Mining über RDBMSe. von. Christian Widmer. Wie gut lässt sich Mining mit SQL realisieren?

Größe: px
Ab Seite anzeigen:

Download "Mining über RDBMSe. von. Christian Widmer. Wie gut lässt sich Mining mit SQL realisieren?"

Transkript

1 Mining über RDBMSe von Christian Widmer Wie gut lässt sich Mining mit SQL realisieren? Müssen neue Konstrukte zur Verfügung gestellt werden, wenn ja welche?

2 Vortragsüberblick Association Rules Apriori Algorithmus Implementationsalternativen Alternativen in SQL-92 Alternativen in SQL-OR Schlussfolgerungen

3 Association Rules Syntax: X Y z.b. {Bier} {Chips} Salopp: Wer Bier kauft, kauft auch Chips. (X, Y sind Mengen von Items, und X Y = ) Anforderung an eine Regel 1 Minimum Support (Relevanz) 2% der Kunden kaufen Bier und Chips. 2 Minimum Confidence (Vertrauen) 40% der Kunden, die Bier kaufen, kaufen auch Chips.

4 Apriori Algorithmus Begriffe, die für den Algorithmus wichtig sind Frequent Itemset Itemmengen, deren Relevanz grösser ist als Minimum Support. Candidate Itemset Ist eine potentielle Kandidatenmenge für ein Frequent Itemset. Candidate Itemset Frequent Itemset Vorgehen des Algorithmus 1) Finde alle Frequent Itemsets durch Iteration von a) und b) a) Generiere Candidate Itemsets b) Bestimme die Relevanz (Support Counting) 2) Finde alle gültigen Regeln Bemerkungen 1) Jede Teilmenge eines Frequent Itemset ist auch ein Frequent Itemset. 2) Itemsets müssen geordnet sein (Implementationsanforderung)

5 Apriori Algorithmus Frequent Itemsets mit Support = 50 % Frequent Itemset F1 {Käse} {Milch} {Butter} {Brot} Frequent Itemset F2 {Käse, Butter} {Milch, Butter} {Milch, Brot} {Butter, Brot} Transaktionen TID Items Alder {Käse, Butter, Honig} Durrer {Milch, Butter, Brot} Moser {Käse, Milch, Butter, Brot} Specht {Milch, Brot} Candidate Itemset C2 Support {Käse, Mich} 1 {Käse, Butter} 2 {Käse, Brot} 1 {Milch, Butter} 2 {Mich, Brot} 3 {Butter, Brot} 2 Candidate Itemset C3 Support {Milch, Butter, Brot} 2 Frequent Itemset F3 {Milch, Butter, Brot}

6 Apriori Algorithmus Generieren der Kandidatenmenge: Beispiel Gegeben F3 = {{1,2,3},{1,2,4},{1,3,4},{1,3,5},{2,3,4}} Gesucht Eine möglichst kleines Candidate Itemset C4 C*4 = {{1,2,3,4},{1,3,4,5}} (provisorische Kandidatenmenge) C4 = {{1,2,3,4}} (Kandidatenmenge nach Prune Step) 1 Generiere aus jeweils 2 Elementen (Generatoren) aus F3 einen Kandidaten. INSERT INTO C*4 I1.item1, I1.item2, I1.item3, I2.item3 FROM F3 I1, F3 I2, WHERE I1.item1 = I2.item1 AND I1.item2 = I2.item2 AND I1.item3 < I2.item3 2 Teste die restlichen Teilmengen der Grösse 3, ob sie auch frequent sind. INSERT INTO C4 FROM WHERE AND C.item1, C.item2, C.item3, C.item4 C*4 C, F3 I1, F3 I2 C.item2 = I1.item1 AND C.item3 = I1.item2 AND C.item4 = I1.item3 C.item1 = I2.item1 AND C.item3 = I2.item2 AND C.item4 = I2.item3

7 Implementationsarten Cursor Interface viel Kontextwechsel zwischen DBMS und Applikation Stored Procedure + keine Kontextwechsel zwischen DBMS und Applikation Cache Mine + Daten werden einmal von der Datenbank gelesen und in einem Binärfile gespeichert (sehr effizient). User Defined Function (UDF) + keine Kontextwechsel zwischen DBMS und Applikation aufwendig und gefährlich (programmiert in klassischer Sprache z.b. C) SQL-92 (K-Way Join / Subquery)? Effizienz SQL-OR (Gather Join, Gather Count, Vertical)? Effizienz

8 Gegeben K Way Join (SQL 92) Support Counting Transaktionstabelle T mit Tupeln (tid, item) Candidate Itemset Ck Gesucht Frequent Itemset Fk Vorgehen 1. k-facher JOIN von T mit sich selbst (Input: T / Output: T*) (unnesting) 2. JOIN von T mit Ck und Aggregation (Input: T* / Output: Fk) Beispiel für k = 3 INSERT INTO FROM WHERE AND AND GROUP BY HAVING F3 SELECT item1, item2 COUNT(*) C3, T t1, T t2 t1.item = C3.item1 t2.item = C3.item2 t1.tid = t2.tid item1, item2 count(*) > :minsup

9 K Way Join: Support Counting TID Itemset 100 1, , , , , , , , , , , , , , , , , , 4 t 1.tid = t 2.tid T t 1 C 3.item 1 = t 1.item C 3.item 2 = t 2.item HAVING COUNT(*) > :minsup GROUP BY item 1, item 2 T t 2 C 2 C3 = {1, 2} TID Itemset Support 100 1, , 2 Itemset

10 Idee Subquery Based (SQL-92) Support Counting Ausnutzen der Eigenschaft, dass Items in einem Candidate Itemset gemeinsame Präfixe haben. (Items sind in kanonischer Reihenfolge sortiert) Vorgehensweise Verwenden einer rekursive Subquery Aggregation der finalen Subquery k findet das Frequent Itemset Eigenschaft der Subquery Subquery der Rekursionstiefe v findet alle TIDs, welche die ersten v Items vom Candidate Itemset enthält. Beispiel: Subquery Q3 SELECT item1, item2, item3, tid FROM T t3, (Subquery Q2) AS r2 (SELECT DISTINCT item1, item2, item3 FROM Ck) AS d3 WHERE r2.item1 = d3.item1 AND r2.item2 = d3.item2 AND r2.tid = t3.tid AND t3.item = d3.item3

6.6 Vorlesung: Von OLAP zu Mining

6.6 Vorlesung: Von OLAP zu Mining 6.6 Vorlesung: Von OLAP zu Mining Definition des Begriffs Data Mining. Wichtige Data Mining-Problemstellungen, Zusammenhang zu Data Warehousing,. OHO - 1 Definition Data Mining Menge von Techniken zum

Mehr

Kapitel 12: Schnelles Bestimmen der Frequent Itemsets

Kapitel 12: Schnelles Bestimmen der Frequent Itemsets Einleitung In welchen Situationen ist Apriori teuer, und warum? Kapitel 12: Schnelles Bestimmen der Frequent Itemsets Data Warehousing und Mining 1 Data Warehousing und Mining 2 Schnelles Identifizieren

Mehr

Kapitel 11: Association Rules

Kapitel 11: Association Rules Kapitel 11: Association Association Einleitung Association : Eine wichtige Art von Mustern, an der man im Data-Mining Kontext interessiert ist. Muster mit einfacher Struktur. Ziel im folgenden: Finden

Mehr

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid

Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid Institut für Statistik LMU München Sommersemester 2013 Zielsetzung

Mehr

Algorithms for Pattern Mining AprioriTID. Stefan George, Felix Leupold

Algorithms for Pattern Mining AprioriTID. Stefan George, Felix Leupold Algorithms for Pattern Mining AprioriTID Stefan George, Felix Leupold Gliederung 2 Einleitung Support / Confidence Apriori ApriorTID Implementierung Performance Erweiterung Zusammenfassung Einleitung 3

Mehr

5. Assoziationsregeln

5. Assoziationsregeln 5. Generieren von Assoziationsregeln Grundbegriffe 5. Assoziationsregeln Assoziationsregeln beschreiben gewisse Zusammenhänge und Regelmäßigkeiten zwischen verschiedenen Dingen, z.b. den Artikeln eines

Mehr

FernUniversität in Hagen. Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln. Thema 1.1.1 Der Apriori-Algorithmus

FernUniversität in Hagen. Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln. Thema 1.1.1 Der Apriori-Algorithmus FernUniversität in Hagen Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln Thema 1.1.1 Der Apriori-Algorithmus Referentin: Olga Riener Olga Riener. Thema 1.1.1. Der

Mehr

ARBEITSBLATT ZUR SQL-BEFEHLEN

ARBEITSBLATT ZUR SQL-BEFEHLEN Gegeben ist die folgende Datenbank: ARBEITSBLATT ZUR SQL-BEFEHLEN In einer Firma gibt es Mitarbeiter. Jeder Mitarbeiter ist eindeutig einer Abteilung zugeordnet. Manche Mitarbeiter sind an einem Projekt

Mehr

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung Ermittlung von Assoziationsregeln aus großen Datenmengen Zielsetzung Entscheidungsträger verwenden heutzutage immer häufiger moderne Technologien zur Lösung betriebswirtschaftlicher Problemstellungen.

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language: SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In

Mehr

Leseprobe: SQL mit MySQL - Band 4 Kompendium mit Online-Übungs-DB. Kompendium zur schnellen Kurzinformation der Datenbanksprache SQL/MySQL 5.

Leseprobe: SQL mit MySQL - Band 4 Kompendium mit Online-Übungs-DB. Kompendium zur schnellen Kurzinformation der Datenbanksprache SQL/MySQL 5. Leseprobe: SQL mit MySQL - Band 4 Kompendium mit Online-Übungs-DB Kompendium zur schnellen Kurzinformation der Datenbanksprache SQL/MySQL 5.1 im Internet: www.datenbanken-programmierung.de... 3.0 SQL nach

Mehr

VII.3 Assoziationsregeln

VII.3 Assoziationsregeln VII.3 Assoziationsregelverfahren VII.3. Einführung [Bollinger 96] VII.3 Assoziationsregeln Algorithmen zum Entdecken von Assoziationsregeln sind typische Vertreter von Data Mining Verfahren. Assoziationsregeln

Mehr

Abfragen (Queries, Subqueries)

Abfragen (Queries, Subqueries) Abfragen (Queries, Subqueries) Grundstruktur einer SQL-Abfrage (reine Projektion) SELECT [DISTINCT] {* Spaltenname [[AS] Aliasname ] Ausdruck} * ; Beispiele 1. Auswahl aller Spalten SELECT * ; 2. Auswahl

Mehr

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

Konzeptbeschreibung Ziel: Methode: Vorgehen: Entfernen von Attributen Verallgemeinerung von Attributen Relevanzanalyse der restlichen Attribute

Konzeptbeschreibung Ziel: Methode: Vorgehen: Entfernen von Attributen Verallgemeinerung von Attributen Relevanzanalyse der restlichen Attribute Konzeptbeschreibung Ziel: Knappe Charakterisierung einer Datenmenge im Vergleich zu einer anderen Datenmenge (Kontrastmenge) Methode: Herausfinden charakteristischer Attribute auf angemessener Abstraktionsebene

Mehr

Kapitel 13: Pattern Mining unter Constraints

Kapitel 13: Pattern Mining unter Constraints Kapitel 13: Pattern Mining unter Dieses Kapitel: Nicht mehr Suche nach allen Frequent Itemsets/Association Rules, sondern Einschränkung der Ziel-Menge. Strukturen, auf denen wir operieren, sind wie bisher

Mehr

Mining top-k frequent itemsets from data streams

Mining top-k frequent itemsets from data streams Seminar: Maschinelles Lernen Mining top-k frequent itemsets from data streams R.C.-W. Wong A.W.-C. Fu 1 Gliederung 1. Einleitung 2. Chernoff-basierter Algorithmus 3. top-k lossy counting Algorithmus 4.

Mehr

SELECT dient dazu, aus einer vorhandenen Datenbank bestimmte Spalten und Zeilen auszugeben es handelt sich also um eine Auswahlabfrage.

SELECT dient dazu, aus einer vorhandenen Datenbank bestimmte Spalten und Zeilen auszugeben es handelt sich also um eine Auswahlabfrage. SELECT-FROM SELECT dient dazu, aus einer vorhandenen Datenbank bestimmte Spalten und Zeilen auszugeben es handelt sich also um eine Auswahlabfrage. Inhaltsverzeichnis 1 Der grundlegende Aufbau 2 Doppelte

Mehr

5.8 Bibliotheken für PostgreSQL

5.8 Bibliotheken für PostgreSQL 5.8 Bibliotheken für PostgreSQL Haskell/WASH: Modul Dbconnect PHP: pqsql-funktionen Java/JSP: JDBC Perl: DBI database interface modul Vorläufige Version 80 c 2004 Peter Thiemann, Matthias Neubauer 5.9

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

Prozedurale Datenbank- Anwendungsprogrammierung

Prozedurale Datenbank- Anwendungsprogrammierung Idee: Erweiterung von SQL um Komponenten von prozeduralen Sprachen (Sequenz, bedingte Ausführung, Schleife) Bezeichnung: Prozedurale SQL-Erweiterung. In Oracle: PL/SQL, in Microsoft SQL Server: T-SQL.

Mehr

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

Kapitel 17: Date Warehouse

Kapitel 17: Date Warehouse Kapitel 17: Date Warehouse 1 OLTP versus OLAP OLTP (Online Transaction Processing) z.b. Flugreservierung, Handelsunternehmen kleine, kurze Transaktionen jeweils auf jüngstem Zustand OLAP (Online Analytical

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

In Tabelle 2.1 sehen Sie das Ergebnis beider Ausführungen auf meiner Maschine.

In Tabelle 2.1 sehen Sie das Ergebnis beider Ausführungen auf meiner Maschine. Kapitel 2 Datenverwaltung durch SQL Server Wir wollen das obige Skript zwei Mal laufen lassen, einmal mit und einmal ohne eingeschalteten Schreibcache der Festplatte. Für eine lokale Festplatte können

Mehr

Erste Schritte, um selber ConfigMgr Reports zu erstellen

Erste Schritte, um selber ConfigMgr Reports zu erstellen Thomas Kurth CONSULTANT/ MCSE Netree AG thomas.kurth@netree.ch netecm.ch/blog @ ThomasKurth_CH Erste Schritte, um selber ConfigMgr Reports zu erstellen Configuration Manager Ziel Jeder soll nach dieser

Mehr

SQL Wiederholung. Datenbanktechnologien. Verbunde. Aggregation und Gruppierung. Unterabfragen. Hochschule für Technik und Wirtschaft Berlin

SQL Wiederholung. Datenbanktechnologien. Verbunde. Aggregation und Gruppierung. Unterabfragen. Hochschule für Technik und Wirtschaft Berlin SQL Wiederholung Datenbanktechnologien Prof. Dr. Ingo Claÿen Prof. Dr. Martin Kempa Hochschule für Technik und Wirtschaft Berlin Verbunde Aggregation und Gruppierung Unterabfragen Verbunde Inner-Join Nur

Mehr

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) DDL ist Teil von SQL (Structured

Mehr

Musterlösung zur Finalklausur Datenbanksysteme am

Musterlösung zur Finalklausur Datenbanksysteme am Musterlösung zur Finalklausur Datenbanksysteme am 5.2.2003 Aufgabe 1 a) Anfragen: (20 Punkte) i.suchen Sie die Stücke (Titel), die Komponist Lennon erstellt hat und von der Musikfirma EMI veröffentlicht

Mehr

Datenbanksysteme Kapitel 5: SQL Data Manipulation Language

Datenbanksysteme Kapitel 5: SQL Data Manipulation Language Datenbanksysteme Kapitel 5: SQL Data Manipulation Language Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter Chamoni

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

Sructred Query Language

Sructred Query Language Sructred Query Language Michael Dienert 11. November 2010 Inhaltsverzeichnis 1 Ein kurzer Versionsüberblick 1 2 SQL-1 mit einigen Erweiterungen aus SQL-92 2 3 Eine Sprache zur Beschreibung anderer Sprachen

Mehr

Übungen zur Vorlesung Informationssysteme - Blatt 5

Übungen zur Vorlesung Informationssysteme - Blatt 5 Übungen zur Vorlesung Informationssysteme - Blatt 5 Übungsblatt Nr.5 Informationssysteme - WS 04/05 1 a) Welche Kinos gibt es in Bonn? SELECT Name, Adresse FROM kino WHERE Telefon LIKE 0228% ; Übungsblatt

Mehr

Studienarbeit. Maria Soldatova

Studienarbeit. Maria Soldatova Leibniz Universität Hannover Fakultät für Elektrotechnik und Informatik Fachgebiet Datenbanken und Informationssysteme im Studiengang Mathematik mit Studienrichtung Informatik Diskussion und Implementierung

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

Implementierung der XPath-Anfragesprache für XML-Daten in RDBMS unter Ausnutzung des Nummerierungsschemas DLN

Implementierung der XPath-Anfragesprache für XML-Daten in RDBMS unter Ausnutzung des Nummerierungsschemas DLN Vorstellung der Diplomarbeit Implementierung der XPath-Anfragesprache für XML-Daten in RDBMS unter Ausnutzung des Nummerierungsschemas DLN Oberseminar Datenbanken WS 05/06 Diplomand: Oliver Schmidt Betreuer:

Mehr

Datenbanken Wintersemester 11/12. Prof. Dr. W. May

Datenbanken Wintersemester 11/12. Prof. Dr. W. May AG Datenbanken und Informationssysteme Institut für Informatik Universität Göttingen Datenbanken Wintersemester 11/12 Prof. Dr. W. May 3. Übungsblatt: SQL Besprechung voraussichtlich am 20/21.12.2011 Aufgabe

Mehr

Oracle 12c: Neuerungen in PL/SQL. Roman Pyro DOAG 2014 Konferenz

Oracle 12c: Neuerungen in PL/SQL. Roman Pyro DOAG 2014 Konferenz Oracle 12c: Neuerungen in PL/SQL Roman Pyro DOAG 2014 Konferenz Herrmann & Lenz Services GmbH Herrmann & Lenz Solutions GmbH Erfolgreich seit 1996 am Markt Firmensitz: Burscheid (bei Leverkusen) Beratung,

Mehr

ACCESS SQL ACCESS SQL

ACCESS SQL ACCESS SQL ACCESS SQL Datenbankabfragen mit der Query-Language ACCESS SQL Datenbankpraxis mit Access 34 Was ist SQL Structured Query Language Bestehend aus Datendefinitionssprache (DDL) Datenmanipulationssprache

Mehr

Kapitel 15: Mining von Sequential Patterns

Kapitel 15: Mining von Sequential Patterns Kapitel 15: Mining von Sequential Patterns Lernziele Weitere Art von Sequential Patterns/ Constraints für den Mining Prozeß kennenlernen. Erkennen, daß Generate&Test Paradigma für diverse Mining-Problemstellungen

Mehr

6. Überblick zu Data Mining-Verfahren

6. Überblick zu Data Mining-Verfahren 6. Überblick zu Data Mining-Verfahren Einführung Clusteranalse k-means-algorithmus Klassifikation Klassifikationsprozess Konstruktion eines Entscheidungsbaums Assoziationsregeln / Warenkorbanalse Support

Mehr

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis.

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis. SQL Lehr- und Forschungseinheit Datenbanken und Informationssysteme Ziele Grundlagen von SQL Beziehung zur relationalen Algebra SELECT, FROM, WHERE Joins ORDER BY Aggregatfunktionen Lehr- und Forschungseinheit

Mehr

DATENBANKEN & SQL. Martin Schmidt Berufsschule Obernburg

DATENBANKEN & SQL. Martin Schmidt Berufsschule Obernburg DATENBANKEN & SQL Martin Schmidt Berufsschule Obernburg Hinweis Das Script enthält zahlreiche Codebeispiele, die teilweise direkt zu den im Unterricht verwendeten Übungsdatenbanken Volkshochschule Waldklinik

Mehr

Vom Suchen und Finden individueller Empfehlungen aus großen Objektmengen. PD Dr.-Ing. habil. Meike Klettke meike.klettke@uni-rostock.

Vom Suchen und Finden individueller Empfehlungen aus großen Objektmengen. PD Dr.-Ing. habil. Meike Klettke meike.klettke@uni-rostock. Vom Suchen und Finden individueller Empfehlungen aus großen Objektmengen PD Dr.-Ing. habil. Meike Klettke meike.klettke@uni-rostock.de 1 Informationsflut Amazon: Alle lieferbaren Bücher (930.000 Titeln

Mehr

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language)

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language) Einführung in SQL 1. Grundlagen Structured Query Language Viele Dialekte Unterteilung: i. DDL (Data Definition Language) ii. iii. DML (Data Modifing Language) DRL (Data Retrival Language) 1/12 2. DDL Data

Mehr

SQL Intensivpraktikum SS 2008

SQL Intensivpraktikum SS 2008 SQL Intensivpraktikum SS 2008 Aggregation von Daten Arbeit mit Gruppen SQL1 basierend auf OAI-Kurs Copyright Oracle Corporation, 1998. All rights reserved. Gruppenfunktionen Gruppenfunktionen verarbeiten

Mehr

Datenbanksysteme Vorlesung vom noch Kapitel 7: SQL. Oliver Vornberger. Institut für Informatik Universität Osnabrück

Datenbanksysteme Vorlesung vom noch Kapitel 7: SQL. Oliver Vornberger. Institut für Informatik Universität Osnabrück Datenbanksysteme 2009 Vorlesung vom 19.05.2009 noch Kapitel 7: SQL Oliver Vornberger Institut für Informatik Universität Osnabrück SQL: Self Join 15.) Liste die Namen der Assistenten, die für denselben

Mehr

Details zu den Ausdrücken nach FROM, WHERE, GROUP BY und HAVING finden Sie in den Abschnitten über JOIN, WHERE und GROUP BY.

Details zu den Ausdrücken nach FROM, WHERE, GROUP BY und HAVING finden Sie in den Abschnitten über JOIN, WHERE und GROUP BY. SELECT - Der Grundbefehl zur Auswahl von Daten Die SELECT-Anweisung fragt Daten aus einer Datenbank ab und stellt diese in einer virtuellen Tabelle zur Verfügung. Diese virtuelle Tabelle, eine Menge von

Mehr

SQL-Befehlsliste. Vereinbarung über die Schreibweise

SQL-Befehlsliste. Vereinbarung über die Schreibweise Vereinbarung über die Schreibweise Schlüsselwort [optionale Elemente] Beschreibung Befehlsworte in SQL-Anweisungen werden in Großbuchstaben geschrieben mögliche, aber nicht zwingend erforderliche Teile

Mehr

Schulinternes Curriculum im Fach Informatik

Schulinternes Curriculum im Fach Informatik Schulinternes Curriculum im Fach Informatik Unterricht in EF : 1. Geschichte der elektronischen Datenverarbeitung (3 Stunden) 2. Einführung in die Nutzung von Informatiksystemen und in grundlegende Begriffe

Mehr

MySQL-Befehle. In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben.

MySQL-Befehle. In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben. MySQL-Befehle 1. Einleitung In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben. 2. Arbeiten mit Datenbanken 2.1 Datenbank anlegen Eine Datenbank kann man wie folgt

Mehr

Seminar Map/Reduce Algorithms on Hadoop. Topics. Alex, Christoph

Seminar Map/Reduce Algorithms on Hadoop. Topics. Alex, Christoph Seminar Map/Reduce Algorithms on Hadoop Topics Alex, Christoph Organisatorisches Prioritisierte Liste mit allen vorgestellten Themen bis heute 23:59 an Alexander.Albrecht@hpi.uni-potsdam.de Vergabe der

Mehr

Grundlagen Datenbanken Sommersemester 2008

Grundlagen Datenbanken Sommersemester 2008 Rechnerübung SQL Installation SQL Server: SQLite ist eine SQL Datenbank, die keine Installation erfordert und direkt über die Kommandozeile angesprochen werden kann. Geht auf http://www.sqlite.org/download.html

Mehr

MySQL: Einfaches Rechnen. www.informatikzentrale.de

MySQL: Einfaches Rechnen. www.informatikzentrale.de MySQL: Einfaches Rechnen Vorweg: Der Merksatz Warum geht Herbert oft laufen? Vorweg: Der Merksatz Warum geht Herbert oft laufen?...... WHERE... GROUP BY... HAVING... ORDER BY... LIMIT Beispieldatenbank

Mehr

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe Hadoop Demo HDFS, Pig & Hive in Action Oracle DWH Konferenz 2014 Carsten Herbe Wir wollen eine semi-strukturierte Textdatei in Hadoop verarbeiten und so aufbereiten, dass man die Daten relational speichern

Mehr

Fachbereich Informatik Praktikum 1

Fachbereich Informatik Praktikum 1 Hochschule Darmstadt DATA WAREHOUSE SS2015 Fachbereich Informatik Praktikum 1 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.April.2015 1. Kurzbeschreibung In diesem Praktikum geht

Mehr

Sie sollen eine Datenbank für Befragungen mittels Online-Fragebögen zu unterschiedlichen Themen erstellen:

Sie sollen eine Datenbank für Befragungen mittels Online-Fragebögen zu unterschiedlichen Themen erstellen: FRAGEBOGEN-AUFGABE Sie sollen eine Datenbank für Befragungen mittels Online-Fragebögen zu unterschiedlichen Themen erstellen: Ein Fragebogen besteht aus mehreren Fragen, eine Frage kann in mehreren Fragebögen

Mehr

SQL: Weitere Funktionen

SQL: Weitere Funktionen Vergleich auf Zeichenketten SQL: Weitere Funktionen LIKE ist ein Operator mit dem in Zeichenketten andere Zeichenketten gesucht werden; zwei reservierte Zeichen mit besonderer Bedeutung sind hier % (manchmal

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #4. SQL (Teil 2)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #4. SQL (Teil 2) Vorlesung #4 SQL (Teil 2) Fahrplan Eine weitere Aggregation: median Geschachtelte Anfragen in SQL Korrelierte vs. Unkorrelierte Anfragen Entschachtelung der Anfragen Operationen der Mengenlehre Spezielle

Mehr

SQL Teil 2. SELECT Projektion Selektion Vereinigung, Schnitt, Differenz Verbund Komplexer SELECT-Ausdruck

SQL Teil 2. SELECT Projektion Selektion Vereinigung, Schnitt, Differenz Verbund Komplexer SELECT-Ausdruck SELECT Projektion Selektion Vereinigung, Schnitt, Differenz Verbund Fahren fort mit SQL Befehlen. Bilden Relationenalgebra auf SQL ab. So Umsetzung von Anfragen an die DB (bzw. Tabellen) möglich. SELECT

Mehr

Datenmanipulation in SQL. Select Anweisung

Datenmanipulation in SQL. Select Anweisung Datenmanipulation in SQL Unter Datenmanipulation wird sowohl der lesende Zugriff auf die Daten (Select Statement) als auch die Änderung von Daten (Insert, Delete, Update) subsummiert. Wir beginnen mit

Mehr

User Defined Functions im DB2

User Defined Functions im DB2 User Defined Functions im DB2 von Rosmarie Peter, Trivadis AG User Defined Functions (UDFs) gestatten es, eigene Funktionen zu schreiben, die in SQL-Statements verwendet werden können. In diesem Artikel

Mehr

105.3 SQL-Datenverwaltung

105.3 SQL-Datenverwaltung LPI-Zertifizierung 105.3 SQL-Datenverwaltung Copyright ( ) 2009 by Dr. W. Kicherer. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 2.0 Germany License. To view a

Mehr

Vorlesung. Datenschutz und Privatheit in vernetzten Informationssystemen

Vorlesung. Datenschutz und Privatheit in vernetzten Informationssystemen Vorlesung Datenschutz und Privatheit in vernetzten Informationssystemen Kapitel 7: Privacy Preserving Data Mining Thorben Burghardt, Erik Buchmann buchmann@ipd.uka.de Thanks to Chris Clifton & Group IPD,

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Microsoft SQL-Server 2000. Enterprise-Manager

Microsoft SQL-Server 2000. Enterprise-Manager Kapitel 7: SQL Microsoft SQL-Server 2000 Server: Client: Enterprise-Manager Query-Analyzer Installation Query Analyzer Tunnel mit Putty Tunnel mit Putty SQL: Geschichte 1970: System R mit Abfragesprache

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 06 Übung zur Vorlesung Grundlagen: Datenbanken im WS16/17 Harald Lang, Linnea Passing (gdb@in.tum.de

Mehr

3 Query Language (QL) Einfachste Abfrage Ordnen Gruppieren... 7

3 Query Language (QL) Einfachste Abfrage Ordnen Gruppieren... 7 1 Data Definition Language (DDL)... 2 1.1 Tabellen erstellen... 2 1.1.1 Datentyp...... 2 1.1.2 Zusätze.... 2 1.2 Tabellen löschen... 2 1.3 Tabellen ändern (Spalten hinzufügen)... 2 1.4 Tabellen ändern

Mehr

Aufgabensammlung SQL SW4 1. Einfache Anfragen

Aufgabensammlung SQL SW4 1. Einfache Anfragen Aufgabensammlung SQL SW4 1. Einfache Anfragen Buch: Kapitel 4.6 und 4.7. Datenbank: Die folgenden Anfragen beziehen sich auf die Universitätsdatenbank des Buches. Alle Umlaute werden umschrieben (hören

Mehr

Datenbanksysteme noch Kapitel 7: SQL. Vorlesung vom Oliver Vornberger. Institut für Informatik Universität Osnabrück

Datenbanksysteme noch Kapitel 7: SQL. Vorlesung vom Oliver Vornberger. Institut für Informatik Universität Osnabrück Datenbanksysteme 2015 noch Kapitel 7: SQL Vorlesung vom 12.05.2015 Oliver Vornberger Institut für Informatik Universität Osnabrück SQL: Schlüsselworte select from where order by asc desc as like upper

Mehr

(Von der Nähe zur Distanz zum User geordnet)

(Von der Nähe zur Distanz zum User geordnet) Datebanken Was ist eigentlich eine Datenbank? Datenbanken, Datenhaltungsschicht und Datenbankensysteme (hier als Synonyme zu verstehen) finden viele unterschiedliche Anwendungsbereiche. Datenbanken kann

Mehr

Dynamisches SQL. Folien zum Datenbankpraktikum Wintersemester 2009/10 LMU München

Dynamisches SQL. Folien zum Datenbankpraktikum Wintersemester 2009/10 LMU München Kapitel 4 Dynamisches SQL Folien zum Datenbankpraktikum Wintersemester 2009/10 LMU München 2008 Thomas Bernecker, Tobias Emrich unter Verwendung der Folien des Datenbankpraktikums aus dem Wintersemester

Mehr

Event Stream Processing & Complex Event Processing. Dirk Bade

Event Stream Processing & Complex Event Processing. Dirk Bade Event Stream Processing & Complex Event Processing Dirk Bade Die Folien sind angelehnt an eine Präsentation der Orientation in Objects GmbH, 2009 Motivation Business Activity Monitoring Sammlung, Analyse

Mehr

Übung 1: SQL. Übungen finden bei Bedarf anstelle der Vorlesungen statt Fragen? sautter@ira.uka.de. Vorlesung Datenbankeinsatz WS 04/05 IPD

Übung 1: SQL. Übungen finden bei Bedarf anstelle der Vorlesungen statt Fragen? sautter@ira.uka.de. Vorlesung Datenbankeinsatz WS 04/05 IPD Übungen finden bei Bedarf anstelle der Vorlesungen statt Fragen? sautter@ira.uka.de Fragen aus der Vorlesung Wie sieht eine äquivalente Anfrage zu select Titel from Bücher where ISBN in (select ISBN from

Mehr

4. Assoziationsregeln. 4.1 Einleitung. 4.2 Einfache Assoziationsregeln. 4.1 Einleitung. Inhalt dieses Kapitels. Motivation

4. Assoziationsregeln. 4.1 Einleitung. 4.2 Einfache Assoziationsregeln. 4.1 Einleitung. Inhalt dieses Kapitels. Motivation 4.1 Einleitung 4. Assoziationsregeln Inhalt dieses Kapitels Transaktionsdatenbanken, Warenkorbanalyse 4.2 Einfache Assoziationsregeln Grundbegriffe, Aufgabenstellung, Apriori-Algorithmus, Hashbäume, Interessantheit

Mehr

4.5 Anfragen mit Mengenoperatoren

4.5 Anfragen mit Mengenoperatoren 4. Der SQL-Standard 4.5. Anfragen mit Mengenoperatoren 4.5 Anfragen mit Mengenoperatoren UNION,INTERSECT und. Die beteiligten Tabellen müssen zueinander kompatible Spaltentypen haben. Die Resultatspalte

Mehr

Datenbanksysteme Teil 6 MySQL DML Die SELECT-Anweisung. Stefan Maihack Dipl. Ing. (FH) Datum:

Datenbanksysteme Teil 6 MySQL DML Die SELECT-Anweisung. Stefan Maihack Dipl. Ing. (FH) Datum: Datenbanksysteme Teil 6 MySQL DML Die SELECT-Anweisung Stefan Maihack Dipl. Ing. (FH) Datum: 28.10.2005 1 einfachste SELECT-Anweisung Alle Inhalte einer Tabelle holen: SELECT * FROM land; 2 DML - SELECT

Mehr

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13 Auf einen Blick Vorwort 13 Teil 1 Vorbereitung Kapitel 1 Einleitung 17 Kapitel 2 SQL - der Standard relationaler Datenbanken 21 Kapitel 3 Die Beispieldatenbanken 39 Teil 2 Abfrage und Bearbeitung Kapitel

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 7 Übung zur Vorlesung Grundlagen: Datenbanken im WS13/14 Henrik Mühe (muehe@in.tum.de) http://www-db.in.tum.de/teaching/ws1314/dbsys/exercises/

Mehr

Datenbank- Programmierung mit InterBase

Datenbank- Programmierung mit InterBase Michael Ebner Datenbank- Programmierung mit InterBase ADDISON-WESLEY An imprint of Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam

Mehr

Kap. 6 Data Warehouse

Kap. 6 Data Warehouse 1 Kap. 6 Data Warehouse 6.1 Was ist ein Data Warehouse, Motivation? 6.2 Data Cube und Cube-Operationen 6.3 Workshop: MS SQL Server, Cube Operationen 6.4 Physischer Entwurf, Implementierung von Cubes 6.5

Mehr

Aktuelle Entwicklungen

Aktuelle Entwicklungen PostgreSQL Aktuelle Entwicklungen (Hans-Jürgen Schönig), [HACKERS] Are we losing momentum? Bruce Momjian: August 2003 Momjian Blog: Postgres Is Hot Bruche Momjian Blog: June 7, 2008 I have attended or

Mehr

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel Carsten Herbe metafinanz Informationssysteme GmbH In unserer Business Line Business Intelligence & Risk gibt es fünf Bereiche: Risk,

Mehr

6. Überblick zu Data Mining-Verfahren

6. Überblick zu Data Mining-Verfahren 6. Überblick zu Data Mining-Verfahren Einführung Clusteranalyse k-means-algorithmus Canopy Clustering Klassifikation Klassifikationsprozess Konstruktion eines Entscheidungsbaums Assoziationsregeln / Warenkorbanalyse

Mehr

4.1 Einleitung. 4. Assoziationsregeln. 4.2 Einfache Assoziationsregeln. 4.1 Einleitung. Inhalt dieses Kapitels. Motivation. Assoziationsregeln

4.1 Einleitung. 4. Assoziationsregeln. 4.2 Einfache Assoziationsregeln. 4.1 Einleitung. Inhalt dieses Kapitels. Motivation. Assoziationsregeln 4.1 Einleitung 4. Assoziationsregeln Inhalt dieses Kapitels Transaktionsdatenbanken, Warenkorbanalyse 4.2 Einfache Assoziationsregeln Grundbegriffe, Aufgabenstellung, Apriori-Algorithmus, Hashbäume, Interessantheit

Mehr

DB2 for z/os. Übungen zur Schulung

DB2 for z/os. Übungen zur Schulung DB2 for z/os Übungen zur Schulung 2. Dezember 2011 Eine Ausarbeitung von: cps4it Ralf Seidler Stromberger Straße 36A 55411 Bingen Fon: +49-6721-992611 Fax: -49-6721-992613 Mail: ralf.seidler@cps4it.de

Mehr

Objektrelationale und erweiterbare Datenbanksysteme

Objektrelationale und erweiterbare Datenbanksysteme Objektrelationale und erweiterbare Datenbanksysteme Erweiterbarkeit SQL:1999 (Objekt-relationale Modellierung) In der Vorlesung werden nur die Folien 1-12 behandelt. Kapitel 14 1 Konzepte objekt-relationaler

Mehr

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem

Mehr

IV. Datenbankmanagement

IV. Datenbankmanagement Wirtschaftsinformatik 2 (PWIN) IV. Datenbankmanagement Kapitel 2: Datenmanipulationssprache SQL Wirtschaftsinformatik 2 (PWIN) SS 2009, Professur für Mobile Business & Multilateral Security 1 Agenda 1.

Mehr

Aggregatfunktionen in SQL

Aggregatfunktionen in SQL Aggregatfunktionen in SQL Michael Dienert 14. April 2008 1 Definition von Aggregatfunktionen Ihren Namen haben die Aggregatfunktionen vom englischen Verb to aggregate, was auf deutsch anhäufen, vereinigen,

Mehr

Erkennung Sequenzieller Muster Algorithmen und Anwendungen

Erkennung Sequenzieller Muster Algorithmen und Anwendungen Achim Eisele, Thema 1.4.3: Sequenzielle Muster 1 FernUniversität in Hagen Seminar 01912 im Sommersemester 2008 Erkennung Sequenzieller Muster Algorithmen und Anwendungen Thema 1.4.3: Sequenzielle Muster

Mehr

Inhaltsverzeichnis. Bibliografische Informationen digitalisiert durch

Inhaltsverzeichnis. Bibliografische Informationen  digitalisiert durch 1 Datenbanken - eine Einfuhrung 13 1.1 Allgemeines 13 1.2 Zielgruppe 14 1.3 Was ist eine Datenbank? 14 1.4 Das Datenbankmanagementsystem (DBMS) 16 1.5 Der Aufbau der Daten 18 1.6 Tabellen 18 1.7 Benutzer-Tabellen

Mehr

Eine völlig andere Form Abfragen zu erstellen ist, sie mit Hilfe der Datenbankabfragesprache SQL zu gestalten.

Eine völlig andere Form Abfragen zu erstellen ist, sie mit Hilfe der Datenbankabfragesprache SQL zu gestalten. Einführung SQL 2010 Niko Becker Mit unseren Übungen zu ACCESS können Sie Aufbau und Struktur einer relationalen Datenbank kennenlernen. Wir zeigen Ihnen wie Sie Tabellen, Formulare und Berichte erstellen

Mehr

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management Integrating Knowledge Discovery into Knowledge Management Katharina Morik, Christian Hüppe, Klaus Unterstein Univ. Dortmund LS8 www-ai.cs.uni-dortmund.de Overview Integrating given data into a knowledge

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

SQL Tipps und Tricks Part III 08.02.2012

SQL Tipps und Tricks Part III 08.02.2012 1/40 PHP-User-Group Stuttgart 08.02.2012 Datenbank- und SQL-Performance Erkennen warum eine SQL-Abfrage langsam ist SQL Tipps und Tricks aus der Praxis 2/40 Wer Wer bin bin ich ich? Thomas Wiedmann n+1

Mehr

Datenbankanfragen und -operationen mittels SQL

Datenbankanfragen und -operationen mittels SQL Datenbankanfragen und -operationen mittels SQL Über den verschiedenen Tabellen einer Datenbank werden Operationen ausgeführt, die immer wieder eine Tabelle als Ergebnis zurückgeben. Mathematisch modelliert

Mehr