Kapitel 2: Klassifikation. Maschinelles Lernen und Neural Computation

Größe: px
Ab Seite anzeigen:

Download "Kapitel 2: Klassifikation. Maschinelles Lernen und Neural Computation"

Transkript

1 Kaptel 2: Klassfkaton Maschnelles Lernen und Neural Computaton 28

2 En enfacher Fall En Feature, Hstogramme für bede Klassen (z.b. Glukosewert, Dabetes a/nen) Kene perfekte Trennung möglch Entschedung: Schwellwert Frage: Wo setze ch hn am besten hn? nen C 1 C 2 a x 1 Maschnelles Lernen und Neural Computaton 29

3 Der allgemene Fall: Bayes sches Theorem Ann: Daten fallen n k Klassen, wähle für ene Beobachtung x de Wahrschenlchste aus Wahrschenlchket für Beobachtung, wenn n Klasse ( lkelhood, class-condtonal ) p x c Pc x px P c Wahrschenlchket, dass Beobachtung Zur Klasse gehört ( a posteror ) p k x px c Pc 1 Wahrschenlchket für Klasse vor der Beobachtung ( a pror ) Wahrschenlchket für das Auftreten der Beobachtung Nenner st Summe aller möglchen Zähler (aller Fälle) Maschnelles Lernen und Neural Computaton 30

4 Der optmale Klassfkator Klassfkaton: wähle de Klasse mt der höchsten a-posteror Wahrschenlchket Erzelt das bestmöglche Resultat Bayes sche Formel erlechtert das Problem, da Wahrschenlchketen auf der rechten Sete mest lechter zu bestmmen snd Da p(x) für alle Klassen glech st, kann es oft weggelassen werden Maschnelles Lernen und Neural Computaton 31

5 Enschub: Wahrschenlchketsdchten Für dskrete Varablen (endlche Werte): Wahrschenlchket, z.b.: P(c ) Für kontnuerlche Varablen ncht möglch: P(x )=0 Stattdessen: Wahrschenlchketsdchtefunkton p(x) p(x )... Dchte an desem Punkt (kann größer als 1 sen) p xdx 1 Wahrschenlchket, dass x n enem klenen Intervall legt x x p x x xd x Px x Dchte kann we Wahrschenlchket behandelt werden Maschnelles Lernen und Neural Computaton 32

6 Bespel: 1 Varable, 2 Klassen Vertelung der Werte für Klasse 1 ( class-condtonal ) für Klasse 2 Entschedungsgrenze Annahme: n beden Klassen snd Beobachtungen normalvertelt Entschedungsgrenze: Schnttpunkt der beden Kurven Multplkaton mt a-pror Wahrschenlchketen: Entschedungsgrenze verschebt sch Durchdvderen durch Summe ergbt Wahrschenlchket für Klasse Maschnelles Lernen und Neural Computaton 33

7 2-dm. Gaussvertelungen Bespel: 2 Varablen, 2 Klassen Lneare Entschedungsgrenze Maschnelles Lernen und Neural Computaton 34

8 Klassfkatoren Problem: Dchtevertelungen mest unbekannt Lösung: Schätzen der Vertelungen Schätzen der Entschedungsgrenze Schätzen von Dskrmnanzfunktonen: Wähle für ede Klasse Fkt. g (x) Klasse c, wenn g (x)>g (x) für alle z.b.: g x px c Pc g x log p x c log P c Kene Wahrschenlchketen mehr Maschnelles Lernen und Neural Computaton 35

9 Dskrmnanzfunktonen für Normalvertelungen Streuung n alle Rchtungen glech ( sphärsch ): x Log-Fkt. Und multplkatve Faktoren ändern nchts an Größenverhältns: 2 x μ g x logpc Quadratsche Funkton Entschedungsgrenze: g 1 (x)=g 2 (x), auch quadratsch wenn 1 = 2 : lnear g exp x μ 2 P c Maschnelles Lernen und Neural Computaton 36

10 Vsualserung: Normalvertelungen Maschnelles Lernen und Neural Computaton 37

11 Allgemener Ansatz: Dskrmnanzanalyse Lneare Dskrmnanzfunkton: entsprcht dem Perceptron mt 1 Output Unt pro Klasse Quadratsch lnear: g g x entsprcht ener Vorverarbetung der Daten, Parameter (w,v) noch mmer lnear n 1 n w x w x w x p p v x x w 0 Maschnelles Lernen und Neural Computaton 38

12 Der Schrtt zum neuronalen Netz Allgemen lnear: g p x w y x w0 1 belebge Vorverarbetungsfunktonen, lneare Verknüpfung Neuronales Netz: y y T x f w x f...sgmode x f w x f... Gauss MLP RBFN NN mplementert adaptve Vorverarbetung nchtlnear n Parametern (w) Maschnelles Lernen und Neural Computaton 39

13 Bespel: XOR (0 0) 0 (1 0) 1 (0 1) 1 (1 1) 0 Exklusves Oder 4. Muster st Summe des 2. und 3. (lneare Abhänggket) Punkte lassen sch durch kene Gerade trennen Maschnelles Lernen und Neural Computaton 40

14 Hdden Unts Zwe Perceptrons + nchtlneare Transferfunkton: Schwellwertfunkton brcht lneare Abhänggket Maschnelles Lernen und Neural Computaton 41

15 Belebge Klassfkatonen Jede Hdden Unt telt Raum n 2 Hälften Output Unts wrken we AND Sgmode: verlaufende Bereche Maschnelles Lernen und Neural Computaton 42

16 Bespel: MLP MLP mt 5 Hdden und 2 Output Unts Lneare Transferfunkton am Output Quadratscher Fehler Maschnelles Lernen und Neural Computaton 43

17 MLP zur Dskrmnanzanalyse MLP (und RBFN) st drekte Erweterung klassscher Modelle Stärke: belebge nchtlneare Dskrmnanzfunktonen Hdden Unts: Adaptve Vorverarbetung des Inputs Form der Dskrmnanzfunkton außerhalb der Entschedungsgrenze belanglos Perceptron st dentsch mt lnearer Dskrmnanzanalyse Maschnelles Lernen und Neural Computaton 44

18 Alternatver Ansatz: Schätzung der Vertelungen Bem Ansatz mttels Dskrmnanzfunktonen geht en wesentlcher Aspekt verloren: Wahrschenlchketen der Klassenzugehörgket mehr an Bayes halten, Dchtefunkton schätzen (vor allem p(x c )) Parametrsch: Form st bekannt, wenger Parameter zu schätzen Nchtparametrsch: Form st unbekannt, theoretsch belebg Maschnelles Lernen und Neural Computaton 45

19 Parametrsch: Maxmum Lkelhood (ML) Ann.: Vertelung hat ene bestmmte, analytsch beschrebbare Form (z.b. Normalvertelung) mt Parametern (z.b. Zentrum und Wete) n Lkelhood: L p θ p x θ Entsprcht der Wahrschenlchket, dass Daten beobachtet werden, wenn de Vertelung rchtg st ML: Fnde enes, das de Beobachtungen am wahrschenlchsten macht: Maxmere L() Vor: Beobachtungen (Daten) snd unabhängg vonenander 1 Menge aller Datenpunkte Maschnelles Lernen und Neural Computaton 46

20 Maschnelles Lernen und Neural Computaton 47 Bespel: endmensonale Normalvertelung Verenfachung (ähnlch we zuvor): logarthmeren, Vorzechen ändern, Konstante weglassen, mnmeren mnmere de negatve log-lkelhood n n x x p L L exp 2 1,, θ n x L log log Mnmerung: 1. Abletung auf 0 setzen n n x n x n ˆ 1 ˆ 1 ˆ Erwartetes Ergebns: Mttelwert und Varanz

21 Lkelhood-Funktonen für de Normalvertelung L() für Punkte 1, 2 und 3, =1 L() für Punkte 1, 2 und 3, =1 (weder Gauss-Fkt.) L() für enen Punkt 1, =1: ML ncht mmer snnvoll! Maschnelles Lernen und Neural Computaton 48

22 Nchtparametrsch: Parzen-Wndows Wenn Form belebg, kene Lkelhood angebbar Wähle enen klenen (Hyper-)Würfel, zähle wevel Punkte drn legen (k ) k Geschätzte Dchte: p x n V Volumen Wenn n, V 0, dann mmer genauer Entsprcht enem normalserten Hstogramm Maschnelles Lernen und Neural Computaton 49

23 Der Fluch der Dmensonaltät (Bellman 1961): be nchtparametrschen Fällen stegt de Anzahl der benötgten Bespele exponentell mt der Dmensonaltät des Input! Parzen: wenn Fenster klen, muss es noch genügend Bespele enthalten e mehr Dmensonen, desto dünner gesät möglchst wenge Inputs, vele Daten Maschnelles Lernen und Neural Computaton 50

24 Semparametrsch: Gaussan Mxtures (GMM) Nähere belebge Vertelung durch ene Mschung von Normalvertelungen an p x c l k 1 exp 2 x Gleches Prnzp we be neuronalen Netzen Maxmum Lkelhood: L n n μ,σ px π,μ, σ, c π, -logl, Gradentenverfahren 1 Maschnelles Lernen und Neural Computaton 51

25 (90 gedreht) Bespel Classcondtonals: Posteror: Entschedungsgrenze: Maschnelles Lernen und Neural Computaton 52

26 MLP zur Klassfkaton Bewes exstert: MLP nähert de a-posteror Wahrschenlchket an Aktverungsfunkton: Softmax (egene Fehlerfunkton notwendg; sehe später) y k exp 1 A-pror Wahrschenlchketen: Vertelungen m Tranngsset x exp x Maschnelles Lernen und Neural Computaton 53

27 De Softmax-Funkton Erzwngt, dass Outputs als Wahrschenlchketen nterpreterbar snd x out k 1 exp Bezug zum Bayes schen Theorem y exp out y out Spezalfall: Sgmode Funkton nur 2 Klassen, 1 Output Unt: durchdvderen n n p x c Pc x k n px c P c P c 1 0 x out 1, k 1 x out 1 Wenn Expontentalvertelung Softmax Nettonput st log. von Dchte x out 1 1 e out y Maschnelles Lernen und Neural Computaton 54

28 Warum Wahrschenlchketen? Mehr Informaton Ablehnung von unscheren Fällen: Performanz stegt, aber enge Fälle unentschedbar Enfache Berückschtgung von anderen a-pror Wahrschenlchketen Berückschtgung von Kosten für Fehler Verknüpfung mt anderen Quellen Maschnelles Lernen und Neural Computaton 55

29 NN als semparametrsche Methoden Semparametrsch: Form relatve belebg, aber dennoch durch Anzahl der Hdden Unts ( Modellkomplextät ) beschränkt Fluch der Dmenson abgeschwächt, aber mmer noch gegeben: Bedarf stegt ungefähr quadratsch NN haben gute Egenschaften, wenn Dchten unbekannt, aber mmer noch glt: wenge Inputs, vele Daten! Maschnelles Lernen und Neural Computaton 56

30 Nachtrag: k-nearest neghbor Spechere alle Tranngssätze mt zugehörger Klasse Neuer Fall: wähle de k nähesten Tranngsfälle, nmm Klasse, de am häufgsten vorkommt k=4: 3 Klasse 2 1 Klasse 1 Klasse 2 (posteror ¾) Duda & Hart 1974: Nearest Neghbor (k=1) hat maxmal den doppelten Fehler des bayesoptmalen Klassfzerers (für große Fallzahl) kann als Benchmark verwendet werden Approxmert auch de a-pror Wahrschenlchket drekt nchtparametrsch Maschnelles Lernen und Neural Computaton 57

31 Zusammenfassung NN snd semparametrsche Methoden zur Klassfkaton Lt. Bayes snd Wahrschenlchketen angebbar, brngt mehr Informaton Es exsteren glechmächtge Alternatven (z.b. GMM) Nearest Neghbor als Benchmark Maschnelles Lernen und Neural Computaton 58

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation Kaptel 8: Kernel-Methoden SS 009 Maschnelles Lernen und Neural Computaton 50 Ausgangsbass: Perceptron Learnng Rule Δw y = Kf = 0Ksonst K"target" = Kf Rosenblatt (96) Input wrd dazugezählt (abgezogen),

Mehr

Kapitel 4: Unsicherheit in der Modellierung Modellierung von Unsicherheit. Machine Learning in der Medizin 104

Kapitel 4: Unsicherheit in der Modellierung Modellierung von Unsicherheit. Machine Learning in der Medizin 104 Kaptel 4: Unscherhet n der Modellerung Modellerung von Unscherhet Machne Learnng n der Medzn 104 Regresson Modellerung des Datengenerators: Dchteschätzung der gesamten Vertelung, t pt p p Lkelhood: L n

Mehr

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation Kaptel 7: Ensemble Methoden 133 Komtees Mehrere Netze haben bessere Performanz als enzelne Enfachstes Bespel: Komtee von Netzen aus der n-fachen Kreuzvalderung (verrngert Varanz) De Computatonal Learnng

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

(2) i = 0) in Abhängigkeit des Zeitunterschieds x ZeitBus ZeitAuto für seinen Arbeitsweg.) i = 1) oder Bus ( y

(2) i = 0) in Abhängigkeit des Zeitunterschieds x ZeitBus ZeitAuto für seinen Arbeitsweg.) i = 1) oder Bus ( y 5. Probt-Modelle Ökonometre II - Peter Stalder "Bnar Choce"-Modelle - Der Probt-Ansatz Ene ncht drekt beobachtbare stochastsche Varable hängt von x ab: x u 2 u ~ N(0, ( Beobachtet wrd ene bnäre Varable

Mehr

Kurs Mikroökonometrie Rudolf Winter-Ebmer Thema 3: Binary Choice Models Probit & Logit. Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit

Kurs Mikroökonometrie Rudolf Winter-Ebmer Thema 3: Binary Choice Models Probit & Logit. Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit BINARY CHOICE MODELS 1 mt Pr( Y = 1) = P Y = 0 mt Pr( Y = 0) = 1 P Bespele: Wahlentschedung Kauf langlebger Konsumgüter Arbetslosgket Schätzung mt OLS? Y = X β + ε Probleme: Nonsense Predctons ( < 0, >

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz Prof. Dr. P. Kschka WS 2012/13 Lehrstuhl für Wrtschafts- und Sozalstatstk Klausur Statstsche Inferenz 15.02.2013 Name: Matrkelnummer: Studengang: Aufgabe 1 2 3 4 5 6 7 8 Summe Punkte 6 5 5 5 5 4 4 6 40

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Graphsche Modelle els Landwehr Überblck Graphsche Modelle: Syntax und Semantk Graphsche Modelle m Maschnellen Lernen Inferenz n Graphschen

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

Kapitel 6: Unüberwachtes Lernen. Maschinelles Lernen und Neural Computation

Kapitel 6: Unüberwachtes Lernen. Maschinelles Lernen und Neural Computation Kaptel 6: Unüberwachtes Lernen 107 Clusterng Gegeben: ene Menge von Punkten (Bespelen), ungelabelt (.e. Klasse unbekannt) Gesucht: ene Menge von Clustern (Cluster- Zentren), de de Daten möglchst gut beschreben

Mehr

Statistik Exponentialfunktion

Statistik Exponentialfunktion ! " Statstk " Eponentalfunkton # $ % & ' $ ( )&* +, - +. / $ 00, 1 +, + ) Ensemble von radoaktven Atomkernen Zerfallskonstante λ [1/s] Lebensdauer τ 1/λ [s] Anzahl der pro Zetenhet zerfallenden Kerne:

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Der Erweiterungsfaktor k

Der Erweiterungsfaktor k Der Erweterungsfaktor k Wahl des rchtgen Faktors S. Meke, PTB-Berln, 8.40 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang

Mehr

Gauss sche Fehlerrrechnung

Gauss sche Fehlerrrechnung Gauss sche Fehlerrrechnung T. Ihn 24. Oktober 206 Inhaltsverzechns Modell und Lkelhood 2 Alle Standardabwechungen σ snd bekannt, bzw. de Kovaranzmatrx der Daten st bekannt: Mnmeren der χ 2 -Funkton. 6

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

14 Schätzmethoden. Eigenschaften von Schätzungen ˆθ. Sei ˆθ n eine Schätzung eines Parameters θ, die auf n Beobachtungen beruht.

14 Schätzmethoden. Eigenschaften von Schätzungen ˆθ. Sei ˆθ n eine Schätzung eines Parameters θ, die auf n Beobachtungen beruht. 14 Schätzmethoden Egenschaften von Schätzungen ˆθ Se ˆθ n ene Schätzung enes Parameters θ, de auf n Beobachtungen beruht. ˆθn n θ Konsstenz (Mnmalforderung) Eˆθ n = θ Erwartungstreue Eˆθ n n θ Asymptotsche

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

1.1 Beispiele zur linearen Regression

1.1 Beispiele zur linearen Regression 1.1. BEISPIELE ZUR LINEAREN REGRESSION 0 REGRESSION 1: Multple neare Regresson 1 Enführung n de statstsche Regressonsrechnung 1.1 Bespele zur lnearen Regresson b Bespel Sprengungen. Erschütterung Funkton

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Graphsche Modelle els Landwehr Zusammenfassung Pfade Zusammenfassung: en Pfad --Y-Z- st B A E Blockert be Y, wenn Dvergerende Verbndung,

Mehr

Kapitel 4: Lernen als Optimierung. Maschinelles Lernen und Neural Computation

Kapitel 4: Lernen als Optimierung. Maschinelles Lernen und Neural Computation Kaptel 4: Lernen als Optmerung 71 Lernen als Funktonsoptmerung Gegeben: Fehlerfunkton (.a. neg. log Lkelhood) n z.b.: 2 E E ( ) ( ( ) W = f x ; W t ) n = 1 ( ) ( ( ) ( = + ) ( ( W t log f x t f x ) n ;

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Teil E: Qualitative abhängige Variable in Regressionsmodellen

Teil E: Qualitative abhängige Variable in Regressionsmodellen Tel E: Qualtatve abhängge Varable n Regressonsmodellen 1. Qualtatve abhängge Varable Grundlegendes Problem: In velen Fällen st de abhängge Varable nur über enen bestmmten Werteberech beobachtbar. Bsp.

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

Klassifikation mit dem Perceptron von Rosenblatt. Vom Perceptron zum Multilagen-Perceptron. Error-Backpropagation Lernregel

Klassifikation mit dem Perceptron von Rosenblatt. Vom Perceptron zum Multilagen-Perceptron. Error-Backpropagation Lernregel Neuronale Verfahren zur Funktonsaromaton Klassfkaton mt em Percetron von Rosenblatt Vom Percetron zum Multlagen-Percetron Error-Backroagaton ernregel Raale Bassfunktonen-Netze PD Dr Martn Stetter, Semens

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Bayessches Lernen Chrstoph Sawade/Nels Landwehr/Paul Prasse Domnk Lahmann Tobas Scheffer Überblck Wahrschenlchketen, Erwartungswerte,

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

Sind die nachfolgenden Aussagen richtig oder falsch? (1 Punkt pro korrekter Beantwortung)

Sind die nachfolgenden Aussagen richtig oder falsch? (1 Punkt pro korrekter Beantwortung) LÖSUNG KLAUSUR STATISTIK I Berufsbegletender Studengang Betrebswrtschaftslehre Sommersemester 016 Aufgabentel I: Theore (10 Punkte) Snd de nachfolgenden Aussagen rchtg oder falsch? (1 Punkt pro korrekter

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

5 Gemischte Verallgemeinerte Lineare Modelle

5 Gemischte Verallgemeinerte Lineare Modelle 5 Gemschte Verallgemenerte Lneare Modelle Wr betrachten zunächst enge allgemene Aussagen für Gemschte Verallgemenerte Lneare Modelle. Se y der beobachtbare Zufallsvektor und u der Vektor der ncht-beobachtbaren

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 8. Übung (08.01.2008) Agenda Agenda Verglech Rasch-Modell vs. 2-parametrsches logstsches Modell nach Brnbaum 2PL-Modelle n Mplus Verglech

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Bayessches Lernen (3)

Bayessches Lernen (3) Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Bayessches Lernen (3) Chrstoph Sawade/Nels Landwehr Jules Rasetaharson Tobas Scheffer Überblck Wahrschenlchketen, Erwartungswerte, Varanz

Mehr

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt:

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt: (Theoretsche Konfdenzntervalle für de beobachteten Werte: De Standardabwechung des Messfehlers wrd Standardmessfehler genannt: ( ε ( 1- REL( Mt Hlfe der Tschebyscheff schen Unglechung lassen sch be bekanntem

Mehr

Ökonomische und ökonometrische Evaluation. 1.3 Ökonometrische Grundkonzepte

Ökonomische und ökonometrische Evaluation. 1.3 Ökonometrische Grundkonzepte Ökonomsche und ökonometrsche Evaluaton 90 Emprsche Analyse des Arbetsangebots Zele: Bestmmung von Arbetsangebotselastztäten als Test der theoretschen Modelle Smulaton oder Evaluaton der Wrkungen von Insttutonen

Mehr

Lineare Regression Teil des Weiterbildungskurses in angewandter Statistik

Lineare Regression Teil des Weiterbildungskurses in angewandter Statistik 0 Lneare Regresson Tel des Weterbldungskurses n angewandter Statstk der ETH Zürch Folen Werner Stahel, September 2017 1.1 Bespele zur lnearen Regresson 1 1 Enführung n de statstsche Regressonsrechnung

Mehr

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π.

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π. 2.5. NORMALVERTEILUNG 27 2.5 Normalvertelung De n der Statstk am häufgsten benutzte Vertelung st de Gauss- oder Normalvertelung. Wr haben berets gesehen, dass dese Vertelung aus den Bnomal- und Posson-Vertelungen

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Bayessches Lernen Chrstoph Sawade/Nels Landwehr Jules Rasetaharson Tobas Scheffer Überblck Wahrschenlchketen, Erwartungswerte, Varanz

Mehr

Kapitel V. Parameter der Verteilungen

Kapitel V. Parameter der Verteilungen Kaptel V Parameter der Vertelungen D. 5.. (Erwartungswert) Als Erwartungswert ener Zufallsvarablen X bezechnet man: E( X ) : Dabe se vorausgesetzt: = = + p falls X dskret f d falls X stetg und = + p

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 5. Spezelle Testverfahren Zahlreche parametrsche und nchtparametrsche Testverfahren, de nach Testvertelung (Bnomal, t-test etc.), Analysezel (Anpassungs- und Unabhänggketstest) oder Konstrukton der Prüfgröße

Mehr

Zweck. Radiometrische Kalibrierung. Traditioneller Ansatz. Kalibrierung ohne Kalibrierkörper

Zweck. Radiometrische Kalibrierung. Traditioneller Ansatz. Kalibrierung ohne Kalibrierkörper Raometrsche Kalbrerung Tratoneller Ansatz Kalbrerung aus mehreren Blern Behanlung von übersteuerten Blern Zweck Das Antwortverhalten es Systems Kamera Framegrabber st ncht mmer lnear Grauwerte sn ncht

Mehr

Mehrfachregression: Einfluss mehrerer Merkmale auf ein metrisches Merkmal. Designmatrix Bestimmtheitsmaß F-Test T-Test für einzelne Regressoren

Mehrfachregression: Einfluss mehrerer Merkmale auf ein metrisches Merkmal. Designmatrix Bestimmtheitsmaß F-Test T-Test für einzelne Regressoren Mehrfachregresson: Enfluss mehrerer Merkmale auf en metrsches Merkmal Desgnmatrx Bestmmthetsmaß F-Test T-Test für enzelne Regressoren Mehrfachregresson Bvarat: x b b y + = 0 ˆ k k x b x b x b b y + + +

Mehr

Rückblick Regression II: Anpassung an Polynome

Rückblick Regression II: Anpassung an Polynome Rückblck Regresson II: Anpassung an Polynome T. Keßlng: Auswertung von Messungen und Fehlerrechnung - Fehlerrechnung und Korrelaton 0.06.08 Vorlesung 0- Temperaturmessung mt Thermospannung Wr erhalten

Mehr

Sequential minimal optimization: A fast Algorithm for Training Support Vector machines

Sequential minimal optimization: A fast Algorithm for Training Support Vector machines Sequental mnmal optmzaton: A fast Algorthm for Tranng Support Vector machnes By John C. Platt (998) Referat von Joerg Ntschke Fall der ncht-trennbaren Tranngs-Daten (/) In der Realtät kommen lnear ncht-trennbare

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Emprsche Wrtschaftsforschung Prof. Dr. Bernd Süßmuth Unverstät Lepzg Insttut für Emprsche Wrtschaftsforschung Volkswrtschaftslehre, nsbesondere Ökonometre 5. Enfaches OLS-Regressonsmodell 5.1. Herletung

Mehr

U Test (Rangsummentest) Parameterfreie Tests. U -Test. U -Test. χ ²- Unabhängigkeitstest Test auf Unabhängigkeit von zwei Zufallsgrößen

U Test (Rangsummentest) Parameterfreie Tests. U -Test. U -Test. χ ²- Unabhängigkeitstest Test auf Unabhängigkeit von zwei Zufallsgrößen Parameterfree Tests U Test (Rangsummentest) Verglech der Mttelwerte (Medane) be ncht normalvertelten Größen U - Test Mttelwertverglech von zwe ncht verbundenen Zugrößen Wlcoxon - Vorzechenrangtest Mttelwertverglech

Mehr

e dt (Gaußsches Fehlerintegral)

e dt (Gaußsches Fehlerintegral) Das Gaußsche Fehlerntegral Φ Ac 5-8 Das Gaußsche Fehlerntegral Φ st denert als das Integral über der Standard-Normalvertelung j( ) = -,5 n den Grenzen bs, also F,5 t ( ) = - e dt (Gaußsches Fehlerntegral)

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Nullstellen Suchen und Optimierung

Nullstellen Suchen und Optimierung Nullstellen Suchen und Optmerung Typsche Probleme: De optmale Bahnkurve De Mnmerung des Erwartungswertes ür den Hamltonan Wr möchten ene Funkton mnmeren oder mameren solch en Problem wrd Optmerung genannt!

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Menhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzet nach Verenbarung und nach der Vorlesung. Mathematsche und statstsche Methoden II Dr. Malte Perske perske@un-manz.de

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog 60 Kaptel 2. Lneare Optmerung 10 Innere-Punkte-Verfahren Lteratur: Geger, Kanzow, 2002, Kaptel 4.1 Innere-Punkte-Verfahren (IP-Verfahren) oder nteror pont methods bewegen sch m Gegensatz zum Smplex-Verfahren

Mehr

Das Bayessche Theorem ist ein Ergebnis aus der Wahrscheinlichkeitstheorie und liefert einen Zusammenhang zwischen bedingten Wahrscheinlichkeiten.

Das Bayessche Theorem ist ein Ergebnis aus der Wahrscheinlichkeitstheorie und liefert einen Zusammenhang zwischen bedingten Wahrscheinlichkeiten. ayessches Theorem Das ayessche Theorem st en Ergens aus der ahrschenlchetstheore und lefert enen Zusammenhang zwschen edngten ahrschenlcheten.. ayessches Theorem für Eregnsse Senen und zwe elege Eregnsse.

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF Alternatve Darstellung des -Stchprobentests für Antele DCF CF Total n= 111 11 3 Response 43 6 69 Resp. Rate 0,387 0,3 0,309 Beobachtete Response No Response Total absolut DCF 43 68 111 CF 6 86 11 69 154

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

Item-response Theorie (Probablistiche Testtheorie) Grundidee der item-response Theorie ist, dass die Antworten auf die Testitems lediglich

Item-response Theorie (Probablistiche Testtheorie) Grundidee der item-response Theorie ist, dass die Antworten auf die Testitems lediglich Item-response Theore (Probablstche Testtheore Grnddee der tem-response Theore st, dass de Antworten af de Testtems ledglch Indatoren für ene z messende latente Varable (Trats, Klassen snd. Je nach Asprägng

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Statistik der Extremwertverteilungen

Statistik der Extremwertverteilungen KAPITEL 6 Statstk der Extremwertvertelungen In desem Kaptel beschäftgen wr uns mt statstschen Anwendungen der Extremwertvertelungen. Wr werden zwe verschedene Zugänge zur Modellerung von Extremwerten betrachten.

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Mathematische Grundlagen

INTELLIGENTE DATENANALYSE IN MATLAB. Mathematische Grundlagen INTELLIGENTE DATENANALYSE IN MATLAB Mathematsche Grundlagen Überblck Lneare Algebra: Vektoren, Matrzen, Analyss & Optmerung: Dstanzen, konvexe Funktonen, Lagrange-Ansatz, Stochastk: Wahrschenlchketstheore,

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler, Eidgenössische Technische Hochschule, ETH Zürich. 1. Teilprüfung FS 2008.

Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler, Eidgenössische Technische Hochschule, ETH Zürich. 1. Teilprüfung FS 2008. Dr. Jochen Köhler, Edgenösssche Technsche Hochschule, ETH Zürch. Telprüfung Statstk und Wahrschenlchketsrechnung FS 2008 Lösungen Dr. J. Köhler ETH Zürch Donnerstag 0. Aprl 2008 08:5 09:45 0BTel : Multple

Mehr

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell ME II, Prof. Dr. T. Wollmershäuser Kaptel 2 Das IS-LM-Modell Verson: 26.04.2011 2.1 Der Gütermarkt De gesamte Güternachfrage Z (Verwendung des BIP) lässt sch we folgt darstellen: Z C+ I + G ME II, Prof.

Mehr

-2 Das einfache Regressionsmodell 2.1 Ein ökonomisches Modell

-2 Das einfache Regressionsmodell 2.1 Ein ökonomisches Modell Kaptel : Das enfache Regressonsmodell - Das enfache Regressonsmodell. En ökonomsches Modell Bespel: De Bezehung zwschen Haushaltsenkommen und Leensmttelausgaen Befragung zufällg ausgewählter Haushalte

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 9. Übung (15.01.2009) Agenda Agenda 3-parametrsches logstsches Modell nach Brnbaum Lnkfunktonen 3PL-Modell nach Brnbaum Modellglechung ( =

Mehr

Exkurs: Entropie in der Wahrscheinlichkeitstheorie

Exkurs: Entropie in der Wahrscheinlichkeitstheorie Exkurs: Entrope n der Wahrschenlchketstheore a) Physk/Thermodynamk: S = k B ln(w) mt W=Anzahl glech-wahrschenlcher Möglchketen (Mkrozustände) a) Informatonstheore: Shannon (1948) Entrope wobe p = f /N

Mehr

9 Diskriminanzanalyse

9 Diskriminanzanalyse 9 Dskrmnanzanalyse Zel ener Dskrmnanzanalyse: Berets bekannte Objektgruppen (Klassen/Cluster) anhand hrer Merkmale charakterseren und unterscheden sowe neue Objekte n de Klassen enordnen. Nötg: Lernstchprobe

Mehr

Diskrete Logarithmen. Teil II

Diskrete Logarithmen. Teil II Dskrete Logarthmen Ron-Gerrt Vahle Hendrk Radke Unverstät Potsdam Insttut für Informatk Semnar Kryptographe SS2005 Tel II Glederung Pohlg-Hellman Index-Calculus Theoretsche Grenzen Endlche Körper Eplog

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

Geschichte, Sherlock Holmes Spiel (Definition) Einteilung und Eigenschaften von Spielen Modellierungsformen Strategietypen (dominant, rein, gemischt)

Geschichte, Sherlock Holmes Spiel (Definition) Einteilung und Eigenschaften von Spielen Modellierungsformen Strategietypen (dominant, rein, gemischt) Peter Garscha Geschchte, Sherlock Holmes Spel (Defnton) Entelung und Egenschaften von Spelen Modellerungsformen Strategetypen (domnant, ren, gemscht) Nash-Glechgewcht (Defnton, Exstenz) Gefangenendlemma

Mehr

1. Teilprüfung FS 2008

1. Teilprüfung FS 2008 . Telprüfung Statstk und Wahrschenlchketsrechnung FS 2008 Dr. J. Köhler ETH Zürch Donnerstag 0. Aprl 2008 08:5 09:45 Vorname:... Name:... Stud. Nr.:... Studenrchtung:... . Telprüfung: Statstk und Wahrschenlchketsrechnung

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

6 Rechnen mit Zahlen beliebig hoher Stellenzahl 7 Intervall-Arithmetik 8 Umsetzung in aktuellen Prozessoren

6 Rechnen mit Zahlen beliebig hoher Stellenzahl 7 Intervall-Arithmetik 8 Umsetzung in aktuellen Prozessoren Inhalt 4 Realserung elementarer Funktonen Rehenentwcklung Konvergenzverfahren 5 Unkonventonelle Zahlenssteme redundante Zahlenssteme Restklassen-Zahlenssteme logarthmsche Zahlenssteme 6 Rechnen mt Zahlen

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

22. Vorlesung Sommersemester

22. Vorlesung Sommersemester 22 Vorlesung Sommersemester 1 Bespel 2: Würfel mt festgehaltener Ecke In desem Fall wählt man den Koordnatenursprung n der Ecke und der Würfel st durch den Berech x = 0 a, y = 0 a und z = 0 a bestmmt De

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

Temperaturabhängigkeit der Beweglichkeit

Temperaturabhängigkeit der Beweglichkeit Temperaturabhänggket der Beweglchket De Beweglchket nmmt mt zunehmender Temperatur ab! Streuung mt dem Gtter! Feldabhänggket der Beweglchket Für sehr hohe Feldstärken nmmt de Beweglchket n GaAs ab! Feldabhänggket

Mehr