Systemsicherheit. DVD-Kopierschutz. CPPM: Wer steht dahinter? CPPM: Standards. CPPM: Introduction and Common Cryptographic Elements

Größe: px
Ab Seite anzeigen:

Download "Systemsicherheit. DVD-Kopierschutz. CPPM: Wer steht dahinter? CPPM: Standards. CPPM: Introduction and Common Cryptographic Elements"

Transkript

1 DVD-Kopierschutz Systemsicherheit Teil 4_4: CPPM und CPRM 1. CSS und DeCSS 2. DVD-Aufbau und Kopierschutz (ohne CSS) 3. Ausblick: CPSA 4. CPPM/CPRM C2 Blockchiffre Subset Cover-Methode Endliche Geometrie Prof. Dr. 2 CPPM: Wer steht dahinter? CPPM: Standards cppm-base093.pdf Introduction and Common cppm-dvd093.pdf DVD Book cprm-ata092.pdf Portable ATA Storage Book cprm-base094.pdf Introduction and Common cprm-dvd095.pdf DVD Book Cprm-sd-audio096.pdf SD Memory Card Book SD-Audio Part Cprm-sd-com096.pdf SD Memory Card Book Common Part 3 4 CPPM: Introduction and Common CPPM: Introduction and Common Beschreibt die Kryptographie (mit Ausnahme der Details der C2-Chiffre) Pauschale Infos zur C2-Chiffre Modi: ECB, [C-CBC], OWF Schlüssellänge 56 Bit Datenlänge 64 Bit Schlüsseltypen Media Key K m Device Keys K d_0, K d_1,..., K d_n-1 Aufbau des (MKB) Verfahren zur Entschlüsselung des Media Key mit Hilfe des MKB 5 6

2 Entschlüsselung des Media Key Jedes Gerät enthält n Device Keys K d_0, K d_1,..., K d_n-1 OBDA gibt der Index i in K d_i die Spalte (Column) des Schlüssels an Calculate Media Key Record Mit K d_i ist ein weiterer Wert, die Zeile (Row) r i, verknüpft 1. Nach Einlegen der DVD durchsucht das Gerät den MKB nach dem Calculate Media Key Record, der genau einmal vorhanden ist. 2. In Byte 8 ist dort die zu verwendende Spalte i angegeben. 7 8 Entschlüsselung des Media Key 3. Der mit dem Schlüssel K d_i verknüpfte Wert r i gibt an, welcher der nachfolgenden Chiffretextblöcke mit diesem Schlüssel entschlüsselt werden soll. Verify Media Key Record 4. Das Ergebnis dieser Entschlüsselung sei K m. 5. Ob das korrekte Ergebnis ist, kann anhand des Verify Media Key Record überprüft werden: Nach Entschlüsselung muss dort in den ersten vier Klartextbytes das Muster 0xDEADBEEF stehen Entschlüsselung des Media Key 6. Wenn der Test aus Schritt 5 erfolglos war, werden die nachfolgenden Schritte so lange wiederholt, bis die Entschlüsselung des Media Key Verify Record mit dem jeweils gefundenen Schlüssel K m das Muster 0xDEADBEEF liefert, oder bis K m =0x gilt (in diesem Fall wurde das Gerät revoked, d.h. zurückgezogen.) 1. Suche den nächsten Conditionally Calculate und entschlüssele diesen. 2. Überprüfe, ob in den Bytes 5 bis 7 das Muster 0xDEADBEEF liefert; wenn nicht, starte den nächsten Schleifendurchlauf ( continue ). 3. Benutze den in Byte 8 ( Column ) angegebenen Device Key, um die mit diesem Schlüssel verknüpfte Zeile zu entschlüsseln. Conditionally Calculate Media Key Record 11 12

3 Wie funktioniert CPPM? CPPM ist ein Subset Cover Scheme : Jede Spalte ( Column ) partitioniert die Menge aller CPPM-fähigen Endgeräte in disjunkte Teilmengen. Der Calculate wählt eine solche Spalte/Partition aus. Für Teilmengen, die keine zurückgerufenen Geräte enthalten, wird der Media Key mit dem jeweiligen Device Key der Gruppe verschlüsselt und im MKB Block in der richtigen Zeile abgelegt. Ist die gesamte Teilmenge zurückgerufen worden, so wird anstelle des Media Key der NULL-Schlüssel mit dem Device Key verschlüsselt. Sind nur einige Geräte aus der Teilmenge zurückgerufen worden, so wird anstelle des Media Key ein Session Key verschlüsselt, der für einen der nachfolgenden Conditionally Calculate Media Key Blocks verwendbar ist. Wie funktioniert CPPM? Ein Beispiel. Die Gesamtmenge aller Device Keys sei wie folgt aufgeteilt: D1 D2 D3 K 1,1 K 2,1 K 2,2 K 2,3 D4 D7 D5 D8 D6 D9 K 2,1 K 2,2 K 2,3 K 1,1 K 2, Wie funktioniert CPPM? Ein Beispiel. Wie funktioniert CPPM? Offene Fragen D5 und D6 seien zurückgezogen D1 D2 D3 K 1,1 Calculate Media Key record Column 1 K 1,1 {MK} Wie werden die Partitionen gebildet? Betriebsgeheimnis 4C ( Methoden aus Kombinatorik oder endlicher Geometrie wären denkbar. D4 D5 D6 {SK} {MK} D7 D8 D9 Cond. Calculate Media Key record SK {Column 2} SK {K 2,1 {MK}} SK {K 2,2 {NULL}} K 2,1 K 2,2 K 2,3 SK {K 2,3 {NULL}} D. Naor, M. Naor and J. Lotspiech, Revocation and tracing schemes for stateless receivers, Crypto '01, Springer-Verlag LNCS 2139, 2001, pp CPPM-ähnliche Schlüsselverteilungsverfahren auf Basis binärer Bäume; Geräte sind Blätter des Baumes K K {1,...,8} Jedes Gerät kennt alle Schlüssel von seinem Blatt bis zur Wurzel (Schlüssel K) K {1,...,8} K K {5,6,7,8} K {5,6,7,8} K {7,8} K {7,8} G 1 G 2 G 3 G 4 G 13 G 14 G 15 G 16 K 8 K

4 Steiner Tree ST(3,9,10) G3, G9 und G10 sind geknackt worden. Welche Schlüssel kann man jetzt noch verwenden? Man verwendet die gelben Schlüssel. Diese Knoten haben einen parent -Knoten, der zu ST(3,9,10) gehört, sind aber selbst nicht Teil des Steiner-Baums G 3 G 9 G 10 G 3 G 9 G Wie viele Teilbäume kann es maximal geben, wenn r = R Geräte von N zurückgezogen wurden? Antwort: r log 2 (N/r) Beweis: Vollständige Induktion über die Tiefe log N des binären Baums # verbleibende Teilbäume = # Knoten mit outdegree 1 Ind.Verankerung: Baum der Tiefe 1, N=2 Ind.Annahme: Steiner-Baum der Tiefe i habe höchstens r(i-log 2 r) Knoten von outdegree 1. Ind.Schritt: Betrachte Baum der Tiefe i+1. Ind.Annahme: Steiner-Baum der Tiefe i habe höchstens r(i-log 2 r) Knoten von outdegree 1. Ind.Schritt: Betrachte Baum der Tiefe i+1. Fall 1: Alle Blätter befinden sich in einem Teilbaum der Tiefe 1. Nach Ind.Annahme gilt dann r(i-log 2 r) + 1 r(i+1-log 2 r) Fall 2: r 1 der r Blätter sind im linken Teilbaum, und r 2 im rechten Teilbaum (r 1 +r 2 =r). Nach Ind.Annahme gilt # Knoten Outdegree 1 r 1 (i-log 2 r 1 ) + r 2 (i-log 2 r 2 ) = r i (r 1 log 2 r 1 + r 2 log 2 r 2 ) r i (r/2 log 2 r/2 + r/2 log 2 r/2) = r i (r (log 2 r 1)) = r ((i+1) - log 2 r) S ij enthält die (blau markierten) Blätter, die im Teilbaum unter v i, aber nicht im Teilbaum unter sind. v i 23 24

5 2 G3, G9 und G10 sind geknackt worden und jetzt sollen alle Gi mit i 3, 9 10 überdeckt werden Start mit T = ST(3,9,10) 2 1. Schritt: T = T {G 9, G 10 } 2. Schritt: Füge S l,i und S k,j zum Cover hinzu. v v l v k G 3 G 9 G 10 G 3 = v i Wieviele Teilmengen S a,b kann es maximal geben? Antwort: 2r - 1 v v l v k G 3 = v i 27

Teil 4_3: CPSA. Prof. Dr. Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

Teil 4_3: CPSA. Prof. Dr. Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit Systemsicherheit Teil 4_3: CPSA Prof. Dr. DVD-Kopierschutz 1. CSS und DeCSS 2. DVD-Aufbau und Kopierschutz (ohne CSS) 3. Ausblick: CPSA 1. Überblick beteiligte Komponenten 2. CPSA Axiome a) Content Management

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 7.1 (P) Binomial Heap

Abgabe: (vor der Vorlesung) Aufgabe 7.1 (P) Binomial Heap TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 7 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Rotation. y T 3. Abbildung 3.10: Rotation nach rechts (analog links) Doppelrotation y

Rotation. y T 3. Abbildung 3.10: Rotation nach rechts (analog links) Doppelrotation y Die AVL-Eigenschaft soll bei Einfügungen und Streichungen erhalten bleiben. Dafür gibt es zwei mögliche Operationen: -1-2 Rotation Abbildung 3.1: Rotation nach rechts (analog links) -2 +1 z ±1 T 4 Doppelrotation

Mehr

a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein:

a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein: 1 Aufgabe 8.1 (P) (2, 3)-Baum a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein: Zeichnen Sie, was in jedem Schritt passiert. b) Löschen Sie die Zahlen 65, 70 und 100 aus folgendem

Mehr

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss.

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. (a, b)-bäume / 1. Szenario: Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. Konsequenz: Kommunikation zwischen Hauptspeicher und Festplatte - geschieht nicht Byte für Byte,

Mehr

3.3 Optimale binäre Suchbäume

3.3 Optimale binäre Suchbäume 3.3 Optimale binäre Suchbäume Problem 3.3.1. Sei S eine Menge von Schlüsseln aus einem endlichen, linear geordneten Universum U, S = {a 1,,...,a n } U und S = n N. Wir wollen S in einem binären Suchbaum

Mehr

Informatik II Bäume zum effizienten Information Retrieval

Informatik II Bäume zum effizienten Information Retrieval lausthal Informatik II Bäume zum effizienten Information Retrieval. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Binäre Suchbäume (binary search tree, BST) Speichere wieder Daten als "Schlüssel

Mehr

3 Public-Key-Kryptosysteme

3 Public-Key-Kryptosysteme Stand: 05.11.2013 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Public-Key-Kryptosysteme 3.1 Verschlüsselung von Nachrichten Wir betrachten ganz einfache Kommunikationsszenarien.

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 4 FS 15

Datenstrukturen & Algorithmen Lösungen zu Blatt 4 FS 15 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 18. März

Mehr

Datenstrukturen. einfach verkettete Liste

Datenstrukturen. einfach verkettete Liste einfach verkettete Liste speichert Daten in einer linearen Liste, in der jedes Element auf das nächste Element zeigt Jeder Knoten der Liste enthält beliebige Daten und einen Zeiger auf den nächsten Knoten

Mehr

n t(2k + 1) in den P k s r = n t(2k + 1) Rest

n t(2k + 1) in den P k s r = n t(2k + 1) Rest Kette von P k s: Gesamtzahl der Elemente: top P k bottom P k P k }{{} t n t(2k + 1) in den P k s r = n t(2k + 1) Rest EADS 4 Schönhage/Paterson/Pippenger-Median-Algorithmus 365/530 Wenn r < t 1, dann wissen

Mehr

Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z}

Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z} u v u v z w z w y x y x Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z} Definition 0.0.1 (Vertex Cover (VC)). Gegeben: Ein ungerichteter

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5.2 ElGamal Systeme 1. Verschlüsselungsverfahren 2. Korrektheit und Komplexität 3. Sicherheitsaspekte Das ElGamal Verschlüsselungsverfahren Public-Key Verfahren von

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Algorithmische Geometrie: Abfragen Orthogonaler Bereiche

Algorithmische Geometrie: Abfragen Orthogonaler Bereiche Algorithmische Geometrie: Abfragen Orthogonaler Bereiche Nico Düvelmeyer WS 2009/2010, 8.12.2009 Überblick 1 1-dimensionale Bereichsabfragen 2 Kd-Baum Struktur Aufbau Abfrage mit dem Kd-Baum 3 Range-Baum

Mehr

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,...

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,... Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,..., k, so dass gilt M = k c i P i i=1 k c i = r. i=1 Diskrete Strukturen 7.1 Matchings

Mehr

Binärbäume und Pfade

Binärbäume und Pfade Binärbäume und Pfade Bevor wir uns dem Pumping Lemma für Typ-2 Sprachen widmen, wollen wir einen einfachen Satz über Binärbäume beweisen. Als Binärbaum bezeichnen wir hier einen Baum, bei dem jeder Knoten,

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Datenstrukturen und Algorithmen SS17 Lösung - Übung 5

Datenstrukturen und Algorithmen SS17 Lösung - Übung 5 Prof. aa Dr. Ir. G. Woeginger T. Hartmann, D. Korzeniewski, B. Tauer Hausaufgabe (Inorder-Traversierung binärer Suchbäume): (3 + 3 Punkte) Es soll bewiesen werden, dass die Inorder-Traversierung alle Schlüssel

Mehr

Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom Seite 1. Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15.

Kurs 1663 Datenstrukturen Musterlösungen zur Klausur vom Seite 1. Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15. Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom 15.08.98 Seite 1 Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15. August 1998 Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Grundbegrie der Codierungstheorie

Grundbegrie der Codierungstheorie Grundbegrie der Codierungstheorie Pia Lackamp 12. Juni 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Hauptteil 3 2.1 Blockcodes............................ 3 2.1.1 Beispiele.......................... 3 2.2

Mehr

3.2 Generischer minimaler Spannbaum-Algorithmus

3.2 Generischer minimaler Spannbaum-Algorithmus 3.2 Generischer minimaler Spannbaum-Algorithmus Initialisiere Wald F von Bäumen, jeder Baum ist ein singulärer Knoten (jedes v V bildet einen Baum) while Wald F mehr als einen Baum enthält do wähle einen

Mehr

Seminar: Randomisierte Algorithmen Auswerten von Spielbäumen Nele Küsener

Seminar: Randomisierte Algorithmen Auswerten von Spielbäumen Nele Küsener Seminar: Randomisierte Algorithmen Auswerten von Sielbäumen Nele Küsener In diesem Vortrag wird die Laufzeit von Las-Vegas-Algorithmen analysiert. Das Ergebnis ist eine obere und eine untere Schranke für

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 11 (1.6.2016) Binäre Suchbäume III Algorithmen und Komplexität Tiefe eines binären Suchbaums Worst-Case Laufzeit der Operationen in binären

Mehr

Kapitel Andere dynamische Datenstrukturen

Kapitel Andere dynamische Datenstrukturen Institute of Operating Systems and Computer Networks Algorithms Group Kapitel 4.8-4.11 Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2017/2018 Vorlesung#13, 12.12.2017

Mehr

24. Minimale Spannbäume

24. Minimale Spannbäume Problem Gegeben: Ungerichteter, zusammenhängender, gewichteter Graph G = (V, E, c). 4. Minimale Spannbäume Gesucht: Minimaler Spannbaum T = (V, E ), E E, so dass e E c(e) minimal. Motivation, Greedy, Algorithmus

Mehr

ADS: Algorithmen und Datenstrukturen

ADS: Algorithmen und Datenstrukturen ADS: Algorithmen und Datenstrukturen Teil X Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University of Leipzig 13.

Mehr

9.5 Blockverschlüsselung

9.5 Blockverschlüsselung 9.5 Blockverschlüsselung Verschlüsselung im Rechner: Stromverschlüsselung (stream cipher): kleine Klartexteinheiten (Bytes, Bits) werden polyalphabetisch verschlüsselt Blockverschlüsselung (block cipher):

Mehr

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen.

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen. Wiederholung Baum: Gerichteter Graph, der die folgenden drei Bedingungen erfüllt: Es gibt einen Knoten, der nicht Endknoten einer Kante ist. (Dieser Knoten heißt Wurzel des Baums.) Jeder andere Knoten

Mehr

Kryptographie. Nachricht

Kryptographie. Nachricht Kryptographie Kryptographie Sender Nachricht Angreifer Empfänger Ziele: Vertraulichkeit Angreifer kann die Nachricht nicht lesen (Flüstern). Integrität Angreifer kann die Nachricht nicht ändern ohne dass

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2013/14. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2013/14. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2013/14 Prof. Dr. Sándor Fekete 1 4.6 AVL-Bäume 2 4.8 Rot-Schwarz-Bäume Rudolf Bayer Idee: Verwende Farben, um den

Mehr

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 1 Heap: Ein Array heißt Heap, falls A [i] A [2i] und A[i] A [2i + 1] (für 2i n bzw. 2i + 1 n) gilt. Beispiel: A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 2 Darstellung eines Heaps als

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

5 Zwei spieltheoretische Aspekte

5 Zwei spieltheoretische Aspekte 5 Zwei spieltheoretische Aspekte In diesem Kapitel wollen wir uns mit dem algorithmischen Problem beschäftigen, sogenannte Und-Oder-Bäume (kurz UOB) auszuwerten. Sie sind ein Spezialfall von Spielbäumen,

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:

Mehr

Klausur Systemsicherheit I & II SoSem 2004

Klausur Systemsicherheit I & II SoSem 2004 Klausur Systemsicherheit I & II SoSem 2004 Prüfer: Prof. Dr. Schwenk Prüfungstermin: 3.8.2004, 9:00 Uhr, Dauer: 240 Minuten Hilfsmittel: Vorlesungsfolien, 6 Seiten DIN A4 selbstgefertigte Arbeitsunterlagen,

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/3, Folie 1 2010 Prof. Steffen Lange - HDa/FbI

Mehr

Kryptographie für CTFs

Kryptographie für CTFs Kryptographie für CTFs Eine Einführung KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kitctf.de Einführung Cryptography is the practice and study of techniques for secure communication

Mehr

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester 2013.

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester 2013. Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Übungsblatt 2 Aufgabe 1. Wir wissen,

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

Übung: Algorithmen und Datenstrukturen SS 2007

Übung: Algorithmen und Datenstrukturen SS 2007 Übung: Algorithmen und Datenstrukturen SS 07 Prof. Lengauer Sven Apel, Michael Claÿen, Christoph Zengler, Christof König Blatt 8 Votierung in der Woche vom 25.06.0729.06.07 Aufgabe 22 AVL-Bäume (a) Geben

Mehr

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen Übung GSS Blatt 6 SVS Sicherheit in Verteilten Systemen 1 Einladung zum SVS-Sommerfest SVS-Sommerfest am 12.07.16 ab 17 Uhr Ihr seid eingeladen! :-) Es gibt Thüringer Bratwürste im Brötchen oder Grillkäse

Mehr

Randomisierte Datenstrukturen

Randomisierte Datenstrukturen Seminar über Algorithmen DozentInnen: Helmut Alt, Claudia Klost Randomisierte Datenstrukturen Ralph Schäfermeier 13. 2. 2007 Das Verwalten von Mengen, so dass ein schneller Zugriff auf deren Elemente gewährleistet

Mehr

B*-BÄUME. Ein Index ist seinerseits wieder nichts anderes als eine Datei mit unpinned Records.

B*-BÄUME. Ein Index ist seinerseits wieder nichts anderes als eine Datei mit unpinned Records. B*-Bäume 1 B*-BÄUME Beobachtung: Ein Index ist seinerseits wieder nichts anderes als eine Datei mit unpinned Records. Es gibt keinen Grund, warum man nicht einen Index über einem Index haben sollte, und

Mehr

Oracle 10g Einführung

Oracle 10g Einführung Kurs Oracle 10g Einführung Teil 8 Indizes und Suchbäume Timo Meyer Administration von Oracle-Datenbanken Timo Meyer Sommersemester 2006 Seite 1 von 15 Seite 1 von 15 Agenda 1 Einleitung 2 Binäre Suchbäume

Mehr

Beweistechnik: Beweise in Bezug auf Mengen. Formale Methoden 2 LVA , Beweistechnik: Widerspruchsbeweise. Satz R (S T ) = (R S) (R T )

Beweistechnik: Beweise in Bezug auf Mengen. Formale Methoden 2 LVA , Beweistechnik: Widerspruchsbeweise. Satz R (S T ) = (R S) (R T ) Formale Methoden 2 LVA 703019, 703020 (http://clinformatik.uibk.ac.at/teaching/ss06/fmii/) Georg Moser (VO) 1 Martin Korp (UE) 2 Friedrich Neurauter (UE) 3 Christian Vogt (UE) 4 1 georg.moser@uibk.ac.at

Mehr

Kapitel Andere dynamische Datenstrukturen

Kapitel Andere dynamische Datenstrukturen Institute of Operating Systems and Computer Networks Algorithms Group Kapitel 4.8-4.11 Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2018/2019 Vorlesung#15, 18.12.2018

Mehr

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo Kryptographische Verfahren zur Datenübertragung im Internet Patrick Schmid, Martin Sommer, Elvis Corbo 1. Einführung Übersicht Grundlagen Verschlüsselungsarten Symmetrisch DES, AES Asymmetrisch RSA Hybrid

Mehr

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust!

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust! Chr.Nelius: Zahlentheorie (SoSe 2016) 1 14. Aufgabenblatt ZAHLENTHEORIE (für Master G und HRG) Lösungen Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor

Mehr

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.07.2012 Objekttypen in Bereichsabfragen y0 y0 y x x0 Bisher

Mehr

Kryptographie für CTFs

Kryptographie für CTFs Kryptographie für CTFs Eine Einführung KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kitctf.de Einführung Cryptography is the practice and study of techniques for secure communication

Mehr

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer

Mehr

9. Einführung in die Kryptographie

9. Einführung in die Kryptographie 9. Einführung in die Kryptographie Grundidee: A sendet Nachricht nach B über unsicheren Kanal. Es soll verhindert werden, dass ein Unbefugter Kenntnis von der übermittelten Nachricht erhält. Grundbegriffe:

Mehr

Hashfunktionen und MACs

Hashfunktionen und MACs 3. Mai 2006 Message Authentication Code MAC: Message Authentication Code Was ist ein MAC? Der CBC-MAC Der XOR-MAC Kryptographische Hashfunktionen Iterierte Hashfunktionen Message Authentication Code Nachrichten

Mehr

Tutoraufgabe 1 (2 3 4 Bäume):

Tutoraufgabe 1 (2 3 4 Bäume): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Übung F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe ( Bäume): a) Löschen Sie den Wert aus dem folgenden Baum und geben Sie den dabei

Mehr

Übersicht. Einfache Suche. Hashing Skip-Lists Mengen Sortieren Order-Statistics. 2 Suchen und Sortieren

Übersicht. Einfache Suche. Hashing Skip-Lists Mengen Sortieren Order-Statistics. 2 Suchen und Sortieren Übersicht Einfache Suche Hashing Skip-Lists Mengen Sortieren Order-Statistics (Folie 6, Seite 37 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner,

Mehr

2.7 Bucket-Sort Bucket-Sort ist ein nicht-vergleichsbasiertes Sortierverfahren. Hier können z.b. n Schlüssel aus

2.7 Bucket-Sort Bucket-Sort ist ein nicht-vergleichsbasiertes Sortierverfahren. Hier können z.b. n Schlüssel aus 2.7 Bucket-Sort Bucket-Sort ist ein nicht-vergleichsbasiertes Sortierverfahren. Hier können z.b. n Schlüssel aus {0, 1,..., B 1} d in Zeit O(d(n + B)) sortiert werden, indem sie zuerst gemäß dem letzten

Mehr

Das Problem des minimalen Steiner-Baumes

Das Problem des minimalen Steiner-Baumes Das Problem des minimalen Steiner-Baumes Ein polynomieller Approximationsalgorithmus Benedikt Wagner 4.05.208 INSTITUT FU R THEORETISCHE INFORMATIK, LEHRSTUHL ALGORITHMIK KIT Die Forschungsuniversita t

Mehr

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.07.2012 Objekttypen in Bereichsabfragen y0 y x x0 Bisher

Mehr

Datenstrukturen und Algorithmen Beispiellösung zu Heimübungsblatt 7. Abbildung 1: Das Array A als Baum (vgl. Foliensatz 16, Folie 3)

Datenstrukturen und Algorithmen Beispiellösung zu Heimübungsblatt 7. Abbildung 1: Das Array A als Baum (vgl. Foliensatz 16, Folie 3) Aufgabe 3 a) Wir verwenden zur Lösung den Algorithmus Build-Heap 1, dieser verwendet die Funktion Heapify. Unser Array A ist gegeben durch [7, 10,, 5, 5,, 3, 3, 17]. 10 5 5 3 17 7 Abbildung 1: Das Array

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2017/18 Pro f. Dr. Sán do r Fe k e te 1 Binärer Suchbaum Außerdem wichtig: Struktur der Schlüsselwerte! 2 Ordnungsstruktur Linker

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 15b (13.06.2018) Graphenalgorithmen IV Algorithmen und Komplexität Prims MST-Algorithmus A = while A ist kein Spannbaum do e = u, v ist

Mehr

Aufgabe 2 Konstruktion von Binärbäumen Tafelübung

Aufgabe 2 Konstruktion von Binärbäumen Tafelübung Übungen zu Algorithmik I Wintersemester 004/05 Prof. Dr. Herbert Stoyan, Dr.-Ing. Bernd Ludwig Aufgabenblatt 11 (Lösungen) vom 10.01.005 Aufgabe 1 Binärbäume 8 Punkte 1. Alle Antworten können unmittelbar

Mehr

9. Natürliche Suchbäume

9. Natürliche Suchbäume Bäume Bäume sind. Natürliche Suchbäume [Ottman/Widmayer, Kap..1, Cormen et al, Kap. 12.1-12.] Verallgemeinerte Listen: Knoten können mehrere Nachfolger haben Spezielle Graphen: Graphen bestehen aus Knoten

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen B7. Balancierte Bäume 1 Marcel Lüthi and Gabriele Röger Universität Basel 13. April 2018 1 Folien basieren auf Vorlesungsfolien von Sedgewick & Wayne https://algs4.cs.princeton.edu/lectures/33balancedsearchtrees-2x2.pdf

Mehr

8.1.3 Operation Build-Max-Heap Operation zur Konstruktion eines Heaps Eingabe: Feld A[1..n], n = länge(a) BUILD-MAX-HEAP (A)

8.1.3 Operation Build-Max-Heap Operation zur Konstruktion eines Heaps Eingabe: Feld A[1..n], n = länge(a) BUILD-MAX-HEAP (A) Stand der Vorlesung: Datenstruktur Heap: fast vollständiger Binärbaum MaxHeap: sortierter Heap, größtes Element an Wurzel Sortierverfahren: HeapSort: Sortieren eines Feldes A[1.. n] Idee: in place: Feld

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung: Datenstruktur Heap: fast vollständiger Binärbaum MaxHeap: sortierter Heap, größtes Element an Wurzel Sortierverfahren: HeapSort: Sortieren eines Feldes A[1.. n] Idee: in place: Feld

Mehr

Trees. November 13, Algorithms & Datastructures 2 Exercises WT 2017

Trees. November 13, Algorithms & Datastructures 2 Exercises WT 2017 Trees November 13, 2018 Algorithms & Datastructures 2 Exercises WT 2017 Dipl.-Ing. University Linz, Institute for Pervasive Computing Altenberger Straße 69, A-4040 Linz anzengruber@pervasive.jku.at Binärbaum

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (23 Bruder-Bäume, B-Bäume) Prof. Dr. Susanne Albers Balancierte Bäume Eine Klasse von binären Suchbäumen ist balanciert, wenn jede der drei Wörterbuchoperationen

Mehr

Beweis des Pumping Lemmas

Beweis des Pumping Lemmas Beweis des Pumping Lemmas Die Sprache L sei eine Typ-2 Sprache, d.h. es gibt eine Typ-2 Grammatik G =(V,, P, S) in CNF, so dass L = L(G) gilt. Wir fixieren eine solche Grammatik G und wählen n = 2 V. Nun

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge von Datensätzen. Beispiele

Mehr

20. Dynamic Programming II

20. Dynamic Programming II Aufgabe 20. Dynamic Programming II Subset Sum Problem, Rucksackproblem, Greedy Algorithmus, Lösungen mit dynamischer Programmierung, FPTAS, Optimaler Suchbaum [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Kapitel 7 Fortgeschrittene Datenstrukturen Motivation: Lineare Liste: Suchen eines Elements ist schnell O(log n) Einfügen eines Elements ist langsam

Mehr

20. Dynamic Programming II

20. Dynamic Programming II 536 20. Dynamic Programming II Subset Sum Problem, Rucksackproblem, Greedy Algorithmus, Lösungen mit dynamischer Programmierung, FPTAS, Optimaler Suchbaum [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 122 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 123 Das Suchproblem Gegeben Menge von Datensätzen.

Mehr

6: Public-Key Kryptographie (Grundidee)

6: Public-Key Kryptographie (Grundidee) 6: Public-Key Kryptographie (Grundidee) Ein Teil des Schlüssels ist nur dem Empfänger bekannt. Der auch dem Sender bekannte Teil kann sogar veröffentlicht werden. Man spricht dann von einem Schlüsselpaar.

Mehr

25. Minimale Spannbäume

25. Minimale Spannbäume 695 25. Minimale Spannbäume Motivation, Greedy, Algorithmus von Kruskal, Allgemeine Regeln, Union-Find Struktur, Algorithmus von Jarnik, Prim, Dijkstra, Fibonacci Heaps [Ottman/Widmayer, Kap. 9.6, 6.2,

Mehr

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Robert Elsässer u.v.a. Paderborn, 29. Mai 2008 Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Aufgabe 1 (6 Punkte): Zunächst sollte klar sein, daß ein vollständiger Binärer

Mehr

B6.1 Introduction. Algorithmen und Datenstrukturen. Algorithmen und Datenstrukturen. B6.1 Introduction. B6.3 Analyse. B6.4 Ordnungsbasierte Methoden

B6.1 Introduction. Algorithmen und Datenstrukturen. Algorithmen und Datenstrukturen. B6.1 Introduction. B6.3 Analyse. B6.4 Ordnungsbasierte Methoden Algorithmen und Datenstrukturen 11. April 2018 B6. Binäre Suchbäume a Algorithmen und Datenstrukturen B6. Binäre Suchbäume 1 Marcel Lüthi and Gabriele Röger Universität Basel 11. April 2018 a Folien basieren

Mehr

Höhe eines B + -Baums

Höhe eines B + -Baums Höhe eines B + -Baums Anzahl der Blätter bei minimaler Belegung Anzahl von (eindeutigen) Elementen bei minimaler Belegung Anzahl der Blätter bei maximaler Belegung Anzahl von Elementen bei maximaler Belegung

Mehr

Zugriff auf Elemente im B + -Baum. Höhe eines B + -Baums. Einfache Operationen auf B + -Bäumen. Anzahl der Blätter bei minimaler Belegung

Zugriff auf Elemente im B + -Baum. Höhe eines B + -Baums. Einfache Operationen auf B + -Bäumen. Anzahl der Blätter bei minimaler Belegung Höhe eines B + -Baums Zugriff auf Elemente im B + -Baum Anzahl der Blätter bei minimaler Belegung Anzahl von (eindeutigen) Elementen bei minimaler Belegung Anzahl der Blätter bei maximaler Belegung Anzahl

Mehr

ADS: Algorithmen und Datenstrukturen 1

ADS: Algorithmen und Datenstrukturen 1 ADS: Algorithmen und Datenstrukturen 1 Teil 13+ɛ Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

7 Weitere Baumstrukturen und Heapstrukturen

7 Weitere Baumstrukturen und Heapstrukturen 7 Weitere Baumstrukturen und Heapstrukturen Man kann kurze Suchzeiten in Baumstrukturen erreichen durch Rebalancierung bei Einfügungen und Löschungen (AVL Bäume, gewichtsbalancierte Bäume, Bruderbäume,

Mehr

Informationssysteme SS 2013 Lösungsvorschläge zu Übungsblatt 2. Übungsblatt 2. Für die Übungen in der Woche vom 29. April bis 03.

Informationssysteme SS 2013 Lösungsvorschläge zu Übungsblatt 2. Übungsblatt 2. Für die Übungen in der Woche vom 29. April bis 03. Prof. Dr.-Ing. Stefan Deßloch AG Heterogene Informationssysteme Fachbereich Informatik Technische Universität Kaiserslautern Übungsblatt 2 Für die Übungen in der Woche vom 29. April bis 03. Mai 2013 Aufgabe

Mehr

Suchbäume balancieren

Suchbäume balancieren Suchbäume balancieren Perfekte Balance: schwer aufrechtzuerhalten Flexible Höhe O(log n): balancierte binäre Suchbäume. Nicht hier (Variantenzoo). Flexibler Knotengrad: (a,b)-bäume. Grad zwischen a und

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Prüfung Informatik D-MATH/D-PHYS :00 17:00

Prüfung Informatik D-MATH/D-PHYS :00 17:00 Prüfung Informatik D-MATH/D-PHYS 9. 8. 0 5:00 7:00 Prof. Bernd Gartner Kandidat/in: Name:. Vorname:. Stud.-Nr.:. Ich bezeuge mit meiner Unterschrift, dass ich die Prufung unter regularen Bedingungen ablegen

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik Humboldt-Universität zu Berlin Berlin, den 15.06.2015 Institut für Informatik Prof. Dr. Ulf Leser Übungen zur Vorlesung M. Bux, B. Grußien, J. Sürmeli, S. Wandelt Algorithmen und Datenstrukturen Übungsblatt

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 08: Menger, König und Hall / Planare Graphen 1 / 30 Der Satz von Menger: s t trennende Kantenmenge

Mehr

Bacula? Aber sicher!

Bacula? Aber sicher! Bacula? Aber sicher! Transport- und Backupverschlüsselung Mathias Burger http://www.mabu-logic.de 15. September 2010 v0.8, powered by LAT E X Agenda 1 Transportverschlüsselung Weshalb ist das so wichtig?

Mehr

18. Natürliche Suchbäume

18. Natürliche Suchbäume Wörterbuchimplementationen 1. Natürliche Suchbäume [Ottman/Widmayer, Kap..1, Cormen et al, Kap. 12.1-12.] Hashing: Implementierung von Wörterbüchern mit erwartet sehr schnellen Zugriffszeiten. Nachteile

Mehr

Grundlagen der Informatik / Algorithmen und Datenstrukturen. Aufgabe 143

Grundlagen der Informatik / Algorithmen und Datenstrukturen. Aufgabe 143 Aufgabe 143 Aufgabe 143 Aufgabenstellung Gegeben ist der folgende AVL-Baum: a) Fügen Sie in diesen AVL-Baum nacheinander Knoten mit den Inhalten 34, 42, 1701 und 30 ein. Führen Sie die ggf. notwendigen

Mehr

El Gamal Verschlüsselung und seine Anwendungen

El Gamal Verschlüsselung und seine Anwendungen El Gamal Verschlüsselung und seine Anwendungen Andrés Guevara July 11, 2005 1 Kurze Einführung in die Kryptographie Situation: Absender will Empfänger eine Nachricht schicken. Einige Ziele der Kryptographie

Mehr