Komprimierung von dünnbesetzten Matrizen

Größe: px
Ab Seite anzeigen:

Download "Komprimierung von dünnbesetzten Matrizen"

Transkript

1 von Raffael Lorup, Paolo Di Stolfo Präsentation, am

2 Inhalt von

3 Dünnbesetzte Matrix (sparse matrix) von Definition: Dünnbesetzte Matrix Eine m n-matrix A heißt dünnbesetzt, wenn gilt: wenige Elemente in A ungleich 0 auf A sind spezielle Techniken anwendbar, die die große Anzahl von 0 ausnützen Definition Nz heißt Anzahl der Elemente in A, die ungleich 0 sind

4 1. Speicherung: Platzersparnis Graphen mit wenigen Kanten: Adjazenzmatrizen mathematische Modelle liefern dünnbesetzte Gleichungssysteme von

5 1. Speicherung: Platzersparnis Graphen mit wenigen Kanten: Adjazenzmatrizen mathematische Modelle liefern dünnbesetzte Gleichungssysteme z.b. Temperatur auf Platte x i,j 1 x i 1,j x i+1,j x i,j = 1 4 x i,j xi,j 1 + x i 1,j + x i,j+1 + x i+1,j von x i,j+1

6 1. Speicherung: Platzersparnis Graphen mit wenigen Kanten: Adjazenzmatrizen mathematische Modelle liefern dünnbesetzte Gleichungssysteme z.b. Temperatur auf Platte n := 10 7 Gleichungen = Gitterpunkte Koeffizienten naive Datenstruktur braucht dann 400 TB (für Gleitkommazahlen) von

7 1. Speicherung: Platzersparnis Graphen mit wenigen Kanten: Adjazenzmatrizen mathematische Modelle liefern dünnbesetzte Gleichungssysteme z.b. Temperatur auf Platte n := 10 7 Gleichungen = Gitterpunkte Koeffizienten naive Datenstruktur braucht dann 400 TB (für Gleitkommazahlen) von 2. Operationen: Performance-Gewinn y := Ax naiver Gauß: braucht 2 3 n3 Operationen

8 Überlegungen zur Wahl des Speicherformats von Speicherverbrauch Ausführungsgeschwindigkeit der Operationen anzuwendender Algorithmus Struktur der Matrix Rechnerarchitektur... Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage Modified Row Storage Compressed Diagonal Storage Skyline Storage

9 von Nichtnull-Elemente festhalten geeignete Reihenfolge zugehörige Position Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage Modified Row Storage Compressed Diagonal Storage Skyline Storage

10 von Nichtnull-Elemente festhalten geeignete Reihenfolge zugehörige Position Allgemeine Formate: Koordinaten-Format (COO) Compressed Row Storage (CRS) Compressed Column Storage (CCS) Modified Row Storage (MRS) Spezielle Formate: Compressed Diagonal Storage (CDS) Skyline Storage (SKS) Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage Modified Row Storage Compressed Diagonal Storage Skyline Storage

11 Koordinaten-Format (COO) Vorteil: Einfachheit von Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage Modified Row Storage Compressed Diagonal Storage Skyline Storage

12 Koordinaten-Format (COO) Vorteil: Einfachheit Speicheraufwand 3Nz von Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage Modified Row Storage Values RowIndices Compressed Diagonal Storage Skyline Storage ColumnIndices

13 Compressed Row Storage (CRS) zeilenweiser Durchgang von Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage Modified Row Storage Compressed Diagonal Storage Skyline Storage

14 Compressed Row Storage (CRS) zeilenweiser Durchgang Zeile von RowPointers[i] bis RowPointers[i + 1] 1 Speicheraufwand ist 2Nz + (m + 1) von Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage Modified Row Storage Values RowPointers Compressed Diagonal Storage Skyline Storage ColumnIndices

15 Compressed Column Storage (CCS) wie CRS auf A T von Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage Modified Row Storage Compressed Diagonal Storage Skyline Storage

16 Compressed Column Storage (CCS) wie CRS auf A T Speicherbedarf ist 2Nz + (n + 1) von Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage Modified Row Storage Values ColumnPointers Compressed Diagonal Storage Skyline Storage RowIndices

17 Modified Row Storage (MRS) A sei n n-matrix Hauptdiagonale zeilenweise von Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage Modified Row Storage Compressed Diagonal Storage Skyline Storage

18 Modified Row Storage (MRS) A sei n n-matrix Hauptdiagonale zeilenweise Speicheraufwand ist 2(Nz #Nullen in Diagonale) von Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage Values Modified Row Storage Compressed Diagonal Storage Skyline Storage Indices RowPointers ColumnIndices

19 Compressed Diagonal Storage (CDS) A sei n n-matrix konstante Bandbreite Bandbreite von Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage Modified Row Storage Compressed Diagonal Storage Skyline Storage

20 Compressed Diagonal Storage (CDS) A sei n n-matrix konstante Bandbreite Speicherverbrauch liegt bei n Bandbreite Bandbreite Values Diagonals von Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage Modified Row Storage Compressed Diagonal Storage Skyline Storage

21 Skyline Storage von spezielle Skyline-Struktur Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage Modified Row Storage Compressed Diagonal Storage Skyline Storage

22 Skyline Storage spezielle Skyline-Struktur von Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage Modified Row Storage Compressed Diagonal Storage Skyline Storage

23 Skyline Storage spezielle Skyline-Struktur Speicherverbrauch ist Nz + 2(n + 1) + #Skyline-Nullen von Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage LowerValues LowerRowPointers Modified Row Storage Compressed Diagonal Storage Skyline Storage UpperValues UpperColumnPointers

24 Skyline Storage spezielle Skyline-Struktur Speicherverbrauch ist Nz + 2(n + 1) + #Skyline-Nullen von Überlegungen zur Wahl des Speicherformats Koordinaten-Format Compressed Row Storage Compressed Column Storage LowerValues LowerRowPointers Modified Row Storage Compressed Diagonal Storage Skyline Storage UpperValues UpperColumnPointers

25 Musteroperation: für m n-matrix A und Vektor x n : y := Ax = a 11 a a 1n a 21 a a 2n.... a m1 a m2... a mn x 1 x 2. x n a 11 x 1 + a 12 x a 1n x n a = 21 x 1 + a 22 x a 2n x n. a m1 x 1 + a m2 x a mn x n von

26 CRS - y := Ax Zeilen i Values RowPointers ColumnIndices von

27 CRS - y := Ax Zeilen i Values RowPointers ColumnIndices for i 1 to #RowPointers 1 do for j RowPointers[i] to RowPointers[i + 1] 1 do y[i] y[i] + Values[j] x[columnindices[j]] end for end for von

28 CRS - y := Ax Zeilen i Values RowPointers ColumnIndices for i 1 to #RowPointers 1 do for j RowPointers[i] to RowPointers[i + 1] 1 do y[i] y[i] + Values[j] x[columnindices[j]] end for end for von Kosten: (2Nz) Fließkomma-Operationen vs. vorher ca. (2mn)

29 Beispielhafter Durchschnittlicher Speicherverbrauch je Form verglichen mit der ursprünglichen Matrix 1 von 1 nach [Überhuber], S. 405f.

30 Beispielhafter Durchschnittlicher Speicherverbrauch je Form verglichen mit der ursprünglichen Matrix 1 % aller Einträge ,88 % 12,92 % von 4 2 Nz = 0.87 % 1,76 % 1,86 % 2,66 % MRS CRS, CCS COO Skyline CDS 1 nach [Überhuber], S. 405f.

31 Danksagung von Vielen Dank für die Aufmerksamkeit!

32 Literaturverzeichnis I Aydin, B., T., F. J., Matteo, F., R., G. J., and E., L. C. Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks. In Proceedings of the twenty-first annual symposium on Parallelism in algorithms and architectures (New York, NY, USA, 2009), SPAA 09, ACM, pp Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., and van der Vorst, H., Eds. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., and van der Vorst, H. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. SIAM, Philadelphia, PA, Eijkhout, V. Distributed Sparse Data Structures for Linear Algebra Operations. Department of Computer Science, University of Tennessee, Knoxville, von Gundersen, G., and Steihaug, T. Data structures in Java for matrix computations: Research articles. Concurr. Comput. : Pract. Exper. 16 (July 2004), I.S. Duff, A.M. Erisman, J. R. Direct Methods for Sparse Matrices. Oxford University Press, New York, ISBN: Montagne, E., and Ekambaram, A. An optimal storage format for sparse matrices. Inf. Process. Lett. 90 (April 2004),

33 Literaturverzeichnis II Pooch, U. W., and Nieder, A. A survey of indexing techniques for sparse matrices. ACM Comput. Surv. 5 (June 1973), Saad, Y. Iterative Methods for Sparse Linear Systems, second ed. Society for Industrial and Applied Mathematics, ISBN-13: Silva, M. Sparse matrix storage revisited. In Proceedings of the 2nd conference on Computing frontiers (New York, NY, USA, 2005), CF 05, ACM, pp Smailbegovic, F., Gaydadjiev, G. N., and Vassiliadis, S. Sparse matrix storage format. In Proceedings of the 16th Annual Workshop on Circuits, Systems and Signal Processing, ProRisc 2005 (November 2005), pp von Stathis, P. T. Sparse Matrix Vector Processing Formats. TU Delft, Delft University of Technology (NL), Doctoral thesis. Überhuber, C. Computer-Numerik 2. Springer-Verlag Berlin Heidelberg, ISBN

34 Beispiel: Skyline-Matrix 1 1 von Zurück

Algorithmik kontinuierlicher Systeme

Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Matrixstrukturen Feste Dimension von Matrizen und Vektoren Geometrische Anwendungen Matrix beschreibt meist Transformationen von Vektoren im 2D bzw. 3D d.h. Dimension

Mehr

Iterative Verfahren für lineare Gleichungssysteme

Iterative Verfahren für lineare Gleichungssysteme Iterative Verfahren für lineare Gleichungssysteme Vorlesung Sommersemester 013 Humboldt-Universität zu Berlin Zeiten können noch nach Wunsch vereinbart werden! Kontakt: Dr. Rüdiger Müller Weierstraß-Institut

Mehr

Direkte Methoden für dünnbesetzte lineare Gleichungssysteme

Direkte Methoden für dünnbesetzte lineare Gleichungssysteme Direkte Methoden für dünnbesetzte lineare Gleichungssysteme Seminar, Wintersemester 2012/13 Hans Georg Bock Andreas Potschka Ruprecht-Karls-Universität Heidelberg 17. Oktober 2012 Direkte Methoden für

Mehr

Parallelrechnern. 12. März Technische Universität Chemnitz. Der Jacobi-Davidson Algorithmus auf. Parallelrechnern. Patrick Kürschner.

Parallelrechnern. 12. März Technische Universität Chemnitz. Der Jacobi-Davidson Algorithmus auf. Parallelrechnern. Patrick Kürschner. Technische Universität Chemnitz 12. März 2008 - sweise Gliederung - sweise - sweise Eigenwertprobleme Ziel: Lösung von Eigenwertproblemen Dabei: Ax = λx Matrix A C n n sehr groß, dünnbesetzt (sparse) Gesucht:

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Paralleles Höchstleistungsrechnen. Lösung tridiagonaler und dünnbesetzter linearer Gleichungssysteme

Paralleles Höchstleistungsrechnen. Lösung tridiagonaler und dünnbesetzter linearer Gleichungssysteme Paralleles Höchstleistungsrechnen Lösung tridiagonaler und dünnbesetzter linearer Gleichungssysteme Stefan Lang Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Universität Heidelberg INF 368,

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8

Mehr

Reduced-Rank Least Squares Modelle

Reduced-Rank Least Squares Modelle 16.12.2008 Wiederholung Gegeben: Matrix A m n Paar Rechter Eigenvektor x, Eigenwert λ: A x = λ x mit x R n \ 0, λ N Paar Linker Eigenvektor y, Eigenwert λ: y T A = λ y T Singulärwertzerlegung (SVD): A

Mehr

Lineare Gleichungssysteme Hierarchische Matrizen

Lineare Gleichungssysteme Hierarchische Matrizen Kompaktkurs Lineare Gleichungssysteme Hierarchische Matrizen M. Bebendorf, O. Steinbach O. Steinbach Lineare Gleichungssysteme SIMNET Kurs 24. 27.4.26 / 6 Numerische Simulation stationäre und instationäre

Mehr

Matrizen - Datenstrukturen und praktische Verfahren. Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Matrizen - Datenstrukturen und praktische Verfahren. Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Matrizen - Datenstrukturen und praktische Verfahren SS 217 Matrixdatenstrukuren und -algorithmen Matrixstrukturen Oft ist die Dimension von Matrizen und Vektoren ist

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 5. Dezember 2007 Definition : Tomographie (Fortsetzung) : Tomographie Definition: Ein lineares Gleichungssystem (LGS) ist ein System von n

Mehr

Numerische Lineare Algebra Spezielle Systeme

Numerische Lineare Algebra Spezielle Systeme Numerische Lineare Algebra Spezielle Systeme Friedrich Solowjow 2. Mai 2012, Bonn 1 / 34 1 Einleitung Übersicht Definitionen 2 3 Datenzugriff Speichertechniken 2 / 34 Übersicht Definitionen Gliederung

Mehr

High Performance Computing Blatt 8

High Performance Computing Blatt 8 Dr. Andreas Borchert Institut für Numerische Mathematik Prof. Dr. Stefan Funken Universität Ulm Prof. Dr. Karsten Urban Sommersemester 0 Markus Bantle, Kristina Steih High Performance Computing Blatt (Präsenzübung.

Mehr

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva,

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, Universität zu Köln SS 009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, mselva@math.uni-koeln.de Numerik I Musterlösung 1. praktische Aufgabe, Bandmatrizen Bei der Diskretisierung von

Mehr

Linear Systems and Least Squares

Linear Systems and Least Squares Linear Systems and Least Squares Vortragender: Gelin Jiofack Nguedong Betreuer: Prof. Dr. Joachim Weickert Proseminar: Matrixmethoden in Datenanalyse und Mustererkennung Wintersemester 2015/2016 18. November

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

Hyperlink Induced Topic Search- HITS. Ying Ren Universität Heidelberg, Seminar Infomation Retrieval

Hyperlink Induced Topic Search- HITS. Ying Ren Universität Heidelberg, Seminar Infomation Retrieval Hyperlink Induced Topic Search- HITS Hyperlink-basiertes Ranking Ying Ren 25.01.2010 Universität Heidelberg, Seminar Infomation Retrieval Grundgedanken zum Link-basierten Rankingverfahren

Mehr

1 Lineare Gleichungssysteme und Matrizen

1 Lineare Gleichungssysteme und Matrizen 1 Lineare Gleichungssysteme und Matrizen Das Studium linearer Gleichungssysteme und ihrer Lösungen ist eines der wichtigsten Themen der linearen Algebra. Wir werden zunächst einige grundlegende Begriffe

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n = b a 2 x + a 22 x 2 +...

Mehr

Parallele Rechenmodelle

Parallele Rechenmodelle Organisatorisches und Themenvorstellung, 21. Oktober 2016 Henning Meyerhenke, Moritz von Looz, Roland Glantz 1 Meyerhenke, Looz, Glantz: Institute for Theoretical Computer www.kit.edu Science Termine Bis

Mehr

Evaluation. Einleitung. Implementierung Integration. Zusammenfassung Ausblick

Evaluation. Einleitung. Implementierung Integration. Zusammenfassung Ausblick Christopher Schleiden Bachelor Kolloquium 15.09.2009 Einleitung Evaluation Implementierung Integration Zusammenfassung Ausblick Einleitung laperf Lineare Algebra Bibliothek für C++ Möglichkeit zur Integration

Mehr

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m I) MATRIZEN Der Start: Lineare Gleichungen y ax+ a2x2 + a3x3 y2 a2x+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i,2,3,..., m j - te Variable (Spalte), j,2,3,..., n Definition m x n Matrix

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 3 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt:

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

Vorlesung 5: MATRIX-DATENSTRUKTUREN UND SPARSE GEMM

Vorlesung 5: MATRIX-DATENSTRUKTUREN UND SPARSE GEMM Vorlesung 5: MATRIX-DATENSTRUKTUREN UND SPARSE GEMM 126 Hinweise! Mailinglisten: Vorlesung-GALA und NetworKit! Vorlesungs- und PÜ-Termine: Änderungen beachten!! Projektbeschreibungen abholen! 127 Wiederholung!

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Vorlesung 4: DATENSTRUKTUREN UND ALGORITHMEN

Vorlesung 4: DATENSTRUKTUREN UND ALGORITHMEN Vorlesung 4: DATENSTRUKTUREN UND ALGORITHMEN 107 Wiederholung zur Speicherhierarchie! EM- bzw. I/O-Modell: Übergang der Ebenen universell! Blockweise Abarbeitung unter Ausnutzung von Lokalität Chip On-/off-Chip,

Mehr

Termin 7: DATENSTRUKTUREN UND ALGORITHMEN

Termin 7: DATENSTRUKTUREN UND ALGORITHMEN Termin 7: DATENSTRUKTUREN UND ALGORITHMEN 133 Modell-Annahmen Annahme: Für eine dünn besetzte Matrix der Dimensionen M x N gilt nnz = Ω(N, M). Annahme: Der schnelle Speicher ist nicht groß genug, um eine

Mehr

Cramersche Regel. Satz 2.26

Cramersche Regel. Satz 2.26 ramersche Regel Satz 6 Es sei A R n n eine quadratische Matrix mit det(a) 6= Für das LGS Ax = b sei A j := (a,,a j, b, a j+,,a n ), also die Matrix, die entsteht, wenn in A die j-te Spalte durch den Vektor

Mehr

Texturkomprimierung. Philipp Klaus Krause. 6. November 2007

Texturkomprimierung. Philipp Klaus Krause. 6. November 2007 Texturkomprimierung Philipp Klaus Krause 6. November 2007 Gliederung 1 Einleitung 2 Verfahren Indizierte Farben S3TC ETC/iPACKMAN 3 Vergleich 4 Bibliographie Gliederung 1 Einleitung 2 Verfahren Indizierte

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Tensoren in der Datenanalyse

Tensoren in der Datenanalyse Tensoren in der Datenanalyse Edgar Tretschk Universität des Saarlandes 2. Dezember 2015 1 Inhalt 1 Grundlagen 2 Singulärwertzerlegung 3 Ziffernerkennung 4 Bewegungsabläufe 2 Tensoren als mehrdimensionale

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

Remarks on Floating Points

Remarks on Floating Points Remarks on Floating Points Prof. Dr. Jian-Jia Chen Department of Computer Science, Chair 2 TU Dortmund University, Germany October 3, 208 (based on the slides from Sedgewick and Wayne from University of

Mehr

Kapitel 15 Lineare Gleichungssysteme

Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170 Vollständige Induktion Kapitel 13 Vollständige Induktion Mathematischer Vorkurs TU Dortmund Seite 117 / 170 Vollständige

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Gliederung. Problemstellung Motivation Multi-Agenten Simulation GPU Programmierung Stand der Technik Abgrenzung

Gliederung. Problemstellung Motivation Multi-Agenten Simulation GPU Programmierung Stand der Technik Abgrenzung Philipp Kayser Gliederung Problemstellung Motivation Multi-Agenten Simulation GPU Programmierung Stand der Technik Abgrenzung Multi-Agenten Simulation (MAS) simuliert durch eine Vielzahl von Agenten Die

Mehr

Algorithmen zur Berechnung der Transitiven Hülle einer Datenbankrelation

Algorithmen zur Berechnung der Transitiven Hülle einer Datenbankrelation Algorithmen zur Berechnung der Transitiven Hülle einer Datenbankrelation Daniel Reinhold Shenja Leiser 6. Februar 2006 2/28 Gliederung Einführung Transitive Hülle Definition Iterative Algorithmen 1. Naive

Mehr

10 Lineare Gleichungssysteme

10 Lineare Gleichungssysteme ChrNelius : Lineare Algebra I (WS 2004/05) 1 10 Lineare Gleichungssysteme (101) Bezeichnungen: Ein System a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 ( ) a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 51 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A. Dr V Gradinaru D Devaud A Hiltebrand Herbstsemester 2014 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 91 91a) Sei A eine n n-matrix Das Gleichungssystem Ax

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

Algebraische Statistik ein junges Forschungsgebiet. Dipl.-Math. Marcus Weber

Algebraische Statistik ein junges Forschungsgebiet. Dipl.-Math. Marcus Weber Algebraische Statistik ein junges Forschungsgebiet Dipl.-Math. Marcus Weber Disputationsvortrag 15. Februar 2006 Gliederung 1. Statistische Modelle 2. Algebraische Interpretation statistischer Probleme

Mehr

Visual Analytics. Diana Topko. Grundseminar, 18. Dezember 2018

Visual Analytics. Diana Topko. Grundseminar, 18. Dezember 2018 Visual Analytics Diana Topko Grundseminar, 18. Dezember 2018 Agenda Visuelle Wahrnehmung Motivation für Visual Analytics Interactive Visual Analytics Ausblick Konferenzen Visuelle Wahrnehmung Text VS Bild

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Informatik II: Algorithmen und Datenstrukturen SS 2013

Informatik II: Algorithmen und Datenstrukturen SS 2013 Informatik II: Algorithmen und Datenstrukturen SS 2013 Vorlesung 11b, Mittwoch, 3. Juli 2013 (Editierdistanz, dynamische Programmierung) Prof. Dr. Hannah Bast Lehrstuhl für Algorithmen und Datenstrukturen

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 19 8. Juli 2010 Kapitel 14. Gewöhnliche Differentialgleichungen zweiter Ordnung 14.1 Systeme gewöhnlicher linearer Differentialgleichungen erster

Mehr

Kapitel 9: Lineare Gleichungssysteme

Kapitel 9: Lineare Gleichungssysteme Kapitel 9: Lineare Gleichungssysteme Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 9: Lineare Gleichungssysteme 1 / 15 Gliederung 1 Grundbegriffe

Mehr

Efficient Matrix Inversion in CUDA

Efficient Matrix Inversion in CUDA Seminar Multicore Architectures and Programming 08 am Lehrstuhl Informatik 12, Hardware-Software-Co-Design Efficient Matrix Inversion in CUDA Robert Grimm, Matthias Schneider Friedrich-Alexander Universität

Mehr

Kapitel 14 Lineare Gleichungssysteme

Kapitel 14 Lineare Gleichungssysteme Kapitel 4 Lineare Gleichungssysteme Kapitel 4 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 83 / 246 Kapitel 4 Lineare Gleichungssysteme Definition 4. (Lineares Gleichungssystem LGS)

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Betrachte ein beliebiges System von m linearen Gleichungen in den n Unbekannten x,,x n : a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 () a m x + a m2 x

Mehr

Inhalt. 1 Kurzer Ausblick 1

Inhalt. 1 Kurzer Ausblick 1 W. Oevel Numerik I Inhalt 1 Kurzer Ausblick 1 2 Fehleranalyse 5 2.1 Gleitpunktdarstellung........................ 5 2.2 Arithmetik.............................. 10 2.3 Fehlerfortpflanzung..........................

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure Wintersemester 8/9 Kapitel 4: Matrizen, lineare Abbildungen und Gleichungssysteme Volker Kaibel Otto-von-Guericke Universität Magdeburg Version vom 5. November 8 Page-Rank

Mehr

Voronoi Diagramme und deren Nutzen im 3D- Druck HAMBURG,

Voronoi Diagramme und deren Nutzen im 3D- Druck HAMBURG, Voronoi Diagramme und deren Nutzen im 3D- Druck ROBIN SCHENDERLEIN HAMBURG, 01.06.2016 Übersicht Motivation Historie Definition Algorithmus Datenstruktur Anwendungsfälle Quellen Motivation Postamts Problem

Mehr

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practical Numerical Training UKNum Lineare Gleichungssysteme Dr. H. Klahr & Dr. C. Mordasini Max Planck Institute für Astronomie, Heidelberg Programm: 1) Einführung 2) Gauss Elimination 3) Gauss mit Pivotisierung

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Einführung I Mathematik für Studierende der Biologie und des Lehramtes Chemie Dominik Schillo Universität des Saarlandes 007 (Stand: 007, 4:9 Uhr) Wie viel Kilogramm Salzsäure der Konzentration % muss

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

Algorithmen und Datenstrukturen II

Algorithmen und Datenstrukturen II Algorithmen und Datenstrukturen II D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Sommer 2009, 26. März 2009, c 2009 D.Rösner D.

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

Seminarvortrag. Euler-Approximation. Marian Verkely TU Dortmund

Seminarvortrag. Euler-Approximation. Marian Verkely TU Dortmund Seminarvortrag Euler-Approximation Marian Verkely TU Dortmund 03.12.14 1 / 33 Inhaltsverzeichnis 1 Motivation 2 Simulierte Prozesse 3 Euler-Approximation 4 Vasicek-Prozess: Vergleich analytische Lösung

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische lineare Iterationsverfahren Typeset by FoilTEX 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen

Mehr

Maximum and Minimum Satisfiability Problem

Maximum and Minimum Satisfiability Problem and Lehrstuhl für Wissensverarbeitung und Informationssysteme Universität Potsdam 25. Januar 2006 Agenda 1 2 3 I Erfüllbarkeitsproblem der Aussagenlogik : Aussagenlogische Formel auf Erfüllbarkeit prüfen

Mehr

Dreiecksysteme und LR-Faktorzerlegung

Dreiecksysteme und LR-Faktorzerlegung Dreiecksysteme und 06.05.2011 Dreiecksysteme und Inhaltsverzeichnis 1 Dreieckssysteme Vorwärts-Substitution (Zeilen-Version) Rückwärts-Substitution (Zeilen-Version) Vorwärts-Substitution (Spalten-Version)

Mehr

Matrizenoperationen mit FORTRAN

Matrizenoperationen mit FORTRAN Kapitel 2 Matrizenoperationen mit FORTRAN 21 Grundlagen Bei vielen Anwendungen müssen große zusammenhängende Datenmengen gespeichert und verarbeitet werden Deshalb ist es sinnvoll, diese Daten nicht als

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen PDGL 2. Ordnung

Mehr

(c) x 2 + 3x 3 = 1 3x 1 + 6x 2 3x 3 = 2 6x 1 + 6x x 3 = 5

(c) x 2 + 3x 3 = 1 3x 1 + 6x 2 3x 3 = 2 6x 1 + 6x x 3 = 5 Musterlösungen zu Mathematik II (Elementare Lineare Algebra) Blatt Nathan Bowler A: Präsenzaufgaben. Zeilenstufenform und reduzierte Zeilenstufenform erkennen Welche der folgenden Matrizen sind in Zeilenstufenform?

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2015

Institut für Analysis und Scientific Computing E. Weinmüller WS 2015 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 5 L I N E A R E A L G E B R A F Ü R T P H, U E (3.64). Haupttest (FR,..5) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Technische Universität München Christoph Niehoff Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 009/00 Die beiden Hauptthemen von diesem Teil des Ferienkurses sind Lineare Gleichungssysteme

Mehr

... Who was K. Hessenberg? Erhard Heil (Technische Hochschule Darmstadt) ( Compendex. (Seiji Fujino)( (1.1) Plus Database System)

... Who was K. Hessenberg? Erhard Heil (Technische Hochschule Darmstadt) ( Compendex. (Seiji Fujino)( (1.1) Plus Database System) $\cdot$ 944 1996 208-217 208 Who was K Hessenberg? (Seiji Fujino)( ) Erhard Heil (Technische Hochschule Darmstadt) 1, 1 ( ) $\cdot$ $\cdot$ / $*\iota$ $0$ $\cdot$ $0$ $0$ (11) 1 ( ), 1 $\mathrm{e}\mathrm{i}$

Mehr

Lineare Gleichungssysteme Seite 98. Spaltenorientiert. Zeilenorientiert. 1. Vorgegeben: 1 kg Mehl, 2 kg Zucker

Lineare Gleichungssysteme Seite 98. Spaltenorientiert. Zeilenorientiert. 1. Vorgegeben: 1 kg Mehl, 2 kg Zucker Definition und Beispiele Definition und Beispiele Im linearen Gleichungssystem Seite 98 a x + a x + + a n = b a x + a x + + a n = b a m x + a m x + + a mn = b m sind die Koeffizienten a ij und die rechten

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,...

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,... Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,..., k, so dass gilt M = k c i P i i=1 k c i = r. i=1 Diskrete Strukturen 7.1 Matchings

Mehr

Vorlesung 5: DATENSTRUKTUREN UND ALGORITHMEN

Vorlesung 5: DATENSTRUKTUREN UND ALGORITHMEN Vorlesung 5: DATENSTRUKTUREN UND ALGORITHMEN 125 Motivation! Wahl der Datenstruktur wichtiger Schritt beim Entwurf und der Implementierung von Algorithmen! Dünn besetzte Graphen und Matrizen bilden keine

Mehr

LR Zerlegung. Michael Sagraloff

LR Zerlegung. Michael Sagraloff LR Zerlegung Michael Sagraloff Beispiel eines linearen Gleichungssystems in der Ökonomie (Input-Output Analyse Wir nehmen an, dass es 3 Güter G, G, und G 3 gibt Dann entspricht der Eintrag a i,j der sogenannten

Mehr

Sudoku ist NP-vollständig

Sudoku ist NP-vollständig Sudoku ist NP-vollständig Seminar über Algorithmen und Komplexität Freie Universität Berlin Institut für Informatik SS 007 Sarah Will 8.07.007 Einführung Sudoku ist ein japanisches Logikrätsel und hat

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren III.3 GMRES und CG-Verfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung

Mehr

Universität Bremen Vorlesung SoSe 2013 Wissenschaftliches Rechnen und Anwendung in der Tsunami-Modellierung

Universität Bremen Vorlesung SoSe 2013 Wissenschaftliches Rechnen und Anwendung in der Tsunami-Modellierung Universität Bremen Vorlesung SoSe 2013 Wissenschaftliches Rechnen und Anwendung in der Tsunami-Modellierung Prof. Dr. Wolfgang Hiller, Prof. Dr. Alfred Schmidt Alfred-Wegener-Institut für Polar- und Meeresforschung,

Mehr

Zeilenstufenform. Wir beweisen nun den schon früher angekündigten Satz.

Zeilenstufenform. Wir beweisen nun den schon früher angekündigten Satz. Zeilenstufenform Wir beweisen nun den schon früher angekündigten Satz. Satz. Jede m n-matrix A lässt sich durch elementare Zeilenumformungen auf Zeilenstufenform und analog durch elementare Spaltenumformungen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 24-6. Sitzung Marcus Georgi tutorium@marcusgeorgi.de 04.12.2009 1 Repräsentation von Graphen im Rechner Adjazenzlisten Adjazenzmatrizen Wegematrizen 2 Erreichbarkeitsrelationen

Mehr

Pollards Rho-Methode zur Faktorisierung

Pollards Rho-Methode zur Faktorisierung C A R L V O N O S S I E T Z K Y Pollards Rho-Methode zur Faktorisierung Abschlusspräsentation Bachelorarbeit Janosch Döcker Carl von Ossietzky Universität Oldenburg Department für Informatik Abteilung

Mehr

Beispielvortrag: HPCG auf Intel Haswell-EP

Beispielvortrag: HPCG auf Intel Haswell-EP Beispielvortrag: HPCG auf Intel Haswell-EP Johannes Hofmann 1 Seminarvortrag Architekturen von Multi- und Vielkern-Prozessoren Erlangen, 19.4.2016 1 Computer Architecture, University Erlangen-Nuremberg

Mehr

Anerkennungsblatt für die Anerkennung von chinesischen Bachelor-Leistungen auf den Studiengang Elektrotechnik (Prüfungsordnung 2013)

Anerkennungsblatt für die Anerkennung von chinesischen Bachelor-Leistungen auf den Studiengang Elektrotechnik (Prüfungsordnung 2013) : Blatt I/1 Nr. ET-01 04 01 Modulname Credits Note Modulnr., Pr.nr. Modulname/Teilleistung LP ja nein (Begründung) Advanced/Higher Mathematics, Technical/ Applied Algebraische und 11 Mathematics, Calculus

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10 D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)

Mehr

TEIL II LINEARE ALGEBRA

TEIL II LINEARE ALGEBRA TEIL II LINEARE ALGEBRA 1 Kapitel 10 Lineare Gleichungssysteme 101 Motivation Sei K ein fest gewählter Körper (zb K = R, C, Q, F p ) Betrachten das lineare Gleichungssystem (L) α 11 x 1 + α 12 x 2 + +

Mehr

Reduzierung der Netzwerklast von CEP unter Zuhilfenahme von Datenbanken

Reduzierung der Netzwerklast von CEP unter Zuhilfenahme von Datenbanken Projekt INF Reduzierung der Netzwerklast von CEP unter Zuhilfenahme von Datenbanken Benjamin Braun, Karsten Schatz, Vethiga Srikanthan 27. September 2012 Complex Event Processing (CEP) Techniken, Methoden

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr