,066 0,06 Potenzfunktionen mit ungeraden negativen Exponenten ZuSeite8 a) Eii+ir" 0,7 0, 0, 0, 0, 0,, b) 0, 0, 0,7, 0, 0, 0,,7,, 0,7 0, 0, 0,87 0,96 0,,70 8 0, 0,7,,,7 8,70 0, 0,96 0,87 0, c) Die Graphen veraufen durch die Punkte P( ) und Q( ). d) Die Funktionswerte haben jeweis den geichen Betrag, aber das entgegengesetzte Vorzeichen: f() = 0,; f() = 0,; f() = 0,; f{) = 0,; g() = 0,; g() = 0,; g(0,) = 8; g(0,) = 8. e) Die Graphen von fund g sind punktsymmetrisch zum Ursprung. f) Wenn x immer größere (keinere) Werte annimmt, nähern sich die Graphen immer mehr der xachse. g) Nähern sich die xwerte 0, werden die zugehörigen ywerte für positive xwerte beiebig groß, für negative xwerte beiebig kein. h) Die Division durch Nu ist nicht zuässig. i) Der Wertebereich von f und g ist die Menge der reeen Zahen ohne 0. a) P und Q iegen auf dem Graphen von f. b) P iegt auf dem Graphen von f. c) P iegt auf dem Graphen von f. d) Q iegt auf dem Graphen von f. a) Für negative xwerte steigen beide Graphen, für positive xwerte faen sie. Der Graph von g steigt innerhab eines Bereiches um den Ursprung für negative xwerte stärker as der Graph von fund fät für positive xwerte stärker, außerhab dieses Intervas ist es umgekehrt. b) Der Graph von h veriefe ähnich wie die Graphen von f und g. Innerhab eines Bereiches um den Ursprung würde er für negative xwerte stärker as der Graph von g steigen und für positive xwerte stärker faen. c) Ae Graphen haben die Punkte P( ) und Q( ) gemeinsam: f() = g(} = h(} = ; f() = g() = h() =. a) P( I 0,); Q(IO 0,); P'( 0,); Q'(0 0,) b) P( I 0,); Q(0 0,00); P'(0,); Q'(O I 0,00) c) P(0,); Q( ); P'(0,); Q'( ) d) P(0,); Q(0, J ); P'(0, J ); Q'(0, J ) Arbeiten mit dem Computer Potenzfunktionen ZuSeite9 a). und. Quadrant b). und. Quadrant c). und. Quadrant d). und. Quadrant Ist der Exponent gerade, veräuft der Graph durch den. und. Quadranten. Ist der Exponent ungerade, veräuft der Graph durch den. und. Quadranten. 0

Arbeitsblatt Mathematik

Arbeitsblatt Mathematik Teste dich! - (/6) Schreibe mithilfe von Potenzen. a) ( 5) ( 5) ( 5) ( 5) b) a a a a a a b b b c) r r r r 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Berechne ohne Taschenrechner. a) 9 0 5 b)

Mehr

( ) 3. Lösungsblatt. Potenzrechnung und Potenzfunktionen. Teste dich! - Potenzrechnung und Potenzfunktionen (1/6)

( ) 3. Lösungsblatt. Potenzrechnung und Potenzfunktionen. Teste dich! - Potenzrechnung und Potenzfunktionen (1/6) Teste dich! - (/6) Schreibe mithilfe von Potenzen. a) ( 5) ( 5) ( 5) ( 5) ( 5) = 5 b) a a a a a a b b b a 6 b c) r r r r r ( ) 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Berechne ohne Taschenrechner.

