5. Übungsblatt. Für die Übung am Donnerstag, 27. N ovember 2008 von 15:30 bis 17:00 Uhr in 13/222.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "5. Übungsblatt. Für die Übung am Donnerstag, 27. N ovember 2008 von 15:30 bis 17:00 Uhr in 13/222."

Transkript

1 AG Datenbanken und Informationssysteme Wintersemester 2008 / 2009 Prof. Dr.-Ing. Dr. h. c. Theo Härder Fachbereich Informatik Technische Universität Kaiserslautern 5. Übungsblatt Für die Übung am Donnerstag, 27. N ovember 2008 von 15:30 bis 17:00 Uhr in 13/222. Aufgabe 1: Entwurf eines Data Warehouse Für den aus dem folgenden Anwendungsszenario hervorgehenden Datenbestand eines Unternehmens soll ein Data Warehouse zur Analyse der Verkaufzahlen erstellt werden. Das Unternehmen erfasst alle Kunden mit einer eindeutigen ID, deren Namen und Geburtsdatum. Jeder Kunde wird einer Altersgruppe z. B. Teenager zugeteilt. Die angebotenen Produkte werden mit einer Produkt-ID, Namen und einem Preis gespeichert. Jedes Produkt wird zusätzlich mit einer Produktgruppe klassifiziert. Das Unternehmen besitzt zahlreiche Filialen. Für jede Filiale ist der Ort gespeichert, der wiederum einem der Gebiete Süd, Ost, West oder Nord zugeordnet ist. Der Verkauf eines Produkts an einen Kunden in einer Filiale wird zusammen mit dem Datum in der Unternehmensdatenbank abgelegt. a Erstellen Sie für das beschriebene Anwendungsszenario ein E/R-Diagramm. b Bilden Sie das E/R-Diagramm mit SQL auf ein relationales Datenbankschema ab. c Erstellen Sie mit SQL das Stern-Schema für ein Data Warehouse, in das die Daten aus der Datenbank von b geladen und mit dem die in d aufgeführten Fragen beantwortet werden können. d Formulieren Sie die folgenden Anfragen in SQL auf dem Datenbankschema des Data Warehouse: 1 Wieviele Produkte wurden im ersten Quartal verkauft? 2 Wieviele Produkte wurden davon in der fünften Kalenderwoche verkauft? 3 Wieviele Produkte haben Kunden der Altersgruppe Teenager im Gebiet Süd gekauft? 4 Wie hoch ist das Durchschnittsalter aller Kunden der Altersgruppe Rentner, die im Gebiet Nord Produkte der Gruppe Mobiltelefon außerhalb der Weihnachtszeit gekauft haben? Lösung: Seite 1

2 a E/R-Diagramm für das Anwendungsszenario Bezeichnung Altersgruppe n KID Name 1 Kunde n n Ort 1 Name Geburtsdatum PID Name Preis p Produkt 1 Datum m 1 Filiale FID n Gebiet Name Bezeichnung n Produktgruppe b Abbildung des E/R-Diagramms auf ein SQL-Schema CREATE TABLE altersgruppe bezeichnung VARCHAR25 PRIMARY KEY CREATE TABLE kunde kid INTEGER PRIMARY KEY, name VARCHAR50 NOT NULL, geburtsdatum DATE NOT NULL, gruppe VARCHAR25 NOT NULL REFERENCES altersgruppebezeichnung CREATE TABLE produktgruppe bezeichnung VARCHAR25 PRIMARY KEY CREATE TABLE produkt pid INTEGER PRIMARY KEY, name VARCHAR50 NOT NULL, preis DECIMAL6,2 NOT NULL, gruppe VARCHAR25 NOT NULL REFERENCES produktgruppebezeichnung CREATE TABLE gebiet name VARCHAR20 PRIMARY KEY Seite 2

3 CREATE TABLE ort name VARCHAR50 PRIMARY KEY, gebiet VARCHAR20 NOT NULL REFERENCES gebietname CREATE TABLE filiale fid INTEGER PRIMARY KEY, ort VARCHAR50 NOT NULL REFERENCES ortname CREATE TABLE kauf datum DATE NOT NULL, kid INTEGER NOT NULL REFERENCES kundekid, pid INTEGER NOT NULL REFERENCES produktpid, fid INTEGER NOT NULL REFERENCES filialefid c SQL-Schema für das Data Warehouse dwzeit datum pid dwprodukt dwkauf dwkunde kid fid dwfiliale CREATE TABLE dwzeit datum DATE PRIMARY KEY, kw INTEGER NOT NULL, quartal INTEGER NOT NULL, saison VARCHAR30 NOT NULL CREATE TABLE dwkunde kid INTEGER PRIMARY KEY, alter INTEGER NOT NULL, gruppe VARCHAR25 NOT NULL CREATE TABLE dwprodukt pid INTEGER PRIMARY KEY, gruppe VARCHAR25 NOT NULL Seite 3

4 CREATE TABLE dwfiliale fid INTEGER PRIMARY KEY, ort VARCHAR50 NOT NULL, gebiet VARCHAR20 NOT NULL CREATE TABLE dwkauf datum DATE NOT NULL REFERENCES dwzeitdatum, kid INTEGER NOT NULL REFERENCES dwkundekid, pid INTEGER NOT NULL REFERENCES dwproduktpid, fid INTEGER NOT NULL REFERENCES dwfilialefid d Anfragen an das Data Warehouse 1 SELECT COUNT* FROM dwkauf k, dwzeit z WHERE k.datum=z.datum AND z.quartal=1 2 SELECT COUNT* FROM dwkauf k, dwzeit z WHERE k.datum=z.datum AND z.kw=5 3 SELECT COUNT* FROM dwkauf ka, dwkunde ku, dwfiliale f WHERE ka.kid=ku.kid AND ka.fid=f.fid AND ku.gruppe= Teenager AND f.gebiet= Süd 4 SELECT AVGku.alter FROM dwkauf ka, dwzeit z, dwkunde ku, dwfiliale f, dwprodukt p WHERE ka.datum=z.datum AND ka.kid=ku.kid AND ka.fid=f.fid AND ka.pid=p.pid AND ku.gruppe= Rentner AND f.gebiet= Nord AND p.gruppe= Mobiltelefon AND z.saison <> Weihnachten Seite 4

5 Aufgabe 2: SQL-Anfragen und Views am Beispiel Personal-DB Gegeben sei die folgende Datenbank, die von der Finanzabteilung zur Berechnung der Löhne und Gehälter der Mitarbeiter MA der verschiedenen Abteilungen ABT genutzt wird. MA MANR, MANAME, MAVORNAME, ABTNR, FIRMENZUGEHOERIGKEIT, KINDER, STEUERKLASSE, GEHALT, KRANKENKASSE, BEITRAGSSATZ ABT ABTNR, ABTNAME, ABTLEITER, ABTORT ABTLEITER hat denselben Wertebereich wie MANR und ist Fremdschlüssel. Zur Erstellung verschiedener Statistiken sollen dynamische Sichten erzeugt werden, und zwar: a Eine Sicht, die die Abteilungsnummer, den Abteilungsnamen, die Anzahl der Mitarbeiter der Abteilung, den Durchschnitt der Firmenzugehörigkeit und des Gehalts, das höchste Gehalt der Abteilung und die Differenz zwischen dem höchsten und niedrigsten Gehalt in der Abteilung umfasst. b Eine Sicht, die, gestaffelt nach Krankenkasse und Kinderzahl, den durchschnittlichen Beitragssatz für Mitglieder von Abteilungen in Frankfurt, München oder Stuttgart beinhaltet. c Eine Sicht, die Name, Vorname und Gehalt der Mitarbeiter enthält, die in Abteilungen arbeiten, deren Durchschnittsgehalt größer als ist. d Eine Sicht, die die Daten der Mitarbeiter in Steuerklasse 1 enthält, und eine weitere, die nur Mitarbeiter in Steuerklasse 1 mit mehr als 5 Jahren Firmenzugehörigkeit enthält. e Formulieren Sie auf der ersten der beiden letzten Sichten die Anfrage nach den Daten aller Mitarbeiter, deren Abteilungsleiter Müller heißt. f Was passiert bei Änderungen auf Sichten, die Aggregatfunktionen beinhalten? Seite 5

6 Lösung: a Eine Sicht, die die Abteilungsnummer, den Abteilungsnamen, die Anzahl der Mitarbeiter der Abteilung, den Durchschnitt der Firmenzugehörigkeit und des Gehalts, das höchste Gehalt der Abteilung und die Differenz zwischen dem höchsten und niedrigsten Gehalt in der Abteilung umfasst. CREATE VIEW ABTSTATISTIK ABTNR, ABTNAME, MITANZ, DFIRMENZUGEHOERIGKEIT, DGEHALT, MAXGEHALT, DIFFGEHALT AS SELECT ABT.ABTNR, ABTNAME, COUNTMANR, AVG FIRMENZUGEHOERIGKEIT, AVGGEHALT, MAX GEHALT, MAXGEHALT - MINGEHALT MA, ABT MA.ABTNR = ABT.ABTNR FROM WHERE GROUP BY ABT.ABTNR, ABTNAME b Eine Sicht, die, gestaffelt nach Krankenkasse und Kinderzahl, den durchschnittlichen Beitragssatz für Mitglieder von Abteilungen in Frankfurt, München oder Stuttgart beinhaltet. CREATE VIEW KK_KINDER_BEITRAGSSATZ_STAEDTE KRANKENKASSE, KINDER, DBEITRAGSSATZ AS SELECT KRANKENKASSE, KINDER, AVGBEITRAGSSATZ FROM MA, ABT WHERE MA.ABTNR = ABT.ABTNR AND ABT.ABTORT IN Frankfurt, München, Stuttgart GROUP BY KRANKENKASSE, KINDER c Eine Sicht, die Name, Vorname und Gehalt der Mitarbeiter enthält, die in Abteilungen arbeiten, deren Durchschnittsgehalt größer als ist. CREATE VIEW ANG_IN_TOP_ABT MANAME, MAVORNAME, GEHALT AS SELECT MANAME, MAVORNAME, GEHALT FROM MA WHERE ABTNR IN SELECT ABT.ABTNR FROM MA, ABT WHERE MA.ABTNR = ABT.ABTNR GROUP BY ABT.ABTNR HAVING AVGGEHALT > d Eine Sicht, die die Daten der Mitarbeiter in Steuerklasse 1 enthält, und eine weitere, die nur Mitarbeiter in Steuerklasse 1 mit mehr als 5 Jahren Firmenzugehörigkeit enthält. CREATE VIEW STKL1 AS FROM MA WHERE STEUERKLASSE = 1 CREATE VIEW STKL1_FZ5 AS FROM MA WHERE STEUERKLASSE = 1 AND FIRMENZUGEHOERIGKEIT > 5 Seite 6

7 CREATE VIEW STKL1_FZ5 AS FROM STKL1 WHERE FIRMENZUGEHOERIGKEIT > 5 e Formulieren Sie auf der ersten der beiden letzten Sichten die Anfrage nach den Daten aller Mitarbeiter, deren Abteilungsleiter Müller heißt. SELECT FROM WHERE STKL1.* STKL1, ABT, MA STKL1.ABTNR = ABT.ABTNR AND ABT.ABTLEITER = MA.MANR AND MA.MANAME = MÜLLER f Was passiert bei Änderungen auf Sichten, die Aggregatfunktionen beinhalten? Sichten mit Aggregatfunktionen lassen sich nicht ändern. Seite 7

8 Aufgabe 3: Kostenmodelle für die Selektionsoperation Gegeben sei eine Tabelle R mit den Attributen A1, A2, A3,..., An, die zusammenhängend in den Seiten des Segments S gespeichert ist. R A1, A2, A3,..., An Das Segment S habe M S =10 4 Seiten. Die Tabelle R habe N R =10 5 Sätze und ggf. für die entsprechenden Aufgabenstellungen einen Cluster-Faktor c R =50. Weiterhin seien die Indizes I R A1 mit j A1 =100 und I R A2 mit j A2 =10 für die Attribute A1 und A2 angelegt. Bei Indizes sind jeweils als B*-Bäume mit der Höhe h B =2 und N B =100 Blattseiten realisiert. a Wie teuer Anzahl der Seitenzugriffe ist die Auswertung der SQL-Anfrage WHERE A3= x 1 bei einem Tabellen-Scan? 2 bei Nutzung des Indexes I R A1? 3 bei Nutzung des Indexes I R A2 mit Cluster-Bildung? 4 wenn die Tabelle als Hash-Struktur mit A3 als Primärschlüssel angelegt ist? b A1 habe 100 Werte, die von 1 bis 100 gleichverteilt vorkommen j A1 =100. Wie teuer ist die Auswertung der SQL-Anfrage WHERE A1>50 1 bei Nutzung des Indexes I R A1? 2 bei Annahme einer Cluster-Bildung bei I R A1? 3 ohne Indexnutzung? c Welche Kosten verursacht die SQL-Anfrage WHERE A1=50 AND A2=10 1 bei Nutzung von I R A1 und I R A2 jeweils ohne Cluster-Bildung? 2 bei gemeinsamer Nutzung von I R A1 und I R A2 mit Cluster-Bildung? 3 bei Zugriff nur über I R A2 mit Cluster-Bildung? 4 bei Zugriff nur über I R A1 mit Cluster-Bildung? Seite 8

9 Lösung: a Wie teuer Anzahl der Seitenzugriffe ist die Auswertung der SQL-Anfrage WHERE A3= x 1 bei einem Tabellen-Scan? C a1 = M S = 10 4 Seiten 2 bei Nutzung des Indexes I R A1? C a2 = h B + N B - 1+ N R = Seiten 3 bei Nutzung des Indexes I R A2 mit Cluster-Bildung? C a3 = h B + N B N R / c R = Seiten 4 wenn die Tabelle als Hash-Struktur mit A3 als Primärschlüssel angelegt ist? C a4 = 1 b A1 habe 100 Werte, die von 1 bis 100 gleichverteilt vorkommen j A1 =100. Wie teuer ist die Auswertung der SQL-Anfrage WHERE A1>50 1 bei Nutzung des Indexes I R A1? C b1 = h B + N B / 2 + N R / j A1 j A1 / 2 = /2 N B -1 vernachlässigt wg. / 2 2 bei Annahme einer Cluster-Bildung bei I R A1? C b2 = h B + N B / 2 + N R / j A1 j A1 / 2 c R = ohne Indexnutzung? C b3 = M S = 10 4 c Welche Kosten verursacht die SQL-Anfrage WHERE A1=50 AND A2=10 1 bei Nutzung von I R A1 und I R A2 jeweils ohne Cluster-Bildung? C c1 = h B + N B / j A1 + h B + N B / j A2 + N R / j A1 j A2 = / 10 3 = bei gemeinsamer Nutzung von I R A1 und I R A2 mit Cluster-Bildung? C c2 = h B + N B / j A1 + h B + N B / j A2 + N R / j A1 j A2 c R = / = 17 3 bei Zugriff nur über I R A2 mit Cluster-Bildung? C c3 = h B + N B / j A2 + N R / j A2 c R = / = bei Zugriff nur über I R A1 mit Cluster-Bildung? C c4 = h B + N B / j A1 + N R / j A1 c R = = 23 Seite 9

10 Aufgabe 4: CHECK OPTION bei Sichten in SQL Gegeben seien folgende SQL-Anweisungen: CREATE TABLE T S1 INT, S2 INT, S3 INT, S4 INT, S5 INT; CREATE VIEW V1 AS FROM T WHERE S1=1; CREATE VIEW V2 AS FROM V1 WHERE S2=2 WITH LOCAL CHECK OPTION; CREATE VIEW V3 AS FROM V2 WHERE S3=3; CREATE VIEW V4 AS FROM V3 WHERE S4=4 WITH CASCADED CHECK OPTION; CREATE VIEW V5 AS FROM V4 WHERE S5=5; Ist die Ausführung der nachfolgenden INSERT-Anweisungen erfolgreich? Geben Sie jeweils eine kurze Begründung an. a INSERT INTO V1 VALUES 2, 1, 3, 2, 5; b INSERT INTO V2 VALUES 2, 1, 3, 2, 5; c INSERT INTO V2 VALUES 2, 2, 3, 2, 5; d INSERT INTO V3 VALUES 2, 2, 4, 2, 5; e INSERT INTO V3 VALUES 1, 3, 3, 2, 5; f INSERT INTO V4 VALUES 2, 2, 3, 2, 5; g INSERT INTO V4 VALUES 2, 1, 3, 4, 5; h INSERT INTO V4 VALUES 1, 2, 2, 4, 5; i INSERT INTO V4 VALUES 2, 2, 3, 4, 5; j INSERT INTO V5 VALUES 1, 2, 3, 4, 6; k INSERT INTO V5 VALUES 1, 2, 4, 4, 5; Seite 10

11 Lösung: a INSERT INTO V1 VALUES 2, 1, 3, 2, 5; Erfolgreich, da CHECK OPTION in V1 nicht spezifiziert ist. b INSERT INTO V2 VALUES 2, 1, 3, 2, 5; Nicht erfolgreich aufgrund der CHECK OPTION in V2 S2=2. c INSERT INTO V2 VALUES 2, 2, 3, 2, 5; Erfolgreich aufgrund der LOCAL CHECK OPTION in V2 S2=2, die Einschränkung in V1 wird nicht berücksichtigt. d INSERT INTO V3 VALUES 2, 2, 4, 2, 5; Erfolgreich, da CHECK OPTION in V3 nicht definiert ist, die Bedingung in V2 erfüllt ist und die Bedingung in V1 aufgrund der CHECK OPTION in V2 nicht berücksichtigt wird. e INSERT INTO V3 VALUES 1, 3, 3, 2, 5; Nicht erfolgreich, da die Bedingung in V2 nicht erfüllt ist. f INSERT INTO V4 VALUES 2, 2, 3, 2, 5; Nicht erfolgreich, da die Bedingung in V4 nicht erfüllt ist und CHECK OPTION definiert ist. g INSERT INTO V4 VALUES 2, 1, 3, 4, 5; Nicht erfolgreich, da die Bedingung in V2 aufgrund der CASCADED CHECK OPTION in V4 nicht erfüllt ist. h INSERT INTO V4 VALUES 1, 2, 2, 4, 5; Nicht erfolgreich, da die Bedingung in V3 aufgrund der CASCADED CHECK OPTION in V4 nicht erfüllt ist. i INSERT INTO V4 VALUES 2, 2, 3, 4, 5; Nicht erfolgreich, da die Bedingung in V1 aufgrund der CASCADED CHECK OPTION in V4 nicht erfüllt ist. j INSERT INTO V5 VALUES 1, 2, 3, 4, 6; Erfolgreich, da CHECK OPTION in V5 nicht definiert ist und alle Bedingungen in V4, V3, V2, und V1 erfüllt sind. k INSERT INTO V5 VALUES 1, 2, 4, 4, 5; Nicht erfolgreich, da die Bedingung in V3 aufgrund der CASCADED CHECK OPTION in V4 nicht erfüllt ist. Seite 11

AG Datenbanken und Informationssysteme Wintersemester 2008 / 2009

AG Datenbanken und Informationssysteme Wintersemester 2008 / 2009 AG Datebake ud Iformatiossysteme Witersemester 2008 / 2009 Prof. Dr.-Ig. Dr. h. c. Theo Härder Fachbereich Iformatik Techische Uiversität Kaiserslauter 5. Übugsblatt Für die Übug am Doerstag, 27. N ovember

Mehr

ARBEITSBLATT ZUR SQL-BEFEHLEN

ARBEITSBLATT ZUR SQL-BEFEHLEN Gegeben ist die folgende Datenbank: ARBEITSBLATT ZUR SQL-BEFEHLEN In einer Firma gibt es Mitarbeiter. Jeder Mitarbeiter ist eindeutig einer Abteilung zugeordnet. Manche Mitarbeiter sind an einem Projekt

Mehr

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem

Mehr

Datenbanken. Zusammenfassung. Datenbanksysteme

Datenbanken. Zusammenfassung. Datenbanksysteme Zusammenfassung Datenbanksysteme Christian Moser Seite 1 vom 7 12.09.2002 Wichtige Begriffe Attribut Assoziation API Atomares Attribut Datenbasis DBMS Datenunabhängigkeit Datenbankmodell DDL DML DCL ER-Diagramm

Mehr

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

dbis Praktikum DBS I SQL Teil 2

dbis Praktikum DBS I SQL Teil 2 SQL Teil 2 Übersicht Fortgeschrittene SQL-Konstrukte GROUP BY HAVING UNION / INTERSECT / EXCEPT SOME / ALL / ANY IN / EXISTS CREATE TABLE INSERT / UPDATE / DELETE 2 SELECT Syntax SELECT FROM [WHERE [GROUP

Mehr

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B

Mehr

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung "Informa=onssysteme" Sommersemester 2015

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung Informa=onssysteme Sommersemester 2015 6. Sichten, Integrität und Zugriffskontrolle Vorlesung "Informa=onssysteme" Sommersemester 2015 Überblick Sichten Integritätsbedingungen Zugriffsrechte SQL- Schema und SQL- Katalog Das Informa=onsschema

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

1 Hartmann Anna Cäcilienstr Köln (0221) Behrens-Hoffmeister Heidi Lindenweg Köln (0221)

1 Hartmann Anna Cäcilienstr Köln (0221) Behrens-Hoffmeister Heidi Lindenweg Köln (0221) Erstellen einer Mitarbeiter-Datenbank 1 Erstellen einer Mitarbeiter-Datenbank Arbeitsauftrag Ziel der Übung Erstellen von Datenbanken mit Hilfe von SQL-Abfragen Aufgabe (1.) Erstellen Sie eine neue Datenbank

Mehr

Datenbanken (Übung 12)

Datenbanken (Übung 12) Datenbanken (Übung 12) Prof. Dr.-Ing. Norbert Fuhr Dipl.-Inform. Thomas Beckers (tbeckers@is.inf.uni-due.de) Universität Duisburg-Essen Fachgebiet Informationssysteme 1. 2. Februar 2012 Dipl.-Inform. Thomas

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

4. Datenbanksprache SQL

4. Datenbanksprache SQL 4. Datenbanksprache SQL Standard-Sprache für das Arbeiten mit