STATISTISCHE KRANKHEITSTESTS. Simon Schimpf und Nico Schmitt

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "STATISTISCHE KRANKHEITSTESTS. Simon Schimpf und Nico Schmitt"

Transkript

1 1 STATISTISCHE KRANKHEITSTESTS Simon Schimpf und Nico Schmitt

2 Gliederung 2 Hintergrund des Themas (worum geht es Voraussetzungen Lernziele Die intuitive Herangehensweise ohne Satz von Bayes Baumdiagramm, umgedrehtes Baumdiagramm, Vierfeldertafel Satz von der totalen Wahrscheinlichkeit, Satz von Bayes Statistische Begriffe (Prävalenz, Sensitivität, Spezifität, u.a. A-priori und a-posteriori Wahrscheinlichkeiten Ethische und moralische Fragestellungen

3 Worum geht es? 3 Aufgabentyp, welcher den Ausgang eines Tests, mit Hilfe des Satz von Bayes, hinterfragt Aufgabenschema: Durchführung eines (medizinischen Tests Test kann positiv oder negativ ausfallen (dies nicht aus der Sicht des zu testenden Patienten oder Gegenstandes Test positiv Test negativ Patient ist wahrscheinlich krank Gegenstand ist wahrscheinlich defekt Patient ist wahrscheinlich gesund Gegenstand ist wahrscheinlich in Ordnung Frage: Welche Aussage liefert das Testergebnis über den Zustand des Patienten oder des Gegenstandes?

4 Beispiel 4 Bei Infektionskrankheiten ist es wichtig, dass man schnell die Art der Krankheit erkennt, damit man sie bekämpfen kann. Hierzu führt man Schnelltests durch, die allerdings Mängel haben: Manchmal wird eine Krankheit angezeigt, obwohl sie nicht vorliegt; gelegentlich wird eine Krankheit nicht angezeigt, obwohl sie vorhanden ist. 129 von untersuchten Personen haben eine seltene Krankheit. Bei 118 der 129 Personen, die tatsächlich krank sind, wird die Krankheit mit dem Testverfahren auch erkannt. Bei 412 der restlichen Personen, die nicht erkrankt sind, weist das Testverfahren fälschlicherweise dennoch auf das Vorliegen der Krankheit hin.

5 Voraussetzungen 5 Typischen Begriffe der Wahrscheinlichkeitsrechnung, also (absolute Häufigkeiten, Wahrscheinlichkeiten, etc. Dazu gehören: Prozentwerte, Dezimalbrüche (30 %; 0,3 Bruchzahlen (3/10 Absolute Häufigkeiten (3 von 10 Chancenverhältnisse (3:7 Beherrschen von Baumdiagrammen

6 Lernziele 6 Das Verstehen und Anwenden der bedingten Wahrscheinlichkeitsrechnung: Vierfeldertafel Satz von Bayes und Satz von der totalen Wahrscheinlichkeit Fachbegriffe, wie z.b. Prävalenz, Sensitivität, Spezifität, positiver Vorhersagewert / positives Testergebnis Kritisches Hinterfragen der Aussagen von Testergebnissen und Zeitungsschlagzeilen

7 Herangehensweisen 7 Zurück zum Beispiel: Bei Infektionskrankheiten ist es wichtig, dass man schnell die Art der Krankheit erkennt, damit man sie bekämpfen kann. Hierzu führt man Schnelltests durch, die allerdings Mängel haben: Manchmal wird eine Krankheit angezeigt, obwohl sie nicht vorliegt; gelegentlich wird eine Krankheit nicht angezeigt, obwohl sie vorhanden ist. 129 von untersuchten Personen haben eine seltene Krankheit. Bei 118 der 129 Personen, die tatsächlich krank sind, wird die Krankheit mit dem Testverfahren auch erkannt. Bei 412 der restlichen Personen, die nicht erkrankt sind, weist das Testverfahren fälschlicherweise dennoch auf das Vorliegen der Krankheit hin.

8 8

9 9 Studie über Bayes- Wahrscheinlichkeiten Gelöste Aufgaben 9-Jährige 10-Jährige 11-Jährige Erwachsene Angaben in Prozent 0% 0% 0% 49% Angaben in absoluten Zahlen 18,7% 39% 53,5% 76,1%

10 Gruppe 1 10 Ein Arzt informiert seine Patienten über den anstehenden HIV-Test: Er verweist auf gute Kennwerte des Tests, nach denen ein tatsächlich Infizierter mit 99,8%-iger Sicherheit positiv und ein nicht Infizierter mit 99,7%-iger Sicherheit negativ getestet wird. Auf die Frage eines Patienten, mit welcher Sicherheit denn ein positives Ergebnis eine HIV-Erkrankung anzeigen würde, antwortet der Arzt: Wie ich schon sagte: äußerst sicher, 99,8%.

11 Gruppe 2 11 Eine fiktive Geschichte, mit dennoch realen Vorbildern: Man findet bei einem Mordopfer DNA-Spuren des Täters und führt daher ein Massenscreening (10 Millionen Männer durch. Das verwendete Testverfahren gibt mit an Sicherheit grenzender Wahrscheinlichkeit keine fehlerhaften Ergebnisse aus (Fehler mit nur 0,001%. Einer der Männer weist ein DNA-Muster auf, das mit dem vorgefundenen identisch ist. Ein Gutachter ergänzt und behauptet, dass nur in 0,0001% der Fälle Personen ein gleiches DNA-Muster habe. Wie würden Sie als Richter urteilen, wenn keine weiteren Indizien vorliegen?

12 Gruppe 3 12 Heftiger Streit um Legalisierung von Drogen: Vor einigen Jahren fand die bayrische Polizei in einer statistischen Erhebung, dass 60 % der Heroinabhängigen Haschisch geraucht hatten, bevor sie heroinabhängig wurden. Der bayrische Innenminister (Anm.: Edmund Stoiber betrachtet das als Beweis dafür, dass Haschisch eine Einsteigerdroge ist. Wenn jemand Haschisch raucht, so argumentiert er, wird er später (ungefähr mit einer Wahrscheinlichkeit von 60% als Heroinabhängiger enden.

13 Gruppe 4 13 Drei Lokalzeitungen A, B, und C haben Marktanteile von 45 %, 37 % und 18 %. Bei Zeitung A erfolgt 10 % des Verkaufs an Abonnenten, bei Zeitung B sind dieses 60 % und bei Zeitung C 75 %. Pro Tag werden insgesamt Exemplare ausgeliefert. An einem Kiosk wird gerade eine Lokalzeitung verkauft. Mit welcher Wahrscheinlichkeit ist dies Zeitung B?

14 Satz von der totalen Wahrscheinlichkeit 14 (, P sei ein Wahrscheinlichkeitsraum. A 1,..., A m disjunkte Ereignisse. m i1 P( A i 1. P( B m i1 P( A P( B i A i

15 Satz von Bayes 15 (, P sei ein diskreter Wahrscheinlichkeitsraum. sei in m disjunkte Teilmengen zerlegt, also m i1 A i mit A i A j für i j Dann gilt für jede Zahl j und jedes Ereignis B mit P( B 0 P( A k B m P( A i1 k P( B P( A P( B i A k A i

16 Statistische Begriffe 16 Prävalenz P(K - Wahrscheinlichkeit, dass die Krankheit innerhalb einer bestimmten Personengruppe auftritt. Krank und Positiver Test Gesund und negativer Test Sensitivität P(T+ K Wahrscheinlichkeit, dass bei einem kranken Patienten der Test auch wirklich positiv ausfällt. Beide Werte sollten möglichst nahe bei 1 liegen. Spezifität P(T- G Wahrscheinlichkeit, dass bei einem gesunden Patienten der Test auch wirklich negativ ausfällt. Positives Testergebnis P(K T+ Wahrscheinlichkeit, dass ein Patient, der positiv getestet wurde, wirklich krank ist. Neg. Testergebnis P(G T- Wahrscheinlichkeit, dass ein Patient, der negativ getestet wurde, wirklich gesund ist.

17 Prävalenz P(K K G K=Krank G=Gesund T+=Test positiv T-=Test negativ Sensitivität P(T+ K Spezifität P(T- G T+ T- T+ T- T+ T- Pos. Testergebnis P(K T+ Neg. Testergebnis P(G T- K G K G 17

18 18 Aufgabe: Zuordnen Aufgabenstellung Statistischer Begriff Spezifität Sensitivität Pos. Testergebnis Neg. Testergebnis Gib die Wahrscheinlichkeit an, dass der Test negativ ausfällt, wenn ein Patient gesund ist. Wie hoch ist die Wahrscheinlichkeit, dass ein negativ getesteter Patient gesund ist? Wie hoch ist die Wahrscheinlichkeit, dass bei einem kranken Patienten der Test positiv ausfällt? Gib die Wahrscheinlichkeit einer Infektion bei einem positiv getesteten Patienten an. P(T- G P(G T- P(T+ K P(K T+

19 a-priori und a-posteriori 19 a-priori-wahrscheinlichkeiten a-posteriori-wahrscheinlichkeiten Unkenntnis über genaue Wahrscheinlichkeit Häufig Laplace- Wahrscheinlichkeiten oder statistische Werte Beispiel: Laplace-Würfel (p=1/6 Anteil an Erkrankten in einer Bevölkerung (p=0,05 % Präzisierung der Wahrscheinlichkeit eines Ereignisses auf Grund näherer Informationen z.b. durch einen durchgeführten Test Beispiel: Würfel nach Test Zahl p= 0,15 0,18 0,2 0,11 0,19 0,17 Akt. Testergebnisse; veränderter Anteil an Erkrankten (p=0,1%