Mehr

Abiturprüfung Mathematik 006 Baden-Württemberg (ohne CAS) Haupttermin Pfichttei - Aufgaben Aufgabe : ( VP) Biden Sie die Abeitung der Funktion f mit f(x) = sin(4x ). 8 Aufgabe : ( VP) Geben Sie eine Stammfunktion

Mehr

Definition des Begriffs Funktion

Definition des Begriffs Funktion Definition des Begriffs Funktion In der Mathematik ist eine Funktion (lateinisch functio) oder Abbildung eine Beziehung (Relation) zwischen zwei Mengen, die jedem Element der Definitionsmenge (Funktionsargument,

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr

+ 2. Bruchgleichungen

+ 2. Bruchgleichungen Bruchgleichungen Gleichungen mit einer Lösungsvariablen im Nenner eines Bruchs heißen Bruchgleichungen. Definitionsmenge: Nenner 0 Lösungsweg: 1. Multiplikation mit dem Hauptnenner 2. Äquivalenzumformungen

Mehr

1 Q12: Lösungen bsv 2.2

1 Q12: Lösungen bsv 2.2 Q: Lösungen bsv... 3. 4. Graphisches Bestimmen einer Integralfunktion a) Nullstellen (laut Graph): x = 0; x = VZT x < 0 x = 0 0 < x < x > f(x) - 0 + 0 - G Io TIP HOP b) Aus der Abbildung ergibt sich: VZT

Mehr

Merksatz Begriff der Funktion

Merksatz Begriff der Funktion Der Begriff Funktion Um uns klar zu machen, was eine Funktion (lateinisch functio) ist, betrachten wir uns die Gegenüberstellung nachfolgender Situationen. Die Temperatur eines Gewässers wird in verschiedenen

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

WWG Grundwissen Mathematik 10. Klasse

WWG Grundwissen Mathematik 10. Klasse WWG Grundwissen Mathematik 10. Klasse I. Kreiszahl 1. Kreis: Fläche des Kreissektors: = Länge des Kreisbogens: = Im Einheitskreis gilt: = 2 = 2. Kugel: Oberflächeninhalt: = 4 Volumen: = II. Geometrische

Mehr

M_G7 EF Pvn Klausurvorbereitung: Lösungen 13. Oktober Klausurvorbereitung. Lösungen

M_G7 EF Pvn Klausurvorbereitung: Lösungen 13. Oktober Klausurvorbereitung. Lösungen Klausurvorbereitung Lösungen I. Funktionen Funktionen und ihre Eigenschaften S. 14 Aufg. 2 f(-2)=0,5 f(0,1)=-10 f(78)= 1 78 g(-2)=-7 g(0,1)=-2,8 g(78)=153 h(-2)=57 h(0,1)=23,82 h(78)=11257 D f = R/{0}

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Ganzrationale Funktionen Eine Metallwerkstatt möchte aus 60 cm langen und 40 cm breiten Metallblechen kleine Schachteln herstellen (siehe Skizze). Die Schachteln sollen möglichst groß sein. Stellen Sie

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius r gilt für einen Kreissektor mit Mittelpunktswinkel α: Länge des Kreisbogens Fläche des Kreissektors b = α α 2rπ A = 360 360 πr2 Das Bogenmaß

Mehr

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen

Mehr

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm

Mehr

F u n k t i o n e n Potenzfunktionen

F u n k t i o n e n Potenzfunktionen F u n k t i o n e n Potenzfunktionen Die Kathedrale von Brasilia steht in der brasilianischen Hauptstadt Brasilia wurde von Oscar Niemeyer (*907 in Rio de Janeiro). Die Kathedrale von Brasilia besteht

Mehr

Grundwissen Mathematik JS 11

Grundwissen Mathematik JS 11 GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-naturw u neusprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 957 PEGNITZ FERNRUF 94/48 FAX 94/564 Grundwissen Mathematik JS Was versteht man allgemein unter einer

Mehr

Mathematik Klasse 9b, AB 03 Lineare Funktionen 02 - Lösung

Mathematik Klasse 9b, AB 03 Lineare Funktionen 02 - Lösung Allgemeiner Hinweis: An einigen Stellen fehlen aus Platzgründen bei Gleichungsumformungen die Anzeige der Äquivalenzumformungen, wenn sie eindeutig sind. Also 2 x=10 x=5 statt 2x=10 :2 x=5. In der Arbeit

Mehr

Trigonometrie aus geometrischer und funktionaler Sicht

Trigonometrie aus geometrischer und funktionaler Sicht Trigonometrie aus geometrischer und funktionaler Sicht Der Kosinussatz und der Sinussatz: Wenn in einem Dreieck nur zwei Seiten und der eingeschlossene Winkel gegeben sind, oder nur die drei Seiten bekannt

Mehr

A4 Potenzen und Potenzfunktionen

A4 Potenzen und Potenzfunktionen A4 Potenzen und Potenzfunktionen A4 Potenzen und Potenzfunktionen Potenzen mit natürlichen Exponenten Für Potenzen mit natürlichen Exponenten gilt folgende Def.: Die Potenz a n mit a R, n N\ 1, ist durch

Mehr

Aufgabe zum Thema: Gebrochen - rationale Funktionen

Aufgabe zum Thema: Gebrochen - rationale Funktionen Aufgabe zum Thema: Gebrochen - rationale Funktionen Eine gebrochen-rationale Funktion Z (x) hat als Zähler- N (x) funktion Z (x) eine lineare Funktion und als Nennerfunktion N (x) eine ganz-rationale Funktion

Mehr

Ich kenne die Begriffe Zuordnung und Funktion. Ich kann an Beispielen erklären, ob und warum eine Zuordnung eine Funktion ist oder nicht.

Ich kenne die Begriffe Zuordnung und Funktion. Ich kann an Beispielen erklären, ob und warum eine Zuordnung eine Funktion ist oder nicht. Mathematik 8a Vorbereitung zu Arbeit Nr. 4 - Lineare Funktionen am..07 Checkliste Was ich alles können soll Ich kenne die Begriffe Zuordnung und Funktion. Ich kann an Beispielen erklären, ob und warum

Mehr

C Mathematische Grundlagen

C Mathematische Grundlagen C Mathematische Grundagen C.1 Summen Mit dem Summenzeichen werden Rechenanweisungen zum Addieren kompakt geschrieben. Sie assen sich oft mit Hife der Summenregen vereinfachen. C.1 Gibt es insgesamt n Werte

Mehr

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker REELLE FUNKTIONEN 1 Was muss aufgeführt werden, wenn man eine reelle Funktion angibt? a) Ihre Funktionsvorschrift und ihren Wertebereich. Ihre Funktionsvorschrift und ihren Definitionsbereich. c) Den Wertebereich

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus Gymnasium Neutraubling Grundwissen Mathematik 10. Jahrgangsstufe Wissen und Können Aufgaben, Beispiele und Erläuterungen 1. Bedingte Wahrscheinlichkeit Bezeichnungen: P(A): Wahrscheinlichkeit des Ereignisses

Mehr

Beschränktheit, Monotonie & Symmetrie

Beschränktheit, Monotonie & Symmetrie Beschränktheit, Monotonie & Symmetrie ein Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch November 2015 Inhaltsverzeichnis

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

2 Von der Relation zur Funktion

2 Von der Relation zur Funktion 2 Von der Relation zur Funktion 2.1 Relationen Gegeben seien zwei Zahlenmengen P = 1, 2, 3, 4 und Q = 5, 6, 7. Setzt man alle Elemente der Menge P in Beziehung zu allen Elementen der Menge Q, nennt man

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

1. Teil Repetitionen zum Thema (bisherige) Funktionen

1. Teil Repetitionen zum Thema (bisherige) Funktionen Analysis-Aufgaben: Rationale Funktionen 2 1. Teil Repetitionen zum Thema (bisherige) Funktionen 1. Die folgenden Funktionen sind gegeben: f(x) = x 3 x 2, g(x) = x 4 + 4 (a) Bestimme die folgenden Funktionswerte/-

Mehr

Berechnung von Wurzeln

Berechnung von Wurzeln Sieginde Fürst Berechnung von Wurzen Rekursive Fogen Zinseszinsforme; Heronverfahren Inhate Berechnung eines mit Zinsesezins verzinsten Kapitas auf zwei Arten Heronforme Einschranken von Wurzen Ziee Erernen

Mehr

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen. MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren

Mehr

Dieses Kapitel vermittelt:

Dieses Kapitel vermittelt: 2 Funktionen Lernziele Dieses Kapitel vermittelt: wie die Abhängigkeit quantitativer Größen mit Funktionen beschrieben wird die erforderlichen Grundkenntnisse elementarer Funktionen grundlegende Eigenschaften

Mehr

B] 5 4 = 625 E] 10 5 H] Schreiben Sie die folgenden Zahlen in Zehnerpotenzschreibweise:

B] 5 4 = 625 E] 10 5 H] Schreiben Sie die folgenden Zahlen in Zehnerpotenzschreibweise: Mathematik 3 Potenzen Vorkurs Höhere Fachschulen für Gesundheitsberufe Aufgabe 75 Schreiben Sie die folgenden Zahlen aus: A],6 0 5 B] 5 4 C] 3,782 0 4 = 0,000 06 D] 0 2 = 0,0 G] 5,0 0 9 = 0,000 000 005

Mehr

Exponentialfunktionen - Eigenschaften und Graphen

Exponentialfunktionen - Eigenschaften und Graphen Exponentialfunktionen - Eigenschaften und Graphen 1 Taschengeld Peter startet in wenigen Tagen zu einer zweiwöchigen Klassenfahrt Seine Eltern möchten ihm nach folgendem Plan Taschengeld mitgeben: Für

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 -

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 - 10.1 Grundwissen Mathematik Geometrie Klasse 10 Die Kugel Beispiele Kugeloberfläche: O Kugel = 4 r² π r Kugelvolumen: V Kugel = 4 3 r³ π - 1 - 10. Grundwissen Mathematik Geometrie Klasse 10 Kreissektor

Mehr

Lineare Funktion Aufgaben und Lösungen

Lineare Funktion Aufgaben und Lösungen Lineare Funktion Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. November 0 Inhaltsverzeichnis Ursprungsgerade. y = m x...................................................... Aufgaben.................................................

Mehr

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms.

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. Polynome Ein Term der Form a x + a x + a x + a x +... + a x + a x + a n n 1 n 2 n 3 2 1 2 3 4 n 2 n 1 n mit n und a 0 heißt Polynom. 1 Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. 1 2 3 Als

Mehr

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung Lineare Funktionen Eine kurze Wiederholung Mathematik Einführungsphase Eine lineare Funktion ist zunächst einmal eine Funktion, d.h. eine eindeutige Zuordnung, bei der jedem x-wert aus einem Definitionsbereich

Mehr

1 Funktionen. 1.1 Definitionen und Bezeichnungen

1 Funktionen. 1.1 Definitionen und Bezeichnungen 1 1 Funktionen 1.1 Definitionen und Bezeichnungen Eine Funktion f ist eine eindeutige Abbildung einer Menge X in eine andere Y. Ist x X, dann ist f(x) y Y das Bild des Elementes x. x heißt das Urbild des

Mehr

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion. Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Aufgaben aus den Bereichen Mathematik und Geometrie für zukünftige Lernende im Elektrobereich

Aufgaben aus den Bereichen Mathematik und Geometrie für zukünftige Lernende im Elektrobereich Aufgaben aus den Bereichen Mathematik und Geometrie für zukünftige Lernende im Elektrobereich Version 18. Januar 2017 Erwartung zum Niveau: Hilfsmittel: Lösungsweg: Anforderung: Schwierigkeitsgrad: Inhaltsverzeichnis:

Mehr

Aufgabe Was wissen Sie über die Symmetrie ganzrationaler Funktionen?

Aufgabe Was wissen Sie über die Symmetrie ganzrationaler Funktionen? R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Lösungen VBKA Ganzrationale Funktionen I Zur Vorbereitung einer Klassenarbeit en: A A A A A A A4 A4 n n Was bedeutet: f(x) = a x + a x +... + a x + a x +

Mehr

Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8)

Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8) Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni 0 Übergang Klasse 0/E (G9) und Klasse 9/E (G8) Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik. Lineare

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Kapitel 4. Abbildungen = Funktionen. Oft hängt eine Größe von einer anderen ab. Beispiele: a) Höhe eines bestimmten Baumes von der Zeit

Kapitel 4. Abbildungen = Funktionen. Oft hängt eine Größe von einer anderen ab. Beispiele: a) Höhe eines bestimmten Baumes von der Zeit Kapitel 4 Abbildungen = Funktionen 4.1 Abbildungen Oft hängt eine Größe von einer anderen ab. Beispiele: a) Höhe eines bestimmten Baumes von der Zeit b) Volumen eines Würfels von der Kantenlänge c) Alkoholgehalt

Mehr

sfg Direkte Proportionalität Zwei einander zugeordnete Größen x und y sind (direkt) proportional, wenn

sfg Direkte Proportionalität Zwei einander zugeordnete Größen x und y sind (direkt) proportional, wenn M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen x und y sind (direkt) proportional, wenn zum n-fachen Wert von x der n-fache Wert von y gehört. y der Quotient = q für alle Wertepaare gleich

Mehr

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik Gerade, ungerade oder weder noch? Algebraische und graphische Beweise 4-E1 Symmetrie einer Funktion: Aufgabe 3 Bestimmen Sie algebraisch und graphisch, ob die Funktionen gerade oder ungerade sind, oder

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10 Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-0 Aufgaben Richtig Themengebiet : Terme /. Vereinfache: (9x ) + 3x xy + x ( 3xy) (x + 3) (x ) + (x + 3)² abc 5x 0 3yx x +. Kürze: a) b) c) d) 5a² b 5

Mehr

(Quelle Abitur BW 2004) Gegeben sind die Schaubilder der Funktion mit, ihrer Ableitungsfunktion, einer Stammfunktion von und der Funktion mit.

(Quelle Abitur BW 2004) Gegeben sind die Schaubilder der Funktion mit, ihrer Ableitungsfunktion, einer Stammfunktion von und der Funktion mit. Aufgabe A5/04 Die Abbildung zeigt das Schaubild der Ableitungsfunktion einer Funktion. Welche der folgenden Aussagen über die Funktion sind wahr, falsch oder unentscheidbar? (1) ist streng monoton wachsend

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

Betragsfunktion 6-E1. Vorkurs, Mathematik

Betragsfunktion 6-E1. Vorkurs, Mathematik Betragsfunktion 6-E1 Betragsfunktionen: Aufgabe 6 a) Zeichnen Sie folgende Betragsfunktionen f (x) = x 2, g (x) = x + 1 Bestimmen Sie den Definitionsbereich und den Wertebereich dieser Funktionen. b) Wie

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

Einiges zu den Potenzfunktionen. Exponentialfunktionen

Einiges zu den Potenzfunktionen. Exponentialfunktionen Einiges zu den Potenzfunktionen Es sind zunächst zwei Arten der Potenzfunktionen zu unterscheiden. Erstens die eigentlichen Potenzfunktionen, bei denen die Variable x als Basis von Potenzen vorkommt. Diese

Mehr

Abschlussprüfung Fachoberschule 2016 Mathematik

Abschlussprüfung Fachoberschule 2016 Mathematik Abschlussprüfung Fachoberschule 06 Aufgabenvorschlag A Funktionsuntersuchung /6 Gegeben ist die Funktion f mit der Funktionsgleichung f ( x) = x + x; x IR. Berechnen Sie die Funktionswerte f( x ) für folgende

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit

Mehr

I. Verfahren mit gebrochen rationalen Funktionen:

I. Verfahren mit gebrochen rationalen Funktionen: I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt

Mehr

Ableitung und Steigung. lim h

Ableitung und Steigung. lim h Ableitung und Steigung Aufgabe 1 Bestimme die Ableitung der Funktion f(x) = x über den Differentialquotienten. f (x f '(x ) lim h h) f (x h ) (x lim h h) h x x lim h hx h h x h(x lim h h h) lim x h h x

Mehr

E > 0. V eff (r) r. V eff,min < E < 0. r min. V (r)

E > 0. V eff (r) r. V eff,min < E < 0. r min. V (r) II.2 Zwei-Körper-Systeme 43 2 2µr 2 r min E > 0 r V eff (r) r max r min V eff,min < E < 0 V (r) E < V eff,min Abbidung II.4 Effektives Potentia V eff (r) für das Keper-Probem. Mit dem newtonschen Gravitationspotentia

Mehr

Vollständige Kurvendiskussion mit Erläuterungen

Vollständige Kurvendiskussion mit Erläuterungen Vollständige Kurvendiskussion mit Erläuterungen Aufgabe: Gegeben ist die Funktion =³ 3 +. Führen Sie eine vollständige Kurvendiskussion durch. 1.) Ableitungen: =3 6+1 =6 6 =6 (relevant für die Steigung

Mehr

Funktionen ) W(t) = 105 l 15 l. 3) 7 Minuten; Werte von 0 bis 7 Minuten; Definitionsmenge 4) Werte von 0 bis 105 l 6) Der Graph ist eine Gerade.

Funktionen ) W(t) = 105 l 15 l. 3) 7 Minuten; Werte von 0 bis 7 Minuten; Definitionsmenge 4) Werte von 0 bis 105 l 6) Der Graph ist eine Gerade. Funktionen. ) W(t) = l l min t ) W l ) t min W(t) l 9 ) Minuten; Werte von bis Minuten; Definitionsmenge ) Werte von bis l ) Der Graph ist eine Gerade. t min. a) ) ) ) - - - - - - - - - Funktion. Die Funktions-

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Funktionen in der Mathematik

Funktionen in der Mathematik R. Brinkmann http://brinkmann-du.de Seite 05.0.008 Funktionen in der Mathematik Bei der mathematischen Betrachtung natürlicher, technischer oder auch alltäglicher Vorgänge hängt der Wert einer Größe oft

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade

Mehr

Abbildung 1: Die Einheitszelle ist rot markiert - sie enthält zwei Atome. Die hcp (hexagonal closly packed) hat eine zweiatomige Basis.

Abbildung 1: Die Einheitszelle ist rot markiert - sie enthält zwei Atome. Die hcp (hexagonal closly packed) hat eine zweiatomige Basis. Prof. Dr. Sehuber-Unke Biokompatibe Nanomateriaien Lösungen zu Batt Aufgabe 7: Hexagonaes Gitter Abbidung : Die Einheitszee ist rot markiert - sie enthät zwei Atome a) Bestimmung der Koordinaten der Basisatome

Mehr

Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind

Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind 1 Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind 1. Zeichne die Graphen zu den folgenden Funktionen in ein Koordinatensystem, indem Du zuerst

Mehr

Übungen mit dem Applet Grundfunktionen und ihre Ableitungen

Übungen mit dem Applet Grundfunktionen und ihre Ableitungen Grundfunktionen und ihre Ableitungen 1 Übungen mit dem Applet Grundfunktionen und ihre Ableitungen 1 Ziele des Applets... Überblick über die Funktionen....1 Sinusfunktion y = f(x) = a sin(bx + c).... Cosinusfunktion

Mehr

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Funktionenlehre Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngmnasiums Bad Neustadt und des Kurt-Huber-Gmnasiums Gräfelfing J O H A N N

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Relationen und Funktionen 2 INHALTSVERZEICHNIS 1. RELATIONEN... 3 2. FUNKTIONEN... 4 2.1. LINEARE FUNKTION... 6 Relationen und Funktionen 3 1. RELATIONEN Def.: Eine Relation zwischen

Mehr

16.1 Wichtiges über mathematische Funktionen

16.1 Wichtiges über mathematische Funktionen 16 16.1 Wichtiges über mathematische Funktionen Definition Funktion Wird durch die Gleichung y = f(x) jedem x des Definitionsbereiches genau ein y des Wertebereiches zugeordnet, nennen wir dies eine Funktion

Mehr

Einführung in die linearen Funktionen. Autor: Benedikt Menne

Einführung in die linearen Funktionen. Autor: Benedikt Menne Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung

Mehr

Auswirkungen von Summanden und Faktoren auf den Verlauf einer Funktion

Auswirkungen von Summanden und Faktoren auf den Verlauf einer Funktion Auswirkungen von Summanden und Faktoren auf den Verlauf einer Funktion Alexander Kirst 9. Februar Inhaltsverzeichnis Untersuchung der Funktion f(x) = c x n Untersuchung der Funktion f(x) = x n + d 3 Untersuchung

Mehr

Prüfungsteil B, Aufgabengruppe 2, Analysis. Bayern Aufgabe 1. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014

Prüfungsteil B, Aufgabengruppe 2, Analysis. Bayern Aufgabe 1. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014 Bundesabitur Mathematik: Prüfungsteil B, Aufgabengruppe, Bayern 014 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSBEREICH BESTIMMEN Bei einem Bruch darf der Nenner nicht null werden, d.h. es muss gelten: x 5 0 x

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

4 Potenzen Wachstumsprozesse Exponentialfunktionen

4 Potenzen Wachstumsprozesse Exponentialfunktionen 4 Potenzen Wachstumsprozesse Exponentialfunktionen 4.1 Potenzieren Radizieren 4.1.1 Potenzen mit natürlichen Exponenten Exponentielle Wachstumsvorgänge 4.1.1.1 Wiederholung zum Potenzieren ist eine Potenz

Mehr

3. Eigenschaften von Funktionen

3. Eigenschaften von Funktionen 3. Eigenschaften von Funktionen Literatur: [SH, Kapitel 5] 3.1. Verschiebung von Graphen 3.2. Symmetrie 3.3. Neue Funktionen aus alten 3.4. Inverse Funktionen 3.5. Abschnittsweise definierte Funktionen

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 10. Jahrgangsstufe Mathematik 1 Kreis und Kugel 1.1 Kreissektor und Bogenmaß Kreis Umfang U = π r=π d Flächeninhalt A=π r Kreissektor mit Mittelpunktswinkel α Bogenlänge b= α π r 360 Flächeninhalt

Mehr

Repetitionsaufgaben: Einführung des Begriffes Funktion

Repetitionsaufgaben: Einführung des Begriffes Funktion Kantonale Fachschaft Mathematik Repetitionsaufgaben: Einführung des Begriffes Funktion Zusammengestellt von Jörg Donth, KSR Lernziele: - Sie kennen die Begriffe Funktion, Funktionswert, Argument der Funktion,

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Lösungen Kapitel A: Wahrscheinlichkeiten

Lösungen Kapitel A: Wahrscheinlichkeiten Lösungen Kapitel A: Wahrscheinlichkeiten Arbeitsblatt 01: Kombinatorische Zählverfahren (1) Junge, Junge, Mädchen, Mädchen (2) Junge, Mädchen, Junge, Mädchen (3) Junge, Mädchen, Mädchen, Junge (4) Mädchen,

Mehr

SYMMETRIE FRANZ LEMMERMEYER

SYMMETRIE FRANZ LEMMERMEYER SYMMETRIE FRANZ LEMMERMEYER Symmetrie ist ein außerordentlich wichtiges Konzept in der Mathematik und der Physik. Ist beispielsweise (x, y) eine Lösung des Gleichungssystems x + y = 5, xy = 1, so muss

Mehr

F u n k t i o n e n Zusammenfassung

F u n k t i o n e n Zusammenfassung F u n k t i o n e n Zusammenfassung Johann Carl Friedrich Gauss (*1777 in Braunschweig, 1855 in Göttingen) war ein deutscher Mathematiker, Astronom und Physiker mit einem breit gefächerten Feld an Interessen.

Mehr

Potenzen Potenzfunktionen und ihre Eigenschaften Abbilden von Funktionsgraphen

Potenzen Potenzfunktionen und ihre Eigenschaften Abbilden von Funktionsgraphen Wie können Gleichungen der Form x n = a; a 0 n N gelöst werden? Wir benötigen die n-te Wurzel: n x = a Was ist, wenn n Q statt n N? (Q: rationale Zahlen; alle Brüche, auch negative N: natürliche Zahlen;

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

l := 2 l 1 + 2l mm mm l = mm l = m = mm m = 0.5 m t = min 0.5 m min

l := 2 l 1 + 2l mm mm l = mm l = m = mm m = 0.5 m t = min 0.5 m min R. Brinkmann http://brinkmann-du.de Seite 1 29.0.2008 Lösungen Kassenarbeit Mathematik (Vergeichsarbeit) 23.06.200 TG13-23-33-3G Gruppe A NAME: 1.) Aus einer Sperrhozpatte wird für eine Bühnendekoration

Mehr