NoSQL in transaktionalen Enterprisesystemen

Größe: px
Ab Seite anzeigen:

Download "NoSQL in transaktionalen Enterprisesystemen"

Transkript

1 NoSQL in transaktionalen Enterprisesystemen Version: 1.1 Orientation in Objects GmbH Weinheimer Str Mannheim Wir haben hier nur ein paar Java Clients vor einem Host, wir profitieren nicht von NoSQL in unserer Architektur.. Falsch! Der Vortrag zeigt, dass es auch in klassischen transaktionalen(acid) Architekturszenarien Bedarf und Platz für Optimierung durch nichtrelationale Storages mit Support für ACID- Transaktionen gibt. Konzepte wie Caching, parallele Ausführung oder die Unterstützung von MapReduce-Algorithmen können komplementäre Ansätze von NoSQL-Storages sein, die auch im relational dominierten transaktionalen Umfeld Vorteile erbringen. Gliederung Transaktionale Storages, NoSQL und das CAP-Theorem Transaktionale NoSQL-Szenarien Fallstudien 2 1

2 Klassische Enterprise-Vertreter 3 Relationale Datenbanken (RDBMS) Organisation von Daten in zweidimensionalen Tabellen (Arrays) zeilenweise Speichern der Daten eindeutiger Primärschlüssel je Zeile einheitliche Datentypen in Zellen einer Spalte, jede Spalte hat eindeutigen Namen (Schema) Kontrollieren von parallelen Zugriffen über Transaktionen Standardisiert: Im Kern sind alle relationalen DBs sehr ähnlich SQL,... einer der Erfolgsgaranten Fremdschlüsselbeziehungen, referentielle Integrität, Joins, Indexierung, Trigger, Views,

3 Was sind mögliche Probleme von klassischen Enterprise-Storages? Big Data (Bewegungsdaten) Performance Skalierung Mobile Frontend-Anbindung 5 Scale-in vs. Scale-out!?!? Zisch... Vertikal skalieren Horizontal skalieren 6 3

4 These Relationale Datenbanken skalieren in OO- Entwicklungsszenarien nicht mehr ausreichend. Warum? Was tun? 7 NoSQL = kein SQL mehr? SQL 8 4

5 Nicht nur SQL! Not only NoSQL 9 Einfache Formel NoSQL = Relationale Datenbank - Transaktionen - Normalisierung - Joins - Konsistenz - hartes Schema (+) Skalierung (+) Performance 10 5

6 NoSQL Datenbanken Dokumentenorientierte Datenbanken Graphendatenbanken Key-Value-Stores Diskbasiert RAM- Sortierte Key-Value-Stores Eventually Consistent Stores MultivalueDatenbanken Objektdatenbanken Spaltenorientierte Datenbank 11 NoSQL industrieerprobte Skalierbarkeit Dynamo BigTable 12 6

7 Nachteile Vielfalt, kein gemeinsamer Standard wie SQL Fehlendes Know-How Schwaches/spezifisches Tooling Im Gegensatz zu SQL Eingeschränkte Querying-Möglichkeiten (Ad-hoc fixing?) Spezifische Reporting-Möglichkeiten (Ad-hoc reporting?) Datenmigration kann schwieriger sein Unterschiedliche Technologien Unterschiedliche Konzepte Export-Funktionen unterschiedlich stark 13 Probleme mit NoSQL unübersichtlich, große Auswahl sehr anwendungsfall-spezifisch viel Bewegung im Markt Schemalosigkeit (In-) Konsistenz von Daten 14 7

8 CAP Theorem von Eric Brewer (2000) Consistency (Konsistenz) C A P Availability (Verfügbarkeit) Partition Tolerance (Partitionstoleranz) Nur zwei der Eigenschaften können gleichzeitig erfüllt sein, nicht alle drei! 15 Verfügbarkeit Client Client Client 1. write 2.read 3. read Storage Storage Storage 1.1synchronize 16 8

9 Konsistenz Client Client Client 1.write 3. read 2. write Storage Storage Storage 1.1 synchronize 2.1 synchronize 17 Partitionstoleranz Client Client Client 1.write 3. read 2. write Storage Storage Storage 1.1 synchronize 2.1 synchronize 18 9

10 Konsistenz C Alle Knoten sehen zur gleichen Zeit die gleichen Daten. A P Strikte Konsistenz, wenn sie sofort sichergestellt ist (ACID). Oder gewisses Zeitfenster der Inkonsistenz (BASE). 19 Eventually Consistence Daten sind irgendwann konsistent geschrieben Bis dahin liefern Lesezugriffe nur eventuell konsistente Daten Verwendung in NoSQL Datenbanken Absichtlicher Verstoss gegen ACID (Atomarität, Konsistenz, Isoliertheit und Dauerhaftigkeit) Neue Nachricht wird um 13:12 geschrieben Knoten 1-3 Message,12:07 Message,12:07 Message,13:12 Message,12:07 Message,13:12 Lesezugriff Client 1 Client 2 Client

11 Eventually Consistent Konsequenzen? Strong consistency: ACID (Atomicity, Consistency, Isolation, Durability) Weak consistency: BASE (Basically Available, Soft-state, Eventual consistency) Availability first = BASE vs. ACID? 21 Gliederung Transaktionale Storages, NoSQL und das CAP-Theorem Transaktionale NoSQL-Szenarien Fallstudien 22 11

12 These NOSQL BASE- Storages Datenmenge Scale in NOSQL CA-Storages klassische CA-Storages Durchsatz/Verfügbarkeit 23 These Relationale Datenbanken skalieren in OO- Entwicklungsszenarien nicht mehr ausreichend. Warum? 24 12

13 Objektrelationale Unverträglichkeit (Impedance Mismatch) Objektorientierte Sicht JDO Objektrelationales Mapping (ORM) EJB (<= 2.1) Hibernate JPA JDBC Relationale Sicht 25 Aufspalten des Aggregats auf Zeilen von Tabellen orders addresses order lines 26 13

14 These Relationale Datenbanken skalieren in OO- Entwicklungsszenarien nicht mehr ausreichend. Warum? Impedanzmismatch => Joins, viele lesende Transaktionen 27 Große Clientanzahl/Verteilte Transaktionen EIS EIS 28 14

15 Große Clientanzahl/Verteilte Transaktionen EIS EIS 29 These Relationale Datenbanken skalieren in OO- Entwicklungsszenarien nicht mehr ausreichend. Warum? Impedanzmismatch => Joins, viele lesende Transaktionen Große Anzahl von Clients Lange (verteilte) Transaktionen 30 15

16 server (not dead) server EIS EIS 31 Gliederung Transaktionale Storages, NoSQL und das CAP-Theorem Transaktionale NoSQL-Szenarien Fallstudien 32 16