20 a-priori und a-posteriori bei Bayes Test 2. Test P(A 1 P(A 2 P(A 3 a-priori-wahrscheinlichkeit P(A 1 B P(A 2 B P(A 3 B a-posteriori-wahrscheinlichkeit =P(A 1 =P(A 2 =P(A 3 A-priori-Wahrscheinlichkeit für das nächste Experiment P(A 1 B P(A 2 B P(A 3 B Neue a-posteriori- Wahrscheinlichkeit 1. Test P(K Prävalenz P(K T+ Pos. Testergebnis P(G P(T+ G a-priori-wahrscheinlichkeit a-posteriori-wahrscheinlichkeit 2. Test =P(K Neue Prävalenz P(K T+ Neues Pos. Testerg. =P(G P(T+ G A-priori-Wahrscheinlichkeit für das nächste Experiment Neue a-posteriori- Wahrscheinlichkeit

21 Aufgabe: HIV-Test 21 Testet man eine Bezugsgruppe von Personen aus der durchschnittlichen deutschen Bevölkerung, so wird man im Mittel 5 HIV-Infizierte finden. Der HIV-Test ist sehr empfindlich: von 100 HIV-Infizierten werden 99 gefunden. Er schlägt aber auch bei 100 Gesunden fälschlicherweise zweimal positiv an. a Man bestimme Spezifität, Sensitivität und Prävalenz. b Wie hoch sind die Wahrscheinlichkeiten für ein positives und ein negatives Testergebnis? c Um bei dem Testergebnis sicher zu gehen, wird unter den positiv getesteten Personen ein weiterer Test angeschlossen und zwar i. mit den gleichen Werten für Spezifität und Sensitivität wie aus der Aufgabenstellung, ii. mit Sensitivität = 0,99 und Spezifität = 0,999?

22 Wiederholung eines Tests 22 Wiederholung des Tests mit den Werten: Prävalenz 0,024 0,024 Sensitivität 0,99 0,99 Spezifität 0,98 0,999 Positives Testergebnis 0,551 0,96

23 Spezialform Satz von Bayes als Funktion mit drei Unbekannten 23 (1 (1,, ( s p r p r p s r p f ( ( ( ( ( ( ( G P T G P K P T K P K P T K P T K P P(K p Prävalenz P(T+ K r Sensitivität P(T- G s Spezifität

24 Moralische und ethische 24 Fragestellungen In welchem Alter kann man Schüler/innen mit welcher Krankheit konfrontieren? Wann könnte man diese Thematik im Unterricht behandeln? (Thüringer Lehrplan: 10. Klasse (Freiraum Gibt es evtl. persönlich Betroffene in der Klasse? Wie ist die Reaktion darauf?

25 Literatur 25 Knechtl, Heiko: Rückwärtsschließen im Baumdiagramm Pinkernell, Guido: Test positiv, Diagnose negativ, in: mathematiklehren: Daten und Zufall. Heft 138, Oktober Boer, Heinz: AIDS Welche Aussagekraft hat ein positives Test-Ergebnis?, in: Stochastik in der Schule. Jahrgang 13/93, Heft 2. Mathenetz. Jahrgangsstufe 9. Büchter, A. und H.-W. Henn: Elementare Stochastik. Berlin S. 218 ff.

Mathematik EP - Stochastik VIERFELDERTAFEL UND BEDINGTE WKT.

Mathematik EP - Stochastik VIERFELDERTAFEL UND BEDINGTE WKT. Mathematik EP - Stochastik VIERFELDERTAFEL UND BEDINGTE WKT. HIV - SCHNELLTEST Die Immunschwächekrankheit AIDS wird durch das HI-Virus, welches 1993 entdeckt wurde, verursacht. Die Krankheit gilt bis heute

Mehr

Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten.

Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten. 26 6. Bedingte Wahrscheinlichkeit Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten. Alarmanlage Tritt bei einer Sicherungsanlage ein Alarm

Mehr

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Wahrscheinlichkeitsrechnung Theorie Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem,

Mehr

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A)

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A) 3. Bedingte Wahrscheinlichkeit ================================================================== 3.1 Vierfeldertafel und Baumdiagramm Sind A und B zwei Ereignisse, dann nennt man das Schema B B A A P

Mehr

Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit Bedingte Wahrscheinlichkeit In einem Laden ist eine Alarmanlage eingebaut. Bei Einbruch gibt sie mit 99%-iger Wahrscheinlichkeit Alarm. Wenn in einer bestimmten Nacht kein Einbruch stattfindet, gibt sie

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Vorlesung - Medizinische Biometrie

Vorlesung - Medizinische Biometrie Vorlesung - Medizinische Biometrie Stefan Wagenpfeil Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik Universität des Saarlandes, Homburg / Saar Vorlesung - Medizinische Biometrie

Mehr

Epidemiologie und HIV-Tests

Epidemiologie und HIV-Tests 26. November 2009 Cornelias HIV-Test Das ist Cornelia. Cornelia möchte Plasmaspenderin werden. Dafür braucht sie einen negativen Befund eines HIV-Tests. Deshalb geht sie ins Krankenhaus. Cornelias HIV-Test

Mehr

Bitte lesen Sie die folgende Musteraufgabe konzentriert durch. Musteraufgabe I

Bitte lesen Sie die folgende Musteraufgabe konzentriert durch. Musteraufgabe I Bitte lesen Sie die folgende Musteraufgabe konzentriert durch. Musteraufgabe I Mit dem Ziel der Früherkennung von Brustkrebs werden Frauen angehalten, ab einem bestimmten Alter regelmäßig eine Röntgenuntersuchung

Mehr

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Täuschung und Manipulation mit Zahlen

Täuschung und Manipulation mit Zahlen 58. Ärztekongress Berlin/Charité 4.11.2010 Täuschung und Manipulation mit Zahlen Kleines Statistikseminar zum kritischen Umgang mit Zahlen Dr. med. H.-J. Koubenec Mammasprechstunde im Immanuel Krankenhaus

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung V Der diagnostische Test Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de

Mehr

Ma 13 - Stochastik Schroedel Neue Wege (CON)

Ma 13 - Stochastik Schroedel Neue Wege (CON) Bedingte Wahrscheinlichkeiten S. 70, Nr. 5 Richtiges Anwenden der Multiplikationsregel A: Abonnement liest Werbeanzeige B: Produkt wird gekauft S. 70, Nr. 6 Übersetzung von Daten in ein Baumdiagramm A

Mehr

Täuschung und Manipulation mit Zahlen Teil 1

Täuschung und Manipulation mit Zahlen Teil 1 Täuschung und Manipulation mit Zahlen Teil 1 Kleines Statistikseminar zum kritischen Umgang mit Zahlen 23.3.2011 Dr. med. H.-J. Koubenec Mammasprechstunde im Immanuel Krankenhaus Berlin Folien: Mammographie-Screening.de

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Kapitel MK:V. V. Diagnoseansätze

Kapitel MK:V. V. Diagnoseansätze Kapitel MK:V V. Diagnoseansätze Diagnoseproblemstellung Diagnose mit Bayes Evidenztheorie von Dempster/Shafer Diagnose mit Dempster/Shafer Truth Maintenance Assumption-Based TMS Diagnosis Setting Diagnosis

Mehr

Der Hund, der Eier legt

Der Hund, der Eier legt Leseprobe aus: Hans-Hermann Dubben, Hans-Peter Beck-Bornholdt Der Hund, der Eier legt Mehr Informationen zum Buch finden Sie hier. (c) 1997/ 2006 by Rowohlt Verlag GmbH, Reinbek Ohne Panik positiv Aussagekraft

Mehr

Kapitel ML:IV (Fortsetzung)

Kapitel ML:IV (Fortsetzung) Kapitel ML:IV (Fortsetzung) IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-18 Statistical Learning c STEIN 2005-2011 Satz 3 (Bayes)

Mehr

Prüfung nicht bestanden. Die gleiche Tabelle kann man auch mit den entsprechenden Wahrscheinlichkeiten (relative Häufigkeit) erstellen.

Prüfung nicht bestanden. Die gleiche Tabelle kann man auch mit den entsprechenden Wahrscheinlichkeiten (relative Häufigkeit) erstellen. 6 Vierfeldertafel An einer Prüfung nehmen 100 Studenten teil, von denen 40 als Raucher bekannt sind. 65 Studenten haben die Prüfung. Von den Nichtrauchern haben 50 die Prüfung. Wie groß ist der Anteil

Mehr

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen Kapitel ML:IV IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-1 Statistical Learning c STEIN 2005-2011 Definition 1 (Zufallsexperiment,

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Wahrscheinlichkeit und Zufallsvorgänge Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Aussagenlogik, Mengenlehre, Wahrscheinlichkeit und Prüfstatistik sind eng miteinander verknüpft.

Aussagenlogik, Mengenlehre, Wahrscheinlichkeit und Prüfstatistik sind eng miteinander verknüpft. Aussagenlogik, Mengenlehre, Wahrscheinlichkeit und Prüfstatistik sind eng miteinander verknüpft. Schon immer wurde die Menschheit von Krankheiten bedroht und oft konnte eine Frühdiagnose mit nachfolgender

Mehr

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Universität Wien Institut für Mathematik Wintersemester 2009/2010 Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Seminar Angewandte Mathematik Ao. Univ. Prof. Dr. Peter Schmitt von Nadja Reiterer

Mehr

Südtiroler Akademie für Allgemeinmedizin. Seminar

Südtiroler Akademie für Allgemeinmedizin. Seminar Südtiroler Akademie für Allgemeinmedizin Seminar 16.10.2015 Diagnostische Entscheidungsfindung in der Allgemeinmedizin Andreas Sönnichsen Institut für Allgemeinmedizin und Familienmedizin Universität Witten/Herdecke

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Mammographie-Screening in der Diskussion um Nutzen und Schaden: Was glauben wir und was wissen wir über den Nutzen?

Mammographie-Screening in der Diskussion um Nutzen und Schaden: Was glauben wir und was wissen wir über den Nutzen? Urania Berlin 13.10. 2008 Mammographie-Screening in der Diskussion um Nutzen und Schaden: Was glauben wir und was wissen wir über den Nutzen? Dr. med. H.-J. Koubenec Mammasprechstunde im Immanuel Krankenhaus

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 203 Stochastische Unabhängigkeit Hans Walser: Modul 203, Stochastische Unabhängigkeit ii Inhalt 1 Bedingte Wahrscheinlichkeit... 1 1.1 Feuermeldeanlage,

Mehr

Vierfeldertafel und bedingte Wahrscheinlichkeit. 1 Ereignisse und Vierfeldertafel

Vierfeldertafel und bedingte Wahrscheinlichkeit. 1 Ereignisse und Vierfeldertafel Seite 9 9 Lösungen vorläufig Vierfeldertafel und bedingte Wahrscheinlichkeit IV Vierfeldertafel und bedingte Wahrscheinlichkeit Ereignisse und Vierfeldertafel S. 9 a) 0 b) Zwei Personen aus der 0C sind

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

bedingte Wahrscheinlichkeit

bedingte Wahrscheinlichkeit bedingte Wahrscheinlichkeit 1. Neun von zehn Ungeborenen bevorzugen im Mutterleib den rechten Daumen zum Lutschen. Forscher fanden heraus, dass alle Kinder, die rechts genuckelt hatten, im Alter von 10

Mehr

Bedingte Wahrscheinlichkeiten & Unabhängigkeit

Bedingte Wahrscheinlichkeiten & Unabhängigkeit Statistik 1 für SoziologInnen Bedingte Wahrscheinlichkeiten & Univ.Prof. Dr. Marcus Hudec Bedingte Wahrscheinlichkeit Das Konzept bedingter Wahrscheinlichkeit erlaubt zu untersuchen, inwieweit sich die

Mehr

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung Vorlesungscharts Vorlesung 1 Grundbegriffe der Wahrscheinlichkeitsrechnung Zufallsvorgänge und Zufallsereignisse Definitionen der Wahrscheinlichkeit Seite 1 von 11 Chart 1: Vorgänge deterministisch zufällig

Mehr

K4 Bedingte Wahrscheinlichkeiten. 4.1 Definition Die bedingte Wahrscheinlichkeit von A bei gegebenem B:

K4 Bedingte Wahrscheinlichkeiten. 4.1 Definition Die bedingte Wahrscheinlichkeit von A bei gegebenem B: K4 Bedingte Wahrscheinlichkeiten 4.1 Definition Die bedingte Wahrscheinlichkeit von A bei gegebenem B: P(A B) = P(A B)/P(B) (4.1.1) Meistens benutzen wir diese Form: P(A B) = P(A B)*P(B) weil P(A B) schwer

Mehr

Statistical Coaching. Thomas Forstner

Statistical Coaching. Thomas Forstner Statistical Coaching Thomas Forstner Diagnoseverfahren Allgemein Vergleich: wahrer Befund mit Test (Diagnose) wahrer Befund muss bekannt sein (Goldstandard) 3 Analogie zur Testtheorie 4 Beurteilung von

Mehr

Übungsrunde 4, Gruppe 2 LVA , Übungsrunde 4, Gruppe 2, Markus Nemetz, TU Wien, 10/2006

Übungsrunde 4, Gruppe 2 LVA , Übungsrunde 4, Gruppe 2, Markus Nemetz, TU Wien, 10/2006 Übungsrunde 4, Gruppe 2 LVA 107.369, Übungsrunde 4, Gruppe 2, 07.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 10/2006 1 17 1.1 Angabe Ein Parallelsystem funktioniert, wenn wenigstens eine seiner

Mehr

4. Grundzüge der Wahrscheinlichkeitsrechnung

4. Grundzüge der Wahrscheinlichkeitsrechnung 4. Grundzüge der Wahrscheinlichkeitsrechnung Dr. Antje Kiesel Institut für angewandte Mathematik WS 2010/2011 In der beschreibenden Statistik haben wir verschiedene Kennzahlen (Statistiken) für Stichproben

Mehr

4. Die Laplacesche Gleichverteilung

4. Die Laplacesche Gleichverteilung Universität Basel Wirtschaftswissenschaftliches Zentrum Grundlagen der Stochastik Dr. Thomas Zehrt Inhalt: 1. Die Ereignismenge 2. Die Wahrscheinlichkeitsverteilung 3. Eigenschaften einer Wahrscheinlichkeitsverteilung

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher Physikalisches Institut Westbau 2 OG Raum 008 Telefonnummer 07621 203 7612 E-Mail:

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Dozentin: Wiebke Petersen 8. Foliensatz Wiebke Petersen math. Grundlagen 1 Motivation Bsp.: In vielen Bereichen der CL kommt Wahrscheinlichkeitstheorie

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Der HIV-Test: Was ich wissen und was ich mir im Vorfeld überlegen sollte

Der HIV-Test: Was ich wissen und was ich mir im Vorfeld überlegen sollte Der HIV-Test: Was ich wissen und was ich mir im Vorfeld überlegen sollte Pro und Contra: Auch wenn HIV mittlerweile eine behandelbare Krankheit geworden ist, ist AIDS immer noch nicht heilbar. Es gibt

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Testverfahren. 1. Pepsi vs. Coca-Cola

Testverfahren. 1. Pepsi vs. Coca-Cola 1. Pepsi vs. Coca-Cola Testverfahren Über Geschmack lässt sich bekanntermaßen streiten. Häufig stellt sich nämlich die Frage, ob der Unterschied zwischen zwei Produkten überhaupt feststellbar ist. Einer

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Bereiche der Stochastik

Bereiche der Stochastik Statistik Wahrscheinlichkeit Kombinatorik Bereiche der Stochastik Kombinatorik Hans Freudenthal: Einfache Kombinatorik ist das Rückgrat elementarer Wahrscheinlichkeitsrechnung. Die Lehrkraft bereitet sich

Mehr

Diagnostisches Testen. Coniecturalem artem esse medicinam

Diagnostisches Testen. Coniecturalem artem esse medicinam Diagnostisches Testen Coniecturalem artem esse medicinam Würfelspiel A: ein fairer Würfel zeigt eine gerade Augenzahl B: ein fairer Würfel zeigt mindestens 4 Punkte A: B: A B: P(A=1/2 P(B=1/2 P(A B=2/6

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum

Mehr

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung Zufallsexperimente Den Zufall erforschen Maximilian Gartner, Walther Unterleitner, Manfred Piok Thema Stoffzusammenhang Klassenstufe Einstieg in die Wahrscheinlichkeitsrechnung Daten und Zufall 1. Biennium

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Stochastik in der Einführungsphase Bedingte Wahrscheinlichkeiten 1/6

Stochastik in der Einführungsphase Bedingte Wahrscheinlichkeiten 1/6 Stochastik in der Einführungsphase Bedingte Wahrscheinlichkeiten 1/6 Aufgabe 1 : In Köln findet man am Rosenmontag unter den Karnevalisten bzw. Narren entlang des Zugweges 7mal so viele Touristen wie Einheimische.

Mehr

Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit Bedingte Wahrscheinlichkeit Aufgaben Aufgabe 1 Beim Drucken im Computer Pool kommt es immer wieder zu einem Papierstau.Einer der Poolmgr hat rausgefunden das die Wahrscheinlichkeit einen Papierstau zu

Mehr

Ein Modell für den Qualitätstest - Welche Fehler sind möglich?

Ein Modell für den Qualitätstest - Welche Fehler sind möglich? 1.1 1 Ein Modell für den Qualitätstest - Welche Fehler sind möglich? Das einführende Beispiel von den Knallkörpern schildert einen statistischen Qualitätstest. Anhand dieses praktischen Beispiels erfahren

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Wahrscheinlichkeiten

Wahrscheinlichkeiten Wahrscheinlichkeiten Bestimmung der Wahrscheinlichkeit Bei einem Zufallsexperiment kann man nicht voraussagen, welches Ereignis eintritt, aber manche Ereignisse treten naturgemäß mit einer größeren Wahrscheinlichkeit

Mehr

Pittfalls in der Autoimmundiagnostik. Initiiated and supported by

Pittfalls in der Autoimmundiagnostik. Initiiated and supported by Pittfalls in der Autoimmundiagnostik Fallen in der Autoimmundiagnostik Der Fluch des englischen Geistlichen Thomas Bayes Weniger ist oft mehr Fehlende Standardisierung von Tests Thomas Bayes 1702-1761,

Mehr

MaReCum Klausur in Biomathematik WS 2006 / 2007 Freitag, den 27. Oktober 2006

MaReCum Klausur in Biomathematik WS 2006 / 2007 Freitag, den 27. Oktober 2006 MaReCum Klausur in Biomathematik WS 2006 / 2007 Freitag, den 27. Oktober 2006 Name: Matrikelnummer: Unterschrift: Aufgabe 1 In einer kleinen Gemeinde in Baden-Württemberg traten vermehrt Fälle von Q-Fieber

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 1. Vorlesung - 7.10.2016 Im Alltag... Laut den meteorologischen Vorhersagen wird es morgen regnen. Ob ich riskiere und die Wette verlieren werde? Ich werde mit Sicherheit gewinnen! Ist das wirklich unmöglich?

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassung vom 12. Januar 2001 121 WAHRSCHEINLICHKEITS-RÄUME Stichproben-Raum. 9.1 9.1 Stichproben-Raum. Die bisher behandelten Beispiele von Naturvorgängen oder Experimenten

Mehr

1. Grundlagen der Wahrscheinlichkeitsrechnung

1. Grundlagen der Wahrscheinlichkeitsrechnung 1. Grundlagen der Wahrscheinlichkeitsrechnung Ereignisse und Wahrscheinlichkeiten Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer

Mehr

Probleme und Möglichkeiten der Behandlung der bedingten Wahrscheinlichkeit

Probleme und Möglichkeiten der Behandlung der bedingten Wahrscheinlichkeit Hans-Dieter Sill, Universität Rostock Probleme und Möglichkeiten der Behandlung der bedingten Wahrscheinlichkeit 1. Der Begriff der bedingte Wahrscheinlichkeit in Planungsdokumenten 2. Eine Prozessbetrachtung

Mehr

Nutzen einer diagnostischen Tests in der Praxis: prädiktive Werte

Nutzen einer diagnostischen Tests in der Praxis: prädiktive Werte EbM-Splitter 11 Nutzen einer diagnostischen Tests in der Praxis: prädiktive Werte In den beiden letzten EbM-Splittern [6, 7] wurden die Maßzahlen Sensitivität (Wahrscheinlichkeit, eine kranke Person als

Mehr

EbM-Splitter 10 Sensitivität und Spezifität: Auswirkung der Wahl des Trennpunktes

EbM-Splitter 10 Sensitivität und Spezifität: Auswirkung der Wahl des Trennpunktes Sensitivität und Spezifität: Auswirkung der Wahl des Trennpunktes Seite - 1 - EbM-Splitter 10 Sensitivität und Spezifität: Auswirkung der Wahl des Trennpunktes Im vorigen EbM-Splitter [4] wurde auf die

Mehr

Der HIV-Antikörper-Schnelltest aus Sicht des Labormediziners. Dr. Thomas Berg, Berlin www.bergdoctor.de

Der HIV-Antikörper-Schnelltest aus Sicht des Labormediziners. Dr. Thomas Berg, Berlin www.bergdoctor.de Der HIV-Antikörper-Schnelltest aus Sicht des Labormediziners Was untersucht der HIV-Antikörper- Schnelltest? (am Beispiel Vitest HIV) Der HIV-Antikörper-Schnelltest ist ein SUCHTEST, der untersucht, ob

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Aufgabe 1: Wetterbericht Im Mittel sagt der Wetterbericht für den kommenden Tag zu 60 % schönes und zu 40% schlechtes

Mehr

Mathematik LK M1, 4. Kursarbeit Stochastik I - Lösung

Mathematik LK M1, 4. Kursarbeit Stochastik I - Lösung Aufgabe : Wahrscheinlichkeitsrechnung Löse die Aufgabe auf diesem Aufgabenblatt. Trage die Lösung in die Tabelle ein. Ein Rechenweg ist hier nicht erforderlich. Hinweis: Das Casinospiel besteht aus dem

Mehr

3 = 93% (a) Berechnen Sie den Anteil der weiblichen Raucher unter den Betriebsangehörigen.

3 = 93% (a) Berechnen Sie den Anteil der weiblichen Raucher unter den Betriebsangehörigen. Übungsblatt Wahrscheinlichkeit 1. Neun von zehn Ungeborenen bevorzugen im Mutterleib den rechten Daumen zum Lutschen. Forscher fanden heraus, dass alle Kinder, die rechts genuckelt hatten, im Alter von

Mehr

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6}

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6} Laplace-Experimente Begriffsklärung am Beispiel eines Laplace-Würfel mit Augenzahlen (AZ) 1-6: Ergebnis: ist jeder Ausgang eines Zufallsexperimentes heißt ein Ergebnis ω dieses Zufallsexperimentes. Die

Mehr

Bearbeiten Sie bitte das Fallbeispiel A. Fallbeispiel A

Bearbeiten Sie bitte das Fallbeispiel A. Fallbeispiel A Bearbeiten Sie bitte das Fallbeispiel A Fallbeispiel A Für symptomfreie Frauen im Alter zwischen 70 und 79 Jahren, die im Rahmen einer Reihenuntersuchung eine Röntgenuntersuchung der Brust (Mammographie)

Mehr

Hypothesentest, ein einfacher Zugang mit Würfeln

Hypothesentest, ein einfacher Zugang mit Würfeln R. Brinkmann http://brinkmann-du.de Seite 4..4 ypothesentest, ein einfacher Zugang mit Würfeln Von einem Laplace- Würfel ist bekannt, dass bei einmaligem Wurf jede einzelne der Zahlen mit der Wahrscheinlichkeit

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 " k " h(a) n = bezeichnet man als die relative Häufigkeit des Ereignisses A bei n Versuchen. n (Anmerkung: für das kleine h wird in der Literatur häufig auch ein r verwendet) k nennt man die absolute Häufigkeit

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Stochastische Unabhängigkeit. 01. Dezember 2014

Stochastische Unabhängigkeit. 01. Dezember 2014 Stochastische Unabhängigkeit 0. Dezember 204 Der Begriff der Unabhängigkeit Großbritannien, im November 999. Die Anwältin Sally Clark wird wegen Mordes an ihren Kindern angeklagt. Clark geriet unter Verdacht

Mehr

9. Elementare Wahrscheinlichkeitsrechnung

9. Elementare Wahrscheinlichkeitsrechnung 9. Elementare Wahrscheinlichkeitsrechnung I. Zufällige Ereignisse Beispiel (Einmaliges Würfeln): Alle möglichen Ausgänge 1, 2,, 6 des Experiments werden zur Ergebnismenge Ω ( Ergebnisraum ) zusammengefasst.

Mehr

Θ Mathematik Stochastik

Θ Mathematik Stochastik Θ Mathematik Stochastik Aufgabe 1: Als Spam-Nachricht wird eine unerwünschte E-Mail bezeichnet, die dem Empfänger unverlangt zugestellt wird. a) Statistische Untersuchungen an der Mailbox eines Benutzers

Mehr

1 Wahrscheinlichkeitsrechnung und Zufallsvariablen

1 Wahrscheinlichkeitsrechnung und Zufallsvariablen 1 Wahrscheinlichkeitsrechnung und Zufallsvariablen Zoltán Zomotor Versionsstand: 18. Mai 2015, 09:29 Die nummerierten Felder bitte während der Vorlesung ausfüllen. This work is licensed under the Creative

Mehr

Bedingte Wahrscheinlichkeit. Beispiel zur bedingten Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit. Beispiel zur bedingten Wahrscheinlichkeit Bedingte Wahrscheinlichkeit Das Konzept bedingter Wahrscheinlichkeit erlaubt zu untersuchen, inwieweit sich die Wahrscheinlichkeiten für das Eintreten von Ereignissen durch das Eintreten anderer Ereignisse

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Inhalt Grundlagen aus der Wahrscheinlichkeitsrechnung Hypothesenwahl Optimale Bayes Klassifikator Naiver Bayes Klassifikator

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 10. November 2010 1 Bedingte Wahrscheinlichkeit Satz von der totalen Wahrscheinlichkeit Bayessche Formel 2 Grundprinzipien

Mehr

Population und Stichprobe: Wahrscheinlichkeitstheorie

Population und Stichprobe: Wahrscheinlichkeitstheorie Population und Stichprobe: Wahrscheinlichkeitstheorie SS 2001 4. Sitzung vom 15.05.2001 Wahrscheinlichkeitstheorie in den Sozialwissenschaften: Stichprobenziehung: Aussagen über Stichprobenzusammensetzung

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Der HIV-Test. Was ich wissen und was ich mir im Vorfeld überlegen sollte

Der HIV-Test. Was ich wissen und was ich mir im Vorfeld überlegen sollte Der HIV-Test Was ich wissen und was ich mir im Vorfeld überlegen sollte Pro & Contra: Auch wenn AIDS mittlerweile gut behandelbar ist, kann die Krankheit immer noch nicht geheilt werden. AIDS ist eine

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 24.2.214 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

ist bekannt, das insgesamt 50% aller produzierten Bauteile fehlerfrei sind.

ist bekannt, das insgesamt 50% aller produzierten Bauteile fehlerfrei sind. Aufgabe 1: Die Firma Gut und teuer kurz Gut produziert elektronische Bauteile. Vor dem Verkauf an die Kunden werden diese sorgfältig geprüft. Von den fehlerfreien werden 95% und von den fehlerhaften 1%

Mehr

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft.

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft. Vier-Felder-Tafel Mediziniche Tet ind grundätzlich mit zwei Fehlern behaftet:. Erkrankte werden al geund, 2. Geunde al krank eingetuft. Der. Fehler wird üblicherweie (nicht nur von Tet-Entwicklern) in

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten "bedingten Wahrscheinlichkeit".

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten bedingten Wahrscheinlichkeit. Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 9 12 04/2015 Diabetes-Test Infos: www.mued.de Blutspenden werden auf Diabetes untersucht, das mit 8 % in der Bevölkerung verbreitet ist. Dabei werden

Mehr