Bayes sches Lernen: Übersicht

Größe: px
Ab Seite anzeigen:

Download "Bayes sches Lernen: Übersicht"

Transkript

1 Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V. 1.0) 1 c G. Grieser

2 2 Zielrichtungen der Bayes schen Methoden Bereitstellen von praktischen Lernalgorithmen: Naive Bayes Bayes sche Netze Kombiniere Wissen (a priori-wahrscheinlichkeiten) und beobachtete Daten Erfordert a priori-wahrscheinlichkeiten Bereitstellen eines konzeptuellen Modells Standard zum Vergleich mit anderen Lernalgorithmen Zusätzliche Einsichten in Occam s Razor Teil 5: Naive Bayes + IBL (V. 1.0) 2 c G. Grieser

3 Bayes sches Theorem P (h D) = P (D h)p (h) P (D) P (h) = a priori Wahrscheinlichkeit der Hypothese h P (D) = a priori Wahrscheinlichkeit der Trainingsdaten D P (h D) = Wahrscheinlichkeit von h gegeben D P (D h) = Wahrscheinlichkeit von D gegeben h Teil 5: Naive Bayes + IBL (V. 1.0) 3 c G. Grieser

4 Auswahl von Hypothesen P (h D) = P (D h)p (h) P (D) Suchen wahrscheinlichste Hypothese gegeben die Traingsdaten Maximum a posteriori Hypothese h MAP : h MAP = arg max P (h D) = arg max = arg max P (D h)p (h) P (D) P (D h)p (h) Unter der Annahme P (h i ) = P (h j ) kann man weiter vereinfachen und wählt die Maximum likelihood (ML)-Hypothese: h ML = arg max h i H P (D h i) Teil 5: Naive Bayes + IBL (V. 1.0) 4 c G. Grieser

5 Grundlegende Formeln für Wahrscheinlichkeiten Produktregel: Wahrscheinlichkeit P (A B) der Konjunktion zweier Ereignisse A und B: P (A B) = P (A B)P (B) = P (B A)P (A) Summenregel: Wahrscheinlichkeit P (A B) der Disjunktion zweier Ereignisse A und B: P (A B) = P (A) + P (B) P (A B) Theorem der totalen Wahrscheinlichkeiten: Wenn die Ereignisse A 1,..., A n n sich gegenseitig ausschließen und i=1 P (A i) = 1, dann n P (B) = P (B A i )P (A i ) i=1 Teil 5: Naive Bayes + IBL (V. 1.0) 5 c G. Grieser

6 Brute Force MAP-Hypothesen-Lerner 1. Für jede Hypothese h in H, berechne a posteriori Wahrscheinlichkeit P (h D) = P (D h)p (h) P (D) 2. Gib Hypothese h MAP mit höchster a posteriori Wahrscheinlichkeit aus h MAP = argmax P (h D) Teil 5: Naive Bayes + IBL (V. 1.0) 6 c G. Grieser

7 Beispielanwendung: Lernen einer reelwertigen Funktion Betrachte reelwertige Zielfunktion f Trainingsbeispiele sind x i, d i, wobei die d i verrauscht sind y f d i = f(x i ) + e i e i ist Zufallsvariable (Noise) die unabhängig voneinander für jedes x i bezüglich einer Normalverteilung mit Mittelwert=0 gezogen werden Die Maximum-Likelihood-Hypothese h ML ist nun genau diejenige, die die Summe der Quadrate der Fehler minimiert: h ML = arg min n (d i h(x i )) 2 i=1 e h ML x Teil 5: Naive Bayes + IBL (V. 1.0) 7 c G. Grieser

8 Warum? h ML = argmax = argmax = argmax = argmax = argmax = argmax = argmin p(d h) n p(d i h) i=1 n i=1 n ln i=1 i=1 1 2πσ 2 e 1 2 ( d i h(x i ) σ ) 2 1 2πσ n 1 ( di h(x i ) 2 σ n (d i h(x i )) 2 i=1 n (d i h(x i )) 2 i=1 ( di h(x i ) ) 2 σ ) 2 Teil 5: Naive Bayes + IBL (V. 1.0) 8 c G. Grieser

9 Minimum Description Length Principle Occam s Razor: wähle kleinste Hypothese MDL: bevorzuge Hypothese h, die folgendes minimiert: h MDL = argmin L C1 (h) + L C2 (D h) wobei L C (x) die Beschreibungslänge von x unter Kodierung C ist Beispiel: H = Entscheidungsbäume, D = Labels der Traingsdaten L C1 (h) ist # Bits zum Beschreiben des Baums h L C2 (D h) ist # Bits zum Beschreiben von D gegeben h Anmerkung: L C2 (D h) = 0 falls alle Beispiele korrekt von h klassifiziert werden. Es müssen nur die Ausnahmen kodiert werden. h MDL wägt Baumgröße gegen Traingsfehler ab Teil 5: Naive Bayes + IBL (V. 1.0) 9 c G. Grieser

10 Minimum Description Length Principle h MAP = arg max P (D h)p (h) = arg max 2 P (D h) + log 2 P (h) = arg min 2 P (D h) log 2 P (h) (1) Interessanter Fakt aus der Kodierungstheorie: Die optimale (kürzeste) Kodierung für ein Ereignis mit Wahrscheinlichkeit p benötigt log 2 p Bits. Interpretiere (1): log 2 P (h): Größe von h bei optimaler Kodierung log 2 P (D h): Größe von D gegeben h bei optimaler Kodierung wähle Hypothese die folgendes minimiert: length(h) + length(misclassifications) Teil 5: Naive Bayes + IBL (V. 1.0) 10 c G. Grieser

11 Klassifikation neuer Instanzen Bis jetzt haben wir die wahrscheinlichste Hypothese für gegebene Daten D gesucht (d.h., h MAP ) Gegeben neue Instanz x, was ist die wahrscheinlichste Klassifikation? h MAP (x) ist es nicht unbedingt!!! Beispiel: Betrachte 3 Hypothesen und gegebene Daten D: P (h 1 D) = 0, 4; P (h 2 D) = 0, 3; P (h 3 D) = 0, 3 Gegeben sei neue Instanz x, h 1 (x) = +, h 2 (x) =, h 3 (x) = Was ist h MAP (x), was ist wahrscheinlichste Klassifikation von x? Teil 5: Naive Bayes + IBL (V. 1.0) 11 c G. Grieser

12 Bayes sche optimale Klassifikation Bayes sche optimale Klassifikation: arg max v j V h i H P (v j h i )P (h i D) Für unser Beispiel: P (h 1 D) = 0, 4; P ( h 1 ) = 0; P (+ h 1 ) = 1 P (h 2 D) = 0, 3; P ( h 2 ) = 1; P (+ h 2 ) = 0 P (h 3 D) = 0, 3; P ( h 3 ) = 1; P (+ h 3 ) = 0 Deshalb: h i H P (+ h i)p (h i D) = 0, 4 h i H P ( h i)p (h i D) = 0, 6 Teil 5: Naive Bayes + IBL (V. 1.0) 12 c G. Grieser

13 Gibbs Klassifikation Bayes sche Klassifikation optimal, aber teuer bei vielen Hypothesen Gibbs Algorithmus: 1. Wähle zufällig eine Hypothese h bezüglich P (h D) 2. Benutze h zur Klassifikation Überraschung: Sei ein Zielkonzept zufällig bezüglich D aus H gewählt. Dann: E[error Gibbs ] 2 E[error BayesOptimal ] Teil 5: Naive Bayes + IBL (V. 1.0) 13 c G. Grieser

14 Naive Bayes Klassifikation Neben Entscheidungsbäumen, Neuronalen Netzen, Nearest Neighbour eine der am meisten eingesetzten Lernmethoden. Wann anwendbar: Mittlere oder große Traingsmengen Attribute sind bedingt unabhängig gegeben die Klassifikation Erfolgreiche Anwendungsgebiete: Diagnose Klassifikation von Textdokumenten Teil 5: Naive Bayes + IBL (V. 1.0) 14 c G. Grieser

15 Naive Bayes Klassifikation Ziel f : X V, jede Instanz durch Attribute a 1, a 2... a n beschrieben Wahrscheinlichster Wert von f(x): v MAP = argmax P (v j a 1, a 2... a n ) v j V = argmax v j V = argmax v j V P (a 1, a 2... a n v j )P (v j ) P (a 1, a 2... a n ) P (a 1, a 2... a n v j )P (v j ) Annahme von Naive Bayes: P (a 1, a 2... a n v j ) = i P (a i v j ) Naive Bayes Klassifikation: v NB = argmax v j V P (v j ) i P (a i v j ) Teil 5: Naive Bayes + IBL (V. 1.0) 15 c G. Grieser

16 Naive Bayes Algorithmus Naive Bayes Learn(examples): Für jeden Klassifikationswert v j ˆP (v j ) schätze P (v j ) Für jeden Attributwert a i jedes Attributs a ˆP (a i v j ) schätze P (a i v j ) Ergebnis: Tabelle mit geschätzten WKen Classify New Instance(x): v NB = argmax v j V ˆP (v j ) ai x ˆP (a i v j ) Teil 5: Naive Bayes + IBL (V. 1.0) 16 c G. Grieser

17 Naive Bayes: Beispiel Betrachte PlayTennis mit neuer Instanz Outlk = sun, T emp = cool, Humid = high, W ind = strong Wollen berechnen: v NB = argmax v j V P (v j ) i P (a i v j ) P (yes) P (sun yes) P (cool yes) P (high yes) P (strong yes) =.005 P (no) P (sun no) P (cool no) P (high no) P (strong no) =.021 v NB = no Teil 5: Naive Bayes + IBL (V. 1.0) 17 c G. Grieser

18 Naive Bayes: Diskussion (1) Annahme der bedingten Unabhängigkeit ist oft nicht erfüllt P (a 1, a 2... a n v j ) = i P (a i v j )...aber es funktioniert trotzdem erstaunlich gut. Warum? Abschätzungen für ˆP (v j x) müssen nicht notwendig korrekt sein, sondern nur argmax v j V ˆP (v j ) i ˆP (a i v j ) = argmax v j V P (v j )P (a 1..., a n v j ) Teil 5: Naive Bayes + IBL (V. 1.0) 18 c G. Grieser

19 Naive Bayes: Diskussion (2) Was, wenn aufgrund kleiner Trainingsmengen keines der Trainingsbeispiele mit Klassifikation v j den Attributwert a i hat? Dann ˆP (a i v j ) = 0, und... ˆP (v j ) i ˆP (a i v j ) = 0 Typische Lösung: m-abschätzung: ˆP (a i v j ) n c+mp n+m wobei n... Anzahl der Trainingsbeispiele mit v = v j, n c... Anzahl der Beispiele mit v = v j und a = a i p... a priori Schätzung für ˆP (a i v j ) (z.b. durch Annahme uniformer Verteilung der Attributwerte p = 1 values(a i ) ) m... Gewicht für a priori-abschätzung p (Anzahl virtueller Beispiele) Teil 5: Naive Bayes + IBL (V. 1.0) 19 c G. Grieser

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 10: Naive Bayes (V. 1.0)

Mehr

Hypothesenbewertungen: Übersicht

Hypothesenbewertungen: Übersicht Hypothesenbewertungen: Übersicht Wie kann man Fehler einer Hypothese abschätzen? Wie kann man einschätzen, ob ein Algorithmus besser ist als ein anderer? Trainingsfehler, wirklicher Fehler Kreuzvalidierung

Mehr

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Computational Linguistics Universität des Saarlandes Sommersemester 2011 28.04.2011 Entscheidungsbäume Repräsentation von Regeln als Entscheidungsbaum (1) Wann spielt Max Tennis?

Mehr

Kapitel VI. Wahrscheinlichkeitsbegriff. Wahrscheinlichkeitsbegriff. LF: VI Bayesian Learning c STEIN

Kapitel VI. Wahrscheinlichkeitsbegriff. Wahrscheinlichkeitsbegriff. LF: VI Bayesian Learning c STEIN Kapitel VI VI. Bayes sches Lernen Maximum-a-Posteriori-Hypothesen 1 Definition 18 (Zufallsexperiment, Zufallsbeobachtung) Ein Zufallsexperiment ist ein im Prinzip beliebig oft wiederholbarer Vorgang mit

Mehr

Einführung: Bayessches Lernen. Dipl.-Inform. Martin Lösch. martin.loesch@kit.edu (0721) 608 45944. Dipl.-Inform. Martin Lösch

Einführung: Bayessches Lernen. Dipl.-Inform. Martin Lösch. martin.loesch@kit.edu (0721) 608 45944. Dipl.-Inform. Martin Lösch Einführung: martin.loesch@kit.edu (0721) 608 45944 Übersicht Motivation & Hintergrund Naiver Bayes-Klassifikator Bayessche Netze EM-Algorithmus 2 Was ist eigentlich? MOTIVATION & HINTERGRUND 3 Warum Lernen

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Klassifikation und Regression: nächste Nachbarn Katharina Morik, Uwe Ligges 14.05.2013 1 von 24 Gliederung Funktionsapproximation 1 Funktionsapproximation Likelihood 2 Kreuzvalidierung

Mehr

Pairwise Naive Bayes Classifier

Pairwise Naive Bayes Classifier Pairwise Naive Bayes Classifier Jan-Nikolas Sulzmann 1 1 nik.sulzmann@gmx.de Fachbereich Knowledge Engineering Technische Universität Darmstadt Gliederung 1 Ziel dieser Arbeit 2 Naive Bayes Klassifizierer

Mehr

Kapitel ML:IV (Fortsetzung)

Kapitel ML:IV (Fortsetzung) Kapitel ML:IV (Fortsetzung) IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-18 Statistical Learning c STEIN 2005-2011 Satz 3 (Bayes)

Mehr

Maschinelles Lernen und Data Mining

Maschinelles Lernen und Data Mining Semestralklausur zur Vorlesung Maschinelles Lernen und Data Mining Prof. J. Fürnkranz / Dr. G. Grieser Technische Universität Darmstadt Wintersemester 2004/05 Termin: 14. 2. 2005 Name: Vorname: Matrikelnummer:

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Sprachtechnologie Tobias Scheffer Thomas Vanck Statistik & Maschinelles Lernen Statistik: Deskriptive Statistik: Beschreibung (Tabellen,

Mehr

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Inhalt Grundlagen aus der Wahrscheinlichkeitsrechnung Hypothesenwahl Optimale Bayes Klassifikator Naiver Bayes Klassifikator

Mehr

10.5 Maximum-Likelihood Klassifikation (I)

10.5 Maximum-Likelihood Klassifikation (I) Klassifikation (I) Idee Für die Klassifikation sind wir interessiert an den bedingten Wahrscheinlichkeiten p(c i (x,y) D(x,y)). y Wenn man diese bedingten Wahrscheinlichkeiten kennt, dann ordnet man einem

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

Text-Mining: Klassifikation I - Naive Bayes vs. Rocchio

Text-Mining: Klassifikation I - Naive Bayes vs. Rocchio Text-Mining: Klassifikation I - Naive Bayes vs. Rocchio Claes Neuefeind Fabian Steeg 17. Juni 2010 Klassifikation im Text-Mining Klassifikation Textkategorisierung Naive Bayes Beispielrechnung Rocchio

Mehr

Entscheidungsbaum-Lernen: Übersicht

Entscheidungsbaum-Lernen: Übersicht Entscheidungsbaum-Lernen: Übersicht Entscheidungsbäume als Repräsentationsformalismus Semantik: Klassifikation Lernen von Entscheidungsbäumen vollst. Suche vs. TDIDT Tests, Ausdrucksfähigkeit Maße: Information

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayes sches Lernen Niels Landwehr Überblick Grundkonzepte des Bayes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münzwürfe

Mehr

Instanzenbasiertes Lernen: Übersicht

Instanzenbasiertes Lernen: Übersicht Instanzenbasiertes Lernen: Übersicht k-nearest Neighbor Lokal gewichtete Regression Fallbasiertes Schließen Lernen: Lazy oder Eager Teil 11: IBL (V. 1.0) 1 c G. Grieser Instanzenbasiertes Lernen Idee:

Mehr

Frequentisten und Bayesianer. Volker Tresp

Frequentisten und Bayesianer. Volker Tresp Frequentisten und Bayesianer Volker Tresp 1 Frequentisten 2 Die W-Verteilung eines Datenmusters Nehmen wir an, dass die wahre Abhängigkeit linear ist, wir jedoch nur verrauschte Daten zur Verfügung haben

Mehr

Überblick. Grundkonzepte des Bayes schen Lernens. Wahrscheinlichstes Modell gegeben Daten Münzwürfe Lineare Regression Logistische Regression

Überblick. Grundkonzepte des Bayes schen Lernens. Wahrscheinlichstes Modell gegeben Daten Münzwürfe Lineare Regression Logistische Regression Überblick Grundkonzepte des Baes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münzwürfe Lineare Regression Logistische Regression Baes sche Vorhersage Münzwürfe Lineare Regression 57 Erinnerung:

Mehr

Entscheidungsbäume aus großen Datenbanken: SLIQ

Entscheidungsbäume aus großen Datenbanken: SLIQ Entscheidungsbäume aus großen Datenbanken: SLIQ C4.5 iteriert häufig über die Trainingsmenge Wie häufig? Wenn die Trainingsmenge nicht in den Hauptspeicher passt, wird das Swapping unpraktikabel! SLIQ:

Mehr

Folien zu Data Mining von I. H. Witten und E. Frank. übersetzt von N. Fuhr

Folien zu Data Mining von I. H. Witten und E. Frank. übersetzt von N. Fuhr Folien zu Data Mining von I. H. Witten und E. Frank übersetzt von N. Fuhr Von Naivem Bayes zu Bayes'schen Netzwerken Naiver Bayes Annahme: Attribute bedingt unabhängig bei gegebener Klasse Stimmt in der

Mehr

Grundprinzipien des Bayes schen Lernens und Der naive Bayes-Klassifikator im Vergleich zum Maximum-Likelihood-Klassifikator von Andreas Schätzle

Grundprinzipien des Bayes schen Lernens und Der naive Bayes-Klassifikator im Vergleich zum Maximum-Likelihood-Klassifikator von Andreas Schätzle Grundprinzipien des Bayes schen Lernens und Der naive Bayes-Klassifikator im Vergleich zum Maximum-Likelihood-Klassifikator von Andreas Schätzle Inhalt Bayes'sches Lernen Eigenschaften von Bayes'schen

Mehr

Wahrscheinlichkeitsrechnung und Statistik. 8. Vorlesung

Wahrscheinlichkeitsrechnung und Statistik. 8. Vorlesung Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung - 208 ) Monte Carlo Methode für numerische Integration Sei g : [0, ] R stetige Funktion; man möchte numerisch approximieren mit Hilfe von Zufallszahlen:

Mehr

Computergestützte Datenanalyse in der Kern- und Teilchenphysik

Computergestützte Datenanalyse in der Kern- und Teilchenphysik Computergestützte Datenanalysein der Kern- und Teilchenphysik p. 1/?? Computergestützte Datenanalyse in der Kern- und Teilchenphysik Vorlesung 4 Jan Friedrich Computergestützte Datenanalysein der Kern-

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2008/2009 Musterlösung für das 7. Übungsblatt Aufgabe 1: Evaluierung und Kosten Gegeben sei ein Datensatz mit 300 Beispielen, davon 2 /3 positiv

Mehr

Elementare Begriffe der Wahrscheinlichkeitstheorie für die Sprachverarbeitung

Elementare Begriffe der Wahrscheinlichkeitstheorie für die Sprachverarbeitung Elementare Begriffe der Wahrscheinlichkeitstheorie für die Sprachverarbeitung Kursfolien Karin Haenelt 1 Übersicht Wahrscheinlichkeitsfunktion P Wahrscheinlichkeit und bedingte Wahrscheinlichkeit Bayes-Formeln

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl KI) Bayes-Netze (1) 1 / 22 Gliederung 1 Unsicheres Wissen 2 Schließen

Mehr

Maschinelles Lernen: Symbolische Ansätze. Wintersemester 2013/2014 Musterlösung für das 7. Übungsblatt

Maschinelles Lernen: Symbolische Ansätze. Wintersemester 2013/2014 Musterlösung für das 7. Übungsblatt Maschinelles Lernen: Symbolische Ansätze Wintersemester 2013/2014 Musterlösung für das 7. Übungsblatt 1 Aufgabe 1 Nearest Neighbour Gegeben sei folgende Beispielmenge: Day Outlook Temperature Humidity

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr Universität Potsdam Institut für Informatik ehrstuhl Maschinelles ernen Modellevaluierung Niels andwehr ernen und Vorhersage Klassifikation, Regression: ernproblem Eingabe: Trainingsdaten Ausgabe: Modell

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik, 13.10.2017 Wir gehen stets von einem Wahrscheinlichkeitsraum Ω,A,P aus. Aufgabe 1 15 Punkte Seien a,b > 0 und x,y fest. Gegeben sei das Maß µ : B 1 [0,, µa := a1 A x+b1 A

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 11. Vorlesung Jochen Köhler 10.05.011 1 Inhalt der heutigen Vorlesung Zusammenfassung Parameterschätzung Übersicht über Schätzung und Modellbildung Modellevaluation

Mehr

Kapitel 4: Data Mining DATABASE SYSTEMS GROUP. Überblick. 4.1 Einleitung. 4.2 Clustering. 4.3 Klassifikation

Kapitel 4: Data Mining DATABASE SYSTEMS GROUP. Überblick. 4.1 Einleitung. 4.2 Clustering. 4.3 Klassifikation Überblick 4.1 Einleitung 4.2 Clustering 4.3 Klassifikation 1 Klassifikationsproblem Gegeben: eine Menge O D von Objekten o = (o 1,..., o d ) O mit Attributen A i, 1 i d eine Menge von Klassen C = {c 1,...,c

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 29, 2017 Dr. Michael O. Distler

Mehr

Varianzkomponentenschätzung

Varianzkomponentenschätzung Qualitas AG Varianzkomponentenschätzung Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 October 29, 2015 2 / 23 Multiple Lineare Regression Annahmen Modell y = Xb + e Varianz der Fehler

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Niels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer Ansatz:

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

Grundlagen zu neuronalen Netzen. Kristina Tesch

Grundlagen zu neuronalen Netzen. Kristina Tesch Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Dominik Lahmann Tobias Scheffer Überblick Hypothesenbewertung, Risikoschätzung

Mehr

Splitting. Impurity. c 1. c 2. c 3. c 4

Splitting. Impurity. c 1. c 2. c 3. c 4 Splitting Impurity Sei D(t) eine Menge von Lernbeispielen, in der X(t) auf die Klassen C = {c 1, c 2, c 3, c 4 } verteilt ist. Illustration von zwei möglichen Splits: c 1 c 2 c 3 c 4 ML: III-29 Decision

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2009/2010 Musterlösung für das 1. Übungsblatt Aufgabe 1: Anwendungsszenario Überlegen Sie sich ein neues Szenario des klassifizierenden Lernens (kein

Mehr

Clustering. Herbert Stoyan Stefan Mandl. 18. Dezember 2003

Clustering. Herbert Stoyan Stefan Mandl. 18. Dezember 2003 Clustering Herbert Stoyan Stefan Mandl 18. Dezember 2003 Einleitung Clustering ist eine wichtige nicht-überwachte Lernmethode Andwenungen Marketing: Finde Gruppen von Kunden mit gleichem Kaufverhalten,

Mehr

Lineare Klassifikatoren

Lineare Klassifikatoren Universität Potsdam Institut für Informatik Lehrstuhl Lineare Klassifikatoren Christoph Sawade, Blaine Nelson, Tobias Scheffer Inhalt Klassifikationsproblem Bayes sche Klassenentscheidung Lineare Klassifikator,

Mehr

Vortragsthema. Thema: Klassifikation. Klassifikation. OS Data Mining SS10 Madeleine Weiand 1

Vortragsthema. Thema: Klassifikation. Klassifikation. OS Data Mining SS10 Madeleine Weiand 1 Vortragsthema Klassifikation OS Data Mining SS0 Madeleine Weiand Agenda Agenda I III Begriff Klassifikation Abgrenzung Anforderungen Anwendungsgebiete Dimensionsreduktion Umsetzung in Software Vergleich

Mehr

Überblick. Grundkonzepte des Bayes schen Lernens. Wahrscheinlichstes Modell gegeben Daten Münzwürfe Lineare Regression Logistische Regression

Überblick. Grundkonzepte des Bayes schen Lernens. Wahrscheinlichstes Modell gegeben Daten Münzwürfe Lineare Regression Logistische Regression Überblic Grundonepte des Bayes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münwürfe Lineare Regression Logistische Regression Bayes sche Vorhersage Münwürfe Lineare Regression 14 Modell für Münwürfe

Mehr

Clusteranalyse: Gauß sche Mischmodelle

Clusteranalyse: Gauß sche Mischmodelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse: Gauß sche Mischmodelle iels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Semester-Fahrplan 1 / 17

Semester-Fahrplan 1 / 17 Semester-Fahrplan 1 / 17 Hydroinformatik I Einführung in die Hydrologische Modellierung Bayes sches Netz Olaf Kolditz *Helmholtz Centre for Environmental Research UFZ 1 Technische Universität Dresden TUDD

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Generative Modelle. Generative Modelle 1 / 49

Generative Modelle. Generative Modelle 1 / 49 Generative Modelle Generative Modelle 1 / 49 Die Zielstellung Bisher: Lerne eine unbekannte Zielfunktion approximativ nach Beobachtung zufällig erzeugter Beispiele Jetzt: Finde möglichst viel über die

Mehr

Das Bayes'sche Prinzip

Das Bayes'sche Prinzip Das Bayes'sche Prinzip Olivia Gradenwitz Patrik Kneubühler Seminar über Bayes Statistik FS8 26. Februar 28 1 Bayes'sches statistisches Modell 1.1 Statistische Probleme und statistische Modelle In diesem

Mehr

Mustererkennung. Bayes-Klassifikator. R. Neubecker, WS 2016 / Bayes-Klassifikator

Mustererkennung. Bayes-Klassifikator. R. Neubecker, WS 2016 / Bayes-Klassifikator Mustererkennung Bayes-Klassifikator R. Neubecker, WS 2016 / 2017 Bayes-Klassifikator 2 Kontext Ziel: Optimaler Klassifikator ( = minimaler Klassifikationsfehler), basierend auf Wahrscheinlichkeitsverteilungen

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Semestralklausur zur Vorlesung Maschinelles Lernen: Symbolische Ansätze Prof. J. Fürnkranz / Dr. G. Grieser Technische Universität Darmstadt Wintersemester 2005/06 Termin: 23. 2. 2006 Name: Vorname: Matrikelnummer:

Mehr

Inhalt. 6.1 Motivation. 6.2 Klassifikation. 6.3 Clusteranalyse. 6.4 Asszoziationsanalyse. Datenbanken & Informationssysteme / Kapitel 6: Data Mining

Inhalt. 6.1 Motivation. 6.2 Klassifikation. 6.3 Clusteranalyse. 6.4 Asszoziationsanalyse. Datenbanken & Informationssysteme / Kapitel 6: Data Mining 6. Data Mining Inhalt 6.1 Motivation 6.2 Klassifikation 6.3 Clusteranalyse 6.4 Asszoziationsanalyse 2 6.1 Motivation Data Mining and Knowledge Discovery zielt darauf ab, verwertbare Erkenntnisse (actionable

Mehr

Klassische Klassifikationsalgorithmen

Klassische Klassifikationsalgorithmen Klassische Klassifikationsalgorithmen Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2013 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at

Mehr

Statistik: Klassisch oder Bayes

Statistik: Klassisch oder Bayes Wolfgang Tschirk Statistik: Klassisch oder Bayes Zwei Wege im Vergleich 4Q Springer Spektrum Inhaltsverzeichnis 1 Einleitung 1 1.1 Beschreibende und schließende Statistik 1 1.2 Schließende Statistik: Klassik

Mehr

Naive Bayes. Naive Bayes

Naive Bayes. Naive Bayes Naive Bayes Ein einfacher Klassifikator Wolfgang Konen Fachhochschule Köln November 007 W. Konen DMC WS007 Seite - 1 informatikö Inhalt Naive Bayes Der Ansatz Beispiel Wetterdaten Bayes sche Regel Das

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Statistische Sprachmodelle

Statistische Sprachmodelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Statistische Sprachmodelle Tobias Scheffer Thomas Vanck Statistische Sprachmodelle Welche Sätze sind Elemente einer Sprache (durch

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

4. Lernen von Entscheidungsbäumen

4. Lernen von Entscheidungsbäumen 4. Lernen von Entscheidungsbäumen Entscheidungsbäume 4. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Wahrscheinlichkeitstheorie und Naive Bayes

Wahrscheinlichkeitstheorie und Naive Bayes Wahrscheinlichkeitstheorie und Naive Bayes Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 12.05.2011 Caroline Sporleder Naive Bayes (1) Elementare Wahrscheinlichkeitstheorie

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 7. Übungsblatt

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 7. Übungsblatt Data Mining und Maschinelles Lernen Lösungsvorschlag für das 7. Übungsblatt Knowledge Engineering Group Data Mining und Maschinelles Lernen Lösungsvorschlag 7. Übungsblatt 1 Aufgabe 1a) Auffüllen von Attributen

Mehr

Mathematische Grundlagen (Bayes sches Lernen)

Mathematische Grundlagen (Bayes sches Lernen) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Mathematische Grundlagen (Bayes sches Lernen) Tobias Scheffer Michael Großhans Paul Prasse Uwe Dick Anwendungsbeispiel 1: Diagnostik

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

Lösung Übungsblatt 5

Lösung Übungsblatt 5 Lösung Übungsblatt 5 5. Januar 05 Aufgabe. Die sogenannte Halb-Normalverteilung spielt eine wichtige Rolle bei der statistischen Analyse von Ineffizienzen von Produktionseinheiten. In Abhängigkeit von

Mehr

Textmining Klassifikation von Texten Teil 1: Naive Bayes

Textmining Klassifikation von Texten Teil 1: Naive Bayes Textmining Klassifikation von Texten Teil 1: Naive Bayes Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten 1: Naive

Mehr

Definition Information I(p)

Definition Information I(p) Definition Information I(p) Definition I(p) Die Information I(p) eines Symbols mit Quellws p > 0 ist definiert als I(p) = log 1 p. Die Einheit der Information bezeichnet man als Bit. DiMa II - Vorlesung

Mehr

Klassifikation von Daten Einleitung

Klassifikation von Daten Einleitung Klassifikation von Daten Einleitung Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation von Daten Einleitung

Mehr

Generative Modelle. Generative Modelle 1 / 49

Generative Modelle. Generative Modelle 1 / 49 Generative Modelle Generative Modelle 1 / 49 Die Zielstellung Bisher: Lerne eine unbekannte Zielfunktion approximativ nach Beobachtung zufällig erzeugter Beispiele Jetzt: Finde möglichst viel über die

Mehr

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9.

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9. 7. Übung: Aufgabe 1 b), c), e) Aufgabe a), c), e) Aufgabe 3 c), e) Aufgabe 4 b) Aufgabe 5 a) Aufgabe 6 b) Aufgabe 7 e) Aufgabe 8 c) Aufgabe 9 a), c), e) Aufgabe 10 b), d) Aufgabe 11 a) Aufgabe 1 b) Aufgabe

Mehr

Bayessche Lineare Regression

Bayessche Lineare Regression Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Baessche Lineare Regression Niels Landwehr Überblick Baessche Lernproblemstellung. Einführendes Beispiel: Münzwurfexperimente.

Mehr

Stochastik für Ingenieure

Stochastik für Ingenieure Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Institut für Mathematische Stochastik Stochastik für Ingenieure (Vorlesungsmanuskript) von apl.prof. Dr. Waltraud Kahle Empfehlenswerte Bücher:

Mehr

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2018

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2018 Prof. Dr. Christoph Karg 9.7.2018 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2018 Unterschrift: Klausurergebnis Aufgabe 1 (15 Punkte) Aufgabe 3 (10 Punkte)

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 29. Oktober 2007 1. Statistik 1.1 Wahrscheinlichkeit Pragmatisch: p(e) = n(e) N für N sehr groß Kombination von Wahrscheinlichkeiten p(a oder B) =

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt

Mehr

Hidden-Markov-Modelle

Hidden-Markov-Modelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hidden-Markov-Modelle Tobias Scheffer Thomas Vanck Hidden-Markov-Modelle: Wozu? Spracherkennung: Akustisches Modell. Geschriebene

Mehr

Diskrete Strukturen I

Diskrete Strukturen I Universität Kassel Fachbereich 10/1 PD Dr. Sebastian Petersen 14.09.2017 Klausur zur Vorlesung Diskrete Strukturen I Es können maximal 40 Punkte erreicht werden. Version mit Lösungsskizze Zur Notation:

Mehr

Klassische Klassifikationsalgorithmen

Klassische Klassifikationsalgorithmen Klassische Klassifikationsalgorithmen Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at

Mehr

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 1. Übungsblatt

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 1. Übungsblatt Data Mining und Maschinelles Lernen Lösungsvorschlag für das 1. Übungsblatt Knowledge Engineering Group Data Mining und Maschinelles Lernen Lösungsvorschlag 1. Übungsblatt 1 1. Anwendungsszenario Überlegen

Mehr

Vorlesung 12a. Schätzen von Parametern. Teil 2

Vorlesung 12a. Schätzen von Parametern. Teil 2 Vorlesung 12a Schätzen von Parametern Teil 2 1 Unser Logo der ersten Stunde: X P ϑ (X da) = ρ ϑ (da), ϑ Θ S 2 Ein Logo der Statistik: Θ ˆϑ t X S P ϑ (X da) = ρ ϑ (da), ϑ Θ Θ... Parameterraum S... Beobachtungsraum

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Gliederung Vorlesung Wissensentdeckung Additive Modelle Katharina Morik, Weihs 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung.6.015 1 von 33 von 33 Ausgangspunkt: Funktionsapproximation Aufteilen der

Mehr

Klausur zur Mathematik für Biologen

Klausur zur Mathematik für Biologen Mathematisches Institut der Heinrich-Heine-Universität DÜSSELDORF WS 2002/2003 12.02.2003 (1) Prof. Dr. A. Janssen / Dr. H. Weisshaupt Klausur zur Mathematik für Biologen Bitte füllen Sie das Deckblatt

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Klassifikationsverfahren haben viele Anwendungen. Binäres Klassifikationsverfahren auch zur Klassifikation in mehr als zwei Klassen verwendbar

Klassifikationsverfahren haben viele Anwendungen. Binäres Klassifikationsverfahren auch zur Klassifikation in mehr als zwei Klassen verwendbar Rückblick Klassifikationsverfahren haben viele Anwendungen Binäres Klassifikationsverfahren auch zur Klassifikation in mehr als zwei Klassen verwendbar Konfusionsmatrix stellt Vorhersagen und Daten gegenüber

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen II: Klassifikation mit Entscheidungsbäumen Vera Demberg Universität des Saarlandes 12. Juli 2012 Vera Demberg (UdS) Mathe III 12. Juli 2012 1 / 38 Einleitung

Mehr

Mathematische Grundlagen der Computerlinguistik III: Statistische Methoden Probeklausur

Mathematische Grundlagen der Computerlinguistik III: Statistische Methoden Probeklausur Mathematische Grundlagen der Computerlinguistik III: Statistische Methoden Probeklausur Crocker/Demberg/Staudte Sommersemester 2014 17.07.2014 1. Sie haben 90 Minuten Zeit zur Bearbeitung der Aufgaben.

Mehr

Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008

Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008 Bayes sche Klassifikatoren Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 16. Juli 2008 Inhalt Einleitung Grundlagen der Wahrscheinlichkeitsrechnung Noisy-Channel-Modell Bayes sche Klassifikation

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Musterlösung für das 7. Übungsblatt Aufgabe 1 Gegeben sei folgende Beispielmenge: Day Outlook Temperature Humidity Wind PlayTennis D1? Hot High Weak No D2 Sunny

Mehr