17 NoSQL CA-Datenbanken Dokumentenorientierte Datenbanken Graphendatenbanken Key-Value-Stores Diskbasiert RAM- Sortierte Key-Value-Stores Eventually Consistent Stores MultivalueDatenbanken Objektdatenbanken Spaltenorientierte Datenbank 33 Graph-DB Konzept Node ID 12 Node ID 47 username jdoe username smith birthday Node ID

18 Kernelemente Fokussiert auf Beziehungen verschiedene Abfragemöglichkeiten verwendet ACID Skalierung begrenzt 35 Die beliebtesten Graph-Datenbanken 7% 7% 9% Neo4j OrientDB Titan Sonstige 77% Quelle: Stand: Januar

19 Graphen bestehen aus Knoten Beziehungen Eigenschaften hat angestellt am: Dieter Develop Person gehalt: 1000 steuer: IV Labels alter:48 geschlecht: M Bernd Boss Person gehört geführt gegründet: 1998 Sitz: Mannheim arbeitet bei seit: OIO Firma 37 Suchen von Mustern 38 19

20 Key-Value Systeme - Vertreter Redis Amazon Dynamo und S3 Voldemort Riak Berkeley DB MemcacheDB 39 Die beliebtesten Key-Value-Stores 2% 1% 1% 3% 2% 3% 5% Redis Memcached Riak 5% 38% Ehcache DynamoDB 6% 8% Berkeley DB SimpleDB Hazelcast Coherence Oracle NoSQL Infinispan 26% Sonstige Quelle: Stand: Januar

21 Java EE 7 Services Java EE JTA/JTS/ JCA CDI/ Beanvalidation Java Mail Concurrency Utils JAX-RS JPA JBatch JMS Websocket JNDI Enterprise JAAS/JACC /JSR196 JAXP JDBC SAAJ Common Annotations JAX-WS JAXB JAF 41 Java EE Middleware strenge Spezifikation einer Softwarearchitektur transaktionsbasierte Ausführung von Java-Komponenten auf transkaktionsbasiertem Konzept beruhende Teilstandards JTA/JCA/JPA/JMS/JDBC Horizontale Skalierbarkeit der Anfragen innerhalb des Lösungskonzepts für High Availability garantierte Antwortzeiten machbar Ausfall von Knoten kompensierbar (insbesondere gedacht für Web-Anwendungen) Skalierung der Datenmenge problematisch 42 21

22 Elastic Data Grid für Java EE Niedrige Latenzzeit RAM 100fach schneller als Disk Horizontal skalierbar Elastisch Knoten können kontrolliert ein/ausgeschaltet werden optionaler ACID Support Read Commited/Repeatable Read Standardisiertes API JSR 107(347) Appserver Servlet Data Grid JSR 107 EJB Node 1 JSR 107 Node 1 Node 2 JSF Node 2 Node 3 JSR 107 RDBMS Node 3 43 JCACHE und Java EE Clustering UI 0./4. Query UI 0. Update 5. get 1. get 2. Read A 1.x Store A1 Secondary Store 44 22

23 OR/M Integration Java Virtual Machine Anwendung Transient Transient Transient Transient Transient PersistenceManager 1.Level Transaction Instanz Instanz Instanz 2.Level Connection QueryFacility DB Entity Instanz Instanz Instanz Instanz Query Timestamp 45 Query Applikation from Person p where p.name = :name Query Key:select * from Person where NAME= MAIER Value: 1, 25-18: :14:45:01 ID VORNAME NAME 1 Thorsten Maier 2 Ben Bartho 25 Tobias Maier Timestamp 46 23

24 Query Applikation from Person p where p.name = :name Query Key:select * from Person where NAME= MAIER Update Person Value: 1, 25-18: :14:45:01 ID VORNAME NAME 1 Thorsten Maier 2 Ben Bartho 25 Tobias Maier Kieninger Update Check for updates Timestamp 18:12: :45:54:13 - Person 47 Functional Caching UI 0./5. call 6. get 1. get 2. call Function Modul 48 24

25 Functional Caching 6. get UI 0./5. call 1. get 2. call 4.1 invalidate Function Modul 4. update Secondary Storage Function Modul 2.X query 49 Functional Caching UI 0./5. call 0.1 /5.1 call 6. get 1. get 2.call Secondary Storage Modul A Modul B 2.X query/update 50 25

26 Distributed I UI 0./4. Query 5. put 2. get 3./6. load/store Secondary Store 51 Distributed II Load/Store Secondary Store 52 26

27 Distributed Data Grid Secondary Store 53 Hashing Algorithmus z.b. basierend auf consistent hashing /Amazon Dynamo Paper Key Space in mehreren Segmenten(Anzahl Segmente ist konfigurierbar) Jedes Hash Segment ist gemapped auf eine Menge von Knoten(owners) Reihenfolge ist wichtig. Primary owner hat spezielle Aufgaben bei vielen Operationen(z.B: Locking) Andere Knoten heißen backup owners Ausgleich der Anzahl Segmente auf den Knoten Minimierung der Anzahl der Segmente, die sich bewegen müssen falls: Neuer Knoten zum Cluster hinzukommt Bestehender Knoten Cluster verlässt 54 27

28 Hashing Algorithmus 55 Distributed Execution Konzept update query Load/Store Secondary Store 56 28

29 Distributed Execution Konzept Execution Code (Callable). auf einem a spezifischen explizit gewählten cluster knoten Anwendungsspezifische Algorithmik auf dem cluster knoten dem der Key zugeordnet ist (with lockid) datenlokale Verarbeitung auf einem vom cache gewählten cluster knoten (without lockid) resourcenoptimale Verarbeitung auf allen Knoten bzw. einem Subset Massenverarbeitung 57 Execution on Key Owner example(hazelcast) Callable<String> task = new Command(input); HazelcastInstance hz = Hazelcast.newHazelcastInstance(); IExecutorService executorservice = hz.getexecutorservice("default"); Future<String> future = executorservice.submittokeyowner(task, key); String commandresult = future.get(); 58 29

30 Distributed Execution als LB Strategy Distributed Weblayer command submittokeyowner (lock 1) Node1 lock 1 lock 2 autodetection DB Die Ausführung erfolgt auf den Knoten welcher den Key hält Node 2 lock 3 lock 4 lock 5 59 Distributed Execution Webscaling key = SessionID Secondary Store 60 30

31 Distributed Execution Layered Update key = SessionID V2 V2 V2 V2 V2 V2 Secondary Store 61?? Fragen??? Orientation Objects GmbH Weinheimer Str Mannheim 31

32 Folien zum Vortrag Die Folien werden auf unserer Website veröffentlicht 63 Kommende Orientierungspunkte Spring Boot Freitag, 27. März :00-18:00 Uhr Pipelines zeichnen ist nicht schwer, Pipelines bauen dagegen... Freitag, 24. April :00-18:00 Uhr 32

33 Vielen Dank für ihre Aufmerksamkeit! Orientation in Objects GmbH Weinheimer Str Mannheim TODO Wrap up Impedanz mistmatch - Graphendatenbanken? - Neu (Query alngugage) - wenig anbieter - + Modellierung - Aldtanbestände 2nd level - Naiver Ansatz - Begrenzter Nutzen - 3 Probleme - Functional - Distributed Execution 66 33

NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT

NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT Version: 1.1 Wir haben hier nur ein in Java implementierte Frontends vor einer hostbasierten Businesslogic, wir profitieren nicht von NoSQL in

Mehr

Infinispan - NoSQL für den Enterprise Java Alltag

Infinispan - NoSQL für den Enterprise Java Alltag Infinispan - NoSQL für den Enterprise Java Alltag Version: 1.1 Orientation in Objects GmbH Weinheimer Str. 68 68309 Mannheim www.oio.de info@oio.de Gliederung NoSQL und Java EE Infinispan Integrationsszenarien

Mehr

Infinispan - NoSQL für den Enterprise Java Alltag

Infinispan - NoSQL für den Enterprise Java Alltag Infinispan - NoSQL für den Enterprise Java Alltag Version: 1.1 Orientation in Objects GmbH Weinheimer Str. 68 68309 Mannheim www.oio.de info@oio.de Wer schnell und einfach in bestehende Enterprise Java

Mehr

NoSQL. Was Architekten beachten sollten. Dr. Halil-Cem Gürsoy adesso AG. Architekturtag @ SEACON 2012 Hamburg

NoSQL. Was Architekten beachten sollten. Dr. Halil-Cem Gürsoy adesso AG. Architekturtag @ SEACON 2012 Hamburg NoSQL Was Architekten beachten sollten Dr. Halil-Cem Gürsoy adesso AG Architekturtag @ SEACON 2012 Hamburg 06.06.2012 Agenda Ein Blick in die Welt der RDBMS Klassifizierung von NoSQL-Datenbanken Gemeinsamkeiten

Mehr

NoSQL-Databases. Präsentation für Advanced Seminar "Computer Engineering", Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de

NoSQL-Databases. Präsentation für Advanced Seminar Computer Engineering, Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de NoSQL-Databases Präsentation für Advanced Seminar "Computer Engineering", Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de Klassische SQL-Datenbanken Anwendungsgebiet: Geschäftsanwendungen Behördenanwendungen

Mehr

NoSQL-Datenbanken. Kapitel 1: Einführung. Lars Kolb Sommersemester 2014. Universität Leipzig http://dbs.uni-leipzig.de 1-1

NoSQL-Datenbanken. Kapitel 1: Einführung. Lars Kolb Sommersemester 2014. Universität Leipzig http://dbs.uni-leipzig.de 1-1 NoSQL-Datenbanken Kapitel 1: Einführung Lars Kolb Sommersemester 2014 Universität Leipzig http://dbs.uni-leipzig.de 1-1 Inhaltsverzeichnis NoSQL-Datenbanken Motivation und Definition Kategorisierung, Eigenschaften

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Ralf Lange Global ISV & OEM Sales NoSQL: Eine kurze Geschichte Internet-Boom: Erste Ansätze selbstgebauter "Datenbanken" Google stellt "MapReduce"

Mehr

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1 Algorithmen Consistent Hashing Bloom Filter MapReduce Distributed Hash Tables Einführung 1 Consistent Hashing Problem: Wie finde ich den Speicherort für ein Objekt in einem verteilten System mit n Knoten?

Mehr

SimpleVOC-Yetanother. Bausteine für eine Key/Value- Datenbank

SimpleVOC-Yetanother. Bausteine für eine Key/Value- Datenbank SimpleVOC-Yetanother Memcached? Bausteine für eine Key/Value- Datenbank SimpleVOC Yet another memcached? Bausteine für eine Key/Value Datenbank. Theorie (Martin Schönert) Praxis (Frank Celler) Eine Weisheit

Mehr

Charakteristika und Vergleich von SQL- und NoSQL- Datenbanken

Charakteristika und Vergleich von SQL- und NoSQL- Datenbanken Universität Leipzig Fakultät für Mathematik und Informatik Abteilung Datenbanken Dozent: Prof. Dr. Erhard Rahm Betreuer: Stefan Endrullis Problemseminar NoSQL-Datenbanken Semester: WS 11/12 Charakteristika

Mehr

25.09.2014. Zeit bedeutet eine Abwägung von Skalierbarkeit und Konsistenz

25.09.2014. Zeit bedeutet eine Abwägung von Skalierbarkeit und Konsistenz 1 2 Dies ist ein Vortrag über Zeit in verteilten Anwendungen Wir betrachten die diskrete "Anwendungszeit" in der nebenläufige Aktivitäten auftreten Aktivitäten in einer hochgradig skalierbaren (verteilten)

Mehr

Caching. Hintergründe, Patterns &" Best Practices" für Business Anwendungen

Caching. Hintergründe, Patterns & Best Practices für Business Anwendungen Caching Hintergründe, Patterns &" Best Practices" für Business Anwendungen Michael Plöd" Senacor Technologies AG @bitboss Business-Anwendung!= Twitter / Facebook & co. " / kæʃ /" bezeichnet in der EDV

Mehr

SQL- & NoSQL-Datenbanken. Speichern und Analysen von großen Datenmengen

SQL- & NoSQL-Datenbanken. Speichern und Analysen von großen Datenmengen SQL- & NoSQL-Datenbanken Speichern und Analysen von großen Datenmengen 1 04.07.14 Zitat von Eric Schmidt (Google CEO): There was 5 exabytes of information created between the dawn of civilization through

Mehr

EHCache und Terracotta. Jochen Wiedmann, Software AG

EHCache und Terracotta. Jochen Wiedmann, Software AG EH und Terracotta Jochen Wiedmann, Software AG Autor Perl-Contributor DBD::mySQL 2, DBI::Proxy, DBI::Shell, DBD::CSV, Net::Daemon, RPC::Pl(Client Server) (Autor) DBI (Developer) ASF-Member (Apache Software

Mehr

NoSQL & Big Data. NoSQL Databases and Big Data. NoSQL vs SQL DBs. NoSQL DBs - Überblick. Datenorientierte Systemanalyse. Gerhard Wohlgenannt

NoSQL & Big Data. NoSQL Databases and Big Data. NoSQL vs SQL DBs. NoSQL DBs - Überblick. Datenorientierte Systemanalyse. Gerhard Wohlgenannt NoSQL & Big Data Datenorientierte Systemanalyse NoSQL Databases and Big Data Gerhard Wohlgenannt Die besprochenen Systeme haben nicht den Anspruch und das Ziel DBS zu ersetzen, sondern für gewisse Anwendungsfälle

Mehr

PostgreSQL im praktischen Einsatz. Stefan Schumacher

PostgreSQL im praktischen Einsatz. Stefan Schumacher PostgreSQL im praktischen Einsatz 2. Brandenburger Linux Infotag 2005 Stefan Schumacher , PGP Key http:/// $Header: /home/daten/cvs/postgresql/folien.tex,v 1.11 2005/04/25

Mehr

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010 NoSQL Einblick in die Welt nicht-relationaler Datenbanken Christoph Föhrdes UnFUG, SS10 17.06.2010 About me Christoph Föhrdes AIB Semester 7 IRC: cfo #unfug@irc.ghb.fh-furtwangen.de netblox GbR (http://netblox.de)

Mehr

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II SS 2015. NoSQL. http://www.w3resource.com/mongodb/nosql.php. Dr. Christian Senger.

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II SS 2015. NoSQL. http://www.w3resource.com/mongodb/nosql.php. Dr. Christian Senger. NoSQL http://www.w3resource.com/mongodb/nosql.php NoSQL 1 Short History of Databases 1960s - Navigational DBs CODEASYL (COBOL) IMS (IBM) 1980s to 1990s - Object Oriented DBs Object DB's Object-Relational-

Mehr

Orientation in Objects GmbH Weinheimer Str. 68 68309 Mannheim www.oio.de info@oio.de Version: 2014 Orientation 1.0 in Objects GmbH Der Sprecher Erik Bamberg (OIO) 2 1 s Aufgaben des Cachings Datenbank

Mehr

Persönlichkeiten bei bluehands

Persönlichkeiten bei bluehands Persönlichkeiten bei Technologien bei Skalierbare Anwendungen mit Windows Azure GmbH & co.mmunication KG am@.de; posts..de/am 1 2 3 4 5 6 7 8 9 Immer mehr Mehr Performance Mehr Menge Mehr Verfügbarkeit

Mehr

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221 Oracle 10g und SQL Server 2005 ein Vergleich Thomas Wächtler 39221 Inhalt 1. Einführung 2. Architektur SQL Server 2005 1. SQLOS 2. Relational Engine 3. Protocol Layer 3. Services 1. Replication 2. Reporting

Mehr

Web Technologien NoSQL Datenbanken

Web Technologien NoSQL Datenbanken Web Technologien NoSQL Datenbanken Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00 10:00 a.m. Room HS 021, B4

Mehr

Eine Einführung in Apache CouchDB. Java-Forum Stuttgart 2011

Eine Einführung in Apache CouchDB. Java-Forum Stuttgart 2011 Eine Einführung in Apache CouchDB Java-Forum Stuttgart 2011 Johannes Schneider, cedarsoft GmbH js@cedarsoft.com http://blog.cedarsoft.com http://cedarsoft.com Vielen Dank CouchDB The VERY Basics Vorerfahrung?

Mehr

Kapitel 4 Teil 2 NoSQL-Datenbanksysteme

Kapitel 4 Teil 2 NoSQL-Datenbanksysteme Kapitel 4 Teil 2 NoSQL-Datenbanksysteme Inhalt: CAP (Consistency/Availability/Partition-Tolerance); BASE (Basically Available, Soft State, Eventually Consistent); Datenmodelle: Key-Value-Stores, Spaltenbasierte

Mehr

Java Forum Stuttgart 2013 Kai.Spichale@adesso.de twitter.com/kspichale spichale.blogspot.de

Java Forum Stuttgart 2013 Kai.Spichale@adesso.de twitter.com/kspichale spichale.blogspot.de NoSQL für Java-Entwickler Java Forum Stuttgart 2013 Kai.Spichale@adesso.de twitter.com/kspichale spichale.blogspot.de 23.06.2013 Agenda Datengröße Key-value Stores 1. Wide Column 2. Cassandra Document

Mehr

Kein blasses Schema? NoSQL und Big Data mit Hibernate OGM

Kein blasses Schema? NoSQL und Big Data mit Hibernate OGM Kein blasses Schema? NoSQL und Big Data mit Hibernate OGM Thomas Much thomas@muchsoft.com www.muchsoft.com 1 NoSQL und Big Data Herzlich Willkommen in der NoSQL-Welt OnlySQL Not 2 NoSQL und Big Data NoSQL

Mehr

Entwicklung von Web-Anwendungen auf JAVA EE Basis

Entwicklung von Web-Anwendungen auf JAVA EE Basis Entwicklung von Web-Anwendungen auf JAVA EE Basis Java Enterprise Edition - Überblick Prof. Dr. Bernhard Schiefer Inhalt der Veranstaltung Überblick Java EE JDBC, JPA, JNDI Servlets, Java Server Pages

Mehr

NoSQL Datenbanken. Seminar:Software as a Service, Cloud-Computing und aktuelle Entwicklungen Dozent: Dipl. Inf. Andreas Göbel

NoSQL Datenbanken. Seminar:Software as a Service, Cloud-Computing und aktuelle Entwicklungen Dozent: Dipl. Inf. Andreas Göbel NoSQL Datenbanken Seminar:Software as a Service, Cloud-Computing und aktuelle Entwicklungen Dozent: Dipl. Inf. Andreas Göbel 17. Juni 2010 Gliederung Der Begriff NoSQL Wichtige Konzepte NoSQL-Arten Cassandra

Mehr

NoSQL Deep Dive mit Cassandra. Kai Spichale

NoSQL Deep Dive mit Cassandra. Kai Spichale NoSQL Deep Dive mit Cassandra Kai Spichale 13.04.2011 1 NoSQL 13.04.2011 2 BerlinExpertDays NoSQL Wide Column Stores / Column Families Document Stores Graph Databases Key Value / Tupe Stores 13.04.2011

Mehr

NoSQL. Hintergründe und Anwendungen. Andreas Winschu

NoSQL. Hintergründe und Anwendungen. Andreas Winschu NoSQL Hintergründe und Anwendungen Andreas Winschu 1 Inhalt 1. Motivation 2. RDBMS 3. CAP Theorem 4. NoSQL 5. NoSql Overview 6. NoSQl Praxis 7. Zusammenfassung und Ausblick 2 1.Motivation Datenbanken Permanente

Mehr

Neo4J & Sones GraphDB. Graph-Datenbanken. Von Toni Fröschke. Problemseminar NoSQL-Datenbanken (WS 2011/12)

Neo4J & Sones GraphDB. Graph-Datenbanken. Von Toni Fröschke. Problemseminar NoSQL-Datenbanken (WS 2011/12) Neo4J & Sones GraphDB Graph-Datenbanken Von Toni Fröschke Problemseminar NoSQL-Datenbanken (WS 2011/12) Gliederung Neo4J Überblick Neo4J-Komponenten Datenhaltung/ -verwaltung Verfügbarkeit & Recovery I/O

Mehr

Datenbanken und SQL. Kapitel 1. Übersicht über Datenbanken. Edwin Schicker: Datenbanken und SQL (1)

Datenbanken und SQL. Kapitel 1. Übersicht über Datenbanken. Edwin Schicker: Datenbanken und SQL (1) Datenbanken und SQL Kapitel 1 Übersicht über Datenbanken Übersicht über Datenbanken Vergleich: Datenorganisation versus Datenbank Definition einer Datenbank Bierdepot: Eine Mini-Beispiel-Datenbank Anforderungen

Mehr

Objekt-relationales Mapping und Performance-Tuning

Objekt-relationales Mapping und Performance-Tuning Objekt-relationales Mapping und Performance-Tuning Thomas Krüger tkrueger@vanatec.com Agenda Wege um Daten zu lesen Wege um Daten zu modellieren Wege um Datenbanken effizient zu nutzen 2 2 Wege, Daten

Mehr

JBoss 7 als Plattform für hochverfügbare Anwendungen

JBoss 7 als Plattform für hochverfügbare Anwendungen JBoss 7 als Plattform für hochverfügbare Anwendungen Orientierungspunkt 04/2013 24.05.2013, OIO Dirk Weil, GEDOPLAN GmbH Dirk Weil GEDOPLAN GmbH, Bielefeld Java EE seit 1998 Konzeption und Realisierung

Mehr

Semantic Web: Resource Description Framework (RDF)

Semantic Web: Resource Description Framework (RDF) Big Data Semantic Web: RDF Information Retrieval Map Reduce: Massiv parallele Verarbeitung Datenströme Peer to Peer Informationssysteme No SQL Systeme Multi-Tenancy/Cloud-Datenbanken Semantic Web: Resource

Mehr

SQL- & NoSQL-Datenbanken - Speichern und Analysen von großen Datenmengen

SQL- & NoSQL-Datenbanken - Speichern und Analysen von großen Datenmengen SQL- & NoSQL-Datenbanken - Speichern und Analysen von großen Datenmengen Lennart Leist Inhaltsverzeichnis 1 Einführung 2 1.1 Aufgaben einer Datenbank...................... 2 1.2 Geschichtliche Entwicklung

Mehr

PostgreSQL in großen Installationen

PostgreSQL in großen Installationen PostgreSQL in großen Installationen Cybertec Schönig & Schönig GmbH Hans-Jürgen Schönig Wieso PostgreSQL? - Die fortschrittlichste Open Source Database - Lizenzpolitik: wirkliche Freiheit - Stabilität,

Mehr

Softwareentwicklung mit Enterprise JAVA Beans

Softwareentwicklung mit Enterprise JAVA Beans Softwareentwicklung mit Enterprise JAVA Beans Java Enterprise Edition - Überblick Was ist J2EE Java EE? Zunächst mal: Eine Menge von Spezifikationen und Regeln. April 1997: SUN initiiert die Entwicklung

Mehr

AS 7 / EAP 6 - Clustering. heinz.wilming@akquinet.de @akquinet h3p://blog.akquinet.de

AS 7 / EAP 6 - Clustering. heinz.wilming@akquinet.de @akquinet h3p://blog.akquinet.de AS 7 / EAP 6 - Clustering heinz.wilming@akquinet.de @akquinet h3p://blog.akquinet.de Was ist die EAP 6? EAP6!= EAP5 +1 JBoss Enterprise ApplicaBon PlaCorm 6 Stabile und unterstützte Pla>orm Basiert auf

Mehr

NoSQL für Anwendungen

NoSQL für Anwendungen NoSQL für Anwendungen Hochschule Mannheim Fakultät für Informatik Cluster Grid Computing Seminar SS 2012 Lemmy Tauer (729400) lemmy.coldlemonade.tauer@gmail.com NoSQL CAP / ACID / Kompromisse Key-Value

Mehr

NoSQL mit Postgres 15. Juni 2015

NoSQL mit Postgres 15. Juni 2015 Tag der Datenbanken 15. Juni 2015 Dipl.-Wirt.-Inform. Agenda l Vorstellung l Marktübersicht l Warum PostgreSQL? l Warum NoSQL? l Beispielanwendung Seite: 2 Vorstellung Dipl.-Wirt.-Inform. [1990] Erste

Mehr

NoSQL Datenbanken am Beispiel von CouchDB

NoSQL Datenbanken am Beispiel von CouchDB NoSQL Datenbanken am Beispiel von CouchDB OIO - Hauskonferenz 2011 Version: 1.0 Orientation in Objects GmbH Weinheimer Str. 68 68309 Mannheim www.oio.de info@oio.de Ihr Sprecher Thomas Bayer Programmierer

Mehr

Wide Column Stores. Felix Bruckner Mannheim, 15.06.2012

Wide Column Stores. Felix Bruckner Mannheim, 15.06.2012 Wide Column Stores Felix Bruckner Mannheim, 15.06.2012 Agenda Einführung Motivation Grundlagen NoSQL Grundlagen Wide Column Stores Anwendungsfälle Datenmodell Technik Wide Column Stores & Cloud Computing

Mehr

Institut für Verteilte Systeme

Institut für Verteilte Systeme Institut für Verteilte Systeme Prof. Dr. Franz Hauck Seminar: Multimedia- und Internetsysteme, Wintersemester 2010/11 Betreuer: Jörg Domaschka Bericht zur Seminarssitzung am 2011-01-31 Bearbeitet von :

Mehr

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2 Seminar Cloud Data Management WS09/10 Tabelle1 Tabelle2 1 Einführung DBMS in der Cloud Vergleich verschiedener DBMS Beispiele Microsoft Azure Amazon RDS Amazon EC2 Relational Databases AMIs Was gibt es

Mehr

Cassandra Query Language (CQL)

Cassandra Query Language (CQL) Cassandra Query Language (CQL) Seminar: NoSQL Wintersemester 2013/2014 Cassandra Zwischenpräsentation 1 Gliederung Basic facts Datentypen DDL/DML ähnlich zu SQL Besonderheiten Basic facts CQL kurz für

Mehr

Weitere Decision-Support Anfrage- Typen

Weitere Decision-Support Anfrage- Typen Big Data Top-k / Ranking / Skyline Semantic Web: RDF Information Retrieval PageRank / HITS Map Reduce: Massiv parallele Verarbeitung Datenströme Peer to Peer Informationssysteme No SQL Systeme Multi-Tenancy/Cloud-Datenbanken

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

Apache HBase. A BigTable Column Store on top of Hadoop

Apache HBase. A BigTable Column Store on top of Hadoop Apache HBase A BigTable Column Store on top of Hadoop Ich bin... Mitch Köhler Selbstständig seit 2010 Tätig als Softwareentwickler Softwarearchitekt Student an der OVGU seit Oktober 2011 Schwerpunkte Client/Server,

Mehr

BigTable. 11.12.2012 Else

BigTable. 11.12.2012 Else BigTable 11.12.2012 Else Einführung Distributed Storage System im Einsatz bei Google (2006) speichert strukturierte Daten petabyte-scale, > 1000 Nodes nicht relational, NoSQL setzt auf GFS auf 11.12.2012

Mehr

Think Big. Skalierbare Anwendungen mit Azure. Aydin Mir Mohammadi Bluehands GmbH & co.mmunication KG

Think Big. Skalierbare Anwendungen mit Azure. Aydin Mir Mohammadi Bluehands GmbH & co.mmunication KG Skalierbare Anwendungen mit Azure Bluehands GmbH & co.mmunication KG 1 2 3 4 5 6 7 8 9 Immer mehr Mehr Performance Mehr Menge Mehr Verfügbarkeit Skalierung http://www.flickr.com/photos/39901968@n04/4864698533/

Mehr

In die Zeilen würden die Daten einer Adresse geschrieben werden. Das Ganze könnte in etwa folgendermaßen aussehen:

In die Zeilen würden die Daten einer Adresse geschrieben werden. Das Ganze könnte in etwa folgendermaßen aussehen: 1 Einführung in Datenbanksysteme Fast jeder kennt Excel und hat damit in seinem Leben schon einmal gearbeitet. In Excel gibt es Arbeitsblätter, die aus vielen Zellen bestehen, in die man verschiedene Werte

Mehr

Dokumentenorientierte Datenbanken - MongoDB

Dokumentenorientierte Datenbanken - MongoDB Dokumentenorientierte Datenbanken - MongoDB Jan Hentschel Ultra Tendency UG Übersicht Dokumente sind unabhängige Einheiten Bessere Performance (zusammengehörige Daten werden gemeinsam gelesen) Objektmodell

Mehr

Java Connectivity mit Caché extreme (Persist & Perform ohne Umwege) Gerd Nachtsheim, Senior Sales Engineer, InterSystems

Java Connectivity mit Caché extreme (Persist & Perform ohne Umwege) Gerd Nachtsheim, Senior Sales Engineer, InterSystems Java Connectivity mit Caché extreme (Persist & Perform ohne Umwege) Gerd Nachtsheim, Senior Sales Engineer, InterSystems InterSystems Unternehmensprofil Internationales Softwareunternehmen Hauptsitz in

Mehr

NoSQL-Datenbanken. Markus Kramer. deren Probleme herauszuarbeiten und andere Grundlagen zu erläutern.

NoSQL-Datenbanken. Markus Kramer. deren Probleme herauszuarbeiten und andere Grundlagen zu erläutern. 1 NoSQL-Datenbanken Markus Kramer Zusammenfassung NoSQL-Datenbanken sind zu einer interessanten Alternative zu herkömmlichen Datenbanken geworden. In dieser Arbeit werden die dahinter liegenden Konzepte

Mehr

IDS Lizenzierung für IDS und HDR. Primärserver IDS Lizenz HDR Lizenz

IDS Lizenzierung für IDS und HDR. Primärserver IDS Lizenz HDR Lizenz IDS Lizenzierung für IDS und HDR Primärserver IDS Lizenz HDR Lizenz Workgroup V7.3x oder V9.x Required Not Available Primärserver Express V10.0 Workgroup V10.0 Enterprise V7.3x, V9.x or V10.0 IDS Lizenz

Mehr

Datenbankanwendungen (JDBC)

Datenbankanwendungen (JDBC) Datenbankanwendungen (JDBC) Hierarchie: Connection Transaction Statement Connection Aufbau (klassisch): Registrierung des JDBC Driver beim DriverManager: Class.forName(JDBC Driver); Eigentlicher Verbindungsaufbau

Mehr

Web & Datenbanken SoSe2013. Web & Datenbanken

Web & Datenbanken SoSe2013. Web & Datenbanken Web & Datenbanken Vorlesung Prof. Johann Christoph Freytag, Ph.D. Institut für Informatik, Humboldt-Universität zu Berlin Bitte Handys ausschalten! 1.1 Ziel des Vortrags Welche DBMS gibt es Welche ist

Mehr

Analyse und Bewertung von relationalen Datenbanken gegenüber NoSQL Datenbanken

Analyse und Bewertung von relationalen Datenbanken gegenüber NoSQL Datenbanken FOM - Hochschule für Oekonomie & Management Essen in Kooperation mit der FH Dortmund Studienfach: IT-Management 2. Semester Wintersemester 2011 Betreuer: Prof. Dr. Gregor Sandhaus Analyse und Bewertung

Mehr

Einführung in Hauptspeicherdatenbanken

Einführung in Hauptspeicherdatenbanken Einführung in Hauptspeicherdatenbanken Harald Zankl Probevorlesung 13. 01., 13:15 14:00, HS C Inhaltsverzeichnis Organisation Überblick Konklusion Harald Zankl (LFU) Hauptspeicherdatenbanken 2/16 Organisation

Mehr

Performance Tuning & Scale-Out mit MySQL

Performance Tuning & Scale-Out mit MySQL Performance Tuning & Scale-Out mit MySQL Erfa-Gruppe Internet Briefing 2. März 2010 Oli Sennhauser Senior MySQL Consultant, FromDual oli.sennhauser@fromdual.com www.fromdual.com 1 Inhalt Allgemeines zu

Mehr

Überblick über NoSQL Datenbanken

Überblick über NoSQL Datenbanken 1 Überblick über NoSQL Datenbanken Seminararbeit Software Systems Engineering - WS 2012 / 2013 Mario David - Student - Master Informatik (SSE) Universität zu Lübeck Zusammenfassung Diese Seminararbeit

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Datenbanken. NoSQL-Datenbank MongoDB. von Maximilian Weber. Listing 1. Artikelserie

Datenbanken. NoSQL-Datenbank MongoDB. von Maximilian Weber. Listing 1. Artikelserie Gigantische Datenbank Die humongous database oder kurz MongoDB hat einen einprägsamen Namen und ist eine vielversprechende NoSQL-Datenbank. MongoDB möchte die Lücke zwischen Key-Value-Stores (die schnell

Mehr

ENTWICKLUNGS- UND LAUFZEITUMGEBUNG DER CSE: ECLIPSE UND JBOSS. Piotr Kasprzak

ENTWICKLUNGS- UND LAUFZEITUMGEBUNG DER CSE: ECLIPSE UND JBOSS. Piotr Kasprzak ENTWICKLUNGS- UND LAUFZEITUMGEBUNG DER CSE: ECLIPSE UND JBOSS Piotr Kasprzak Agenda Laufzeitumgebung Java EE (J2EE) Motivation APIs / Technologien JBoss Entwicklungsumgebung Eclipse Ausblick Java EE -

Mehr

Key-Value-Stores Am Beispiel von Scalaris

Key-Value-Stores Am Beispiel von Scalaris Key-Value-Stores Am Beispiel von Scalaris Natanael Arndt arndtn@gmail.com 15. April 2012 Inhaltsverzeichnis 1 Einführung 2 1.1 Key-Value-Stores................................ 2 1.2 CRUD Operationen statt

Mehr

Vorlesung. Informationssysteme. Prof. Dr. Hans Czap. Lehrstuhl für Wirtschaftsinformatik I. Email: Hans.Czap@uni-trier.de

Vorlesung. Informationssysteme. Prof. Dr. Hans Czap. Lehrstuhl für Wirtschaftsinformatik I. Email: Hans.Czap@uni-trier.de Vorlesung Grundlagen betrieblicher Informationssysteme Prof. Dr. Hans Czap Email: Hans.Czap@uni-trier.de - II - 1 - Inhalt Kap. 1 Ziele der Datenbanktheorie Kap. 2 Datenmodellierung und Datenbankentwurf

Mehr

Karl Glatz Oktober 2009. Vorstellung der verteilten NoSQL Datenbank CouchDB

Karl Glatz Oktober 2009. Vorstellung der verteilten NoSQL Datenbank CouchDB Karl Glatz Oktober 2009 Vorstellung der verteilten NoSQL Datenbank CouchDB Web Awendung (AJAX) MySQL SQL Web Server PHP HTTP (HTML) ORM (Framework) JSON API (AJAX) Web Browser Java Script HTTP RESTful

Mehr

MongoDB Big Data mit Open Source

MongoDB Big Data mit Open Source MongoDB Big Data mit Open Source CommitterConf Essen 2014 29. Oktober 2014 Tilman Beitter Linux Consultant & Trainer B1 Systems GmbH beitter@b1-systems.de B1 Systems GmbH - Linux/Open Source Consulting,

Mehr

GSCC General Storage Cluster Controller. TSM Verfügbarkeit

GSCC General Storage Cluster Controller. TSM Verfügbarkeit GSCC General Storage Cluster Controller TSM Verfügbarkeit Skyloft 17.06.2015 Karsten Boll GSCC Themen Historie und Überblick Design und Architektur IP Cluster (DB2 HADR) GSCCAD das GUI Trends GSCC Neuigkeiten

Mehr

Architekturen für die Cloud

Architekturen für die Cloud Vorsicht, Kurven! Architekturen für die Cloud Eberhard Wolff Cloud-Technologien sind gerade dabei, die Informationstechnik grundlegen zu ändern. Für Entwickler und Architekten stellt sich die Frage, was

Mehr

Storage-Trends am LRZ. Dr. Christoph Biardzki

Storage-Trends am LRZ. Dr. Christoph Biardzki Storage-Trends am LRZ Dr. Christoph Biardzki 1 Über das Leibniz-Rechenzentrum (LRZ) Seit 50 Jahren Rechenzentrum der Bayerischen Akademie der Wissenschaften IT-Dienstleister für Münchner Universitäten

Mehr

Mobile Backend in der

Mobile Backend in der Mobile Backend in der Cloud Azure Mobile Services / Websites / Active Directory / Kontext Auth Back-Office Mobile Users Push Data Website DevOps Social Networks Logic Others TFS online Windows Azure Mobile

Mehr

Fujitsu BeanConnect TM V3.0 Software 0 FUJITSU LIMITED 2013

Fujitsu BeanConnect TM V3.0 Software 0 FUJITSU LIMITED 2013 Fujitsu BeanConnect TM V3.0 Software 0 FUJITSU LIMITED 2013 Die Herausforderung: Hostanbindung Viele Unternehmen besitzen Mainframe- und Legacy-Anwendungen, so genannte Enterprise Information Systems (EIS),

Mehr

ORM & OLAP. Object-oriented Enterprise Application Programming Model for In-Memory Databases. Sebastian Oergel

ORM & OLAP. Object-oriented Enterprise Application Programming Model for In-Memory Databases. Sebastian Oergel ORM & OLAP Object-oriented Enterprise Application Programming Model for In-Memory Databases Sebastian Oergel Probleme 2 Datenbanken sind elementar für Business-Anwendungen Gängiges Datenbankparadigma:

Mehr

MySQL in großen Umgebungen

MySQL in großen Umgebungen MySQL in großen Umgebungen 03.03.2011 CeBIT Referent: Bernd Erk Agenda DESTINATION TIME REMARK KURZVORSTELLUNG MYSQL STATUS QUO STORAGE ENGINES MONITORING UND MANAGEMENT ENTERPRISE FEATURES FRAGEN UND

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de MapReduce MapReduce - Veranschaulichung der Phasen Prof. Dr.-Ing. S. Michel TU Kaiserslautern

Mehr

Lightweight Java in der Automatisierungstechnik

Lightweight Java in der Automatisierungstechnik Lightweight Java in der Automatisierungstechnik Erfahrungen aus dem Anlagenbau Dr. Markus Eiglsperger eig@zuehlke.com Business Driver im Anlagenbau Kosten Modularisierung Vernetzung Agilität Paradigmenwechsel

Mehr

MySQL High Availability. DOAG 2013 Datenbank. 14. Mai 2013, Düsseldorf. Oli Sennhauser

MySQL High Availability. DOAG 2013 Datenbank. 14. Mai 2013, Düsseldorf. Oli Sennhauser MySQL High Availability DOAG 2013 Datenbank 14. Mai 2013, Düsseldorf Oli Sennhauser Senior MySQL Berater, FromDual GmbH oli.sennhauser@fromdual.com 1 / 23 Über FromDual GmbH FromDual bietet neutral und

Mehr

NoSQL Please! Wie Web2.0, Big Data und die Cloud neue Datenbanksysteme erfordern und hervorbringen. Datenbank-Stammtisch, 8.

NoSQL Please! Wie Web2.0, Big Data und die Cloud neue Datenbanksysteme erfordern und hervorbringen. Datenbank-Stammtisch, 8. A Database Administrator walks into a NoSQL bar, but turns and leaves because he cannot find a table. NoSQL Please! Wie Web2.0, Big Data und die Cloud neue Datenbanksysteme erfordern und hervorbringen.

Mehr

Was ist Windows Azure? (Stand Juni 2012)

Was ist Windows Azure? (Stand Juni 2012) Was ist Windows Azure? (Stand Juni 2012) Windows Azure Microsofts Cloud Plattform zu Erstellung, Betrieb und Skalierung eigener Cloud-basierter Anwendungen Cloud Services Laufzeitumgebung, Speicher, Datenbank,

Mehr

whitepaper NoSQL Not only... but also SQL: Flexibilität und Vielfalt in der Persistenz

whitepaper NoSQL Not only... but also SQL: Flexibilität und Vielfalt in der Persistenz whitepaper NoSQL Not only... but also SQL: Flexibilität und Vielfalt in der Persistenz NoSQL Not only... but also SQL: Flexibilität und Vielfalt in der Persistenz Dieses Dokument soll die Technologien,

Mehr

Internet Briefing. Real-Time Web. Technische Standards und Herausforderungen. Namics. Jürg Stuker. CEO. Partner. 7. April 2010

Internet Briefing. Real-Time Web. Technische Standards und Herausforderungen. Namics. Jürg Stuker. CEO. Partner. 7. April 2010 Internet Briefing. Real-Time Web. Technische Standards und Herausforderungen. Namics. Jürg Stuker. CEO. Partner. 7. April 2010 The sum of the expertise of the people in the audience is greater than the

Mehr

Architekturen. Von der DB basierten zur Multi-Tier Anwendung. DB/CRM (C) J.M.Joller 2002 131

Architekturen. Von der DB basierten zur Multi-Tier Anwendung. DB/CRM (C) J.M.Joller 2002 131 Architekturen Von der DB basierten zur Multi-Tier Anwendung DB/CRM (C) J.M.Joller 2002 131 Lernziele Sie kennen Design und Architektur Patterns, welche beim Datenbankzugriff in verteilten Systemen verwendet

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden Neue Beziehungen finden...

Mehr

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution EXASOL @ Symposium on Scalable Analytics Skalierbare Analysen mit EXASolution EXASOL AG Wer sind wir R&D: + seit 2000 + laufend Forschungsprojekte Produkt: Analytische Datenbank EXASolution Focus auf Komplexität

Mehr

Vorbesprechung Hauptseminar "Cloud Computing"

Vorbesprechung Hauptseminar Cloud Computing Vorbesprechung Hauptseminar "Cloud Computing" Dimka Karastoyanova, Johannes Wettinger, {karastoyanova, wettinger}@iaas.uni-stuttgart.de Institute of Architecture of Application Systems (IAAS) Universität

Mehr

Datenbanktechnologien für Big Data

Datenbanktechnologien für Big Data Datenbanktechnologien für Big Data Oktober 2013 Prof. Dr. Uta Störl Hochschule Darmstadt Big Data Technologien Motivation Big Data Technologien NoSQL-Datenbanksysteme Spaltenorientierte Datenbanksysteme

Mehr

Tuning von PostGIS mit Read- Only-Daten von OpenStreetMap

Tuning von PostGIS mit Read- Only-Daten von OpenStreetMap Tuning von PostGIS mit Read- Only-Daten von OpenStreetMap Prof. Stefan Keller (Fach-)Hochschule für Technik Rapperswil (bei Zürich) 11.11.2011 PGConf.DE - Stefan Keller 1 Was ist OpenStreetMap? Wikipedia

Mehr

Vorbesprechung Hauptseminar "Cloud Computing"

Vorbesprechung Hauptseminar Cloud Computing Vorbesprechung Hauptseminar "Cloud Computing" Dimka Karastoyanova, Johannes Wettinger, Frank Leymann {karastoyanova, wettinger, leymann}@iaas.uni-stuttgart.de Institute of Architecture of Application Systems

Mehr

Groovy und CouchDB. Ein traumhaftes Paar. Thomas Westphal

Groovy und CouchDB. Ein traumhaftes Paar. Thomas Westphal Groovy und CouchDB Ein traumhaftes Paar Thomas Westphal 18.04.2011 Herzlich Willkommen Thomas Westphal Software Engineer @ adesso AG Projekte, Beratung, Schulung www.adesso.de thomas.westphal@adesso.de

Mehr

GRAU DataSpace 2.0 Die sichere Fileshare & Sync Lösung für Unternehmen und Organisationen YOUR DATA. YOUR CONTROL

GRAU DataSpace 2.0 Die sichere Fileshare & Sync Lösung für Unternehmen und Organisationen YOUR DATA. YOUR CONTROL GRAU DataSpace 2.0 Die sichere Fileshare & Sync Lösung für Unternehmen und Organisationen YOUR DATA. YOUR CONTROL 20. Mar 2014 im Überblick Basiert auf robustem DMS/ECM-Kern (agorum core) Zahlreiche offene

Mehr

Relationale Datenbanken Kursziele

Relationale Datenbanken Kursziele Relationale Datenbanken Kursziele DB Grundlagen Daten-Modellierung Relationales Modell und DB => Praxis: Mit SQL als Anfragesprache Mit MySQL als DB RDB 1-1 Kursinhalt (Tage) 1. DB Einleitung / Entity-Relationship

Mehr

Uni Duisburg-Essen Fachgebiet Informationssysteme Prof. Dr. N. Fuhr

Uni Duisburg-Essen Fachgebiet Informationssysteme Prof. Dr. N. Fuhr Raum: LF 230 Bearbeitung: 9.-11. Mai 2005 Datum Gruppe Vorbereitung Präsenz Aktuelle Informationen unter: http://www.is.informatik.uni-duisburg.de/courses/dbp_ss03/ Tabellen in IBM DB2 Tabellen Eine relationale

Mehr

Session Storage im Zend Server Cluster Manager

Session Storage im Zend Server Cluster Manager Session Storage im Zend Server Cluster Manager Jan Burkl System Engineer, Zend Technologies Agenda Einführung in Zend Server und ZSCM Überblick über PHP Sessions Zend Session Clustering Session Hochverfügbarkeit

Mehr

Dateisysteme und Datenverwaltung in der Cloud

Dateisysteme und Datenverwaltung in der Cloud Dateisysteme und Datenverwaltung in der Cloud Sebastian Fischer Master-Seminar Cloud Computing - WS 2013/14 Institut für Telematik, Universität zu Lübeck Dateisysteme und Datenverwaltung in der Cloud 1

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

RAC auf Sun Cluster 3.0

RAC auf Sun Cluster 3.0 RAC auf Sun Cluster 3.0 Schlüsselworte RAC, OPS, Sun Cluster, Performance, Availability Zusammenfassung Oracle hat mit dem Real Application Cluster (RAC) aus einer Hochverfügbarkeitslösung eine Höchstverfügbarkeitslösung

Mehr

HA Architekturen mit MySQL

HA Architekturen mit MySQL HA Architekturen mit MySQL DOAG SIG Database MySQL, Hannover, 19. May 2011 Oli Sennhauser Senior MySQL Consultant, FromDual GmbH oli.sennhauser@fromdual.com http://www.fromdual.com www.fromdual.com 1 FromDual

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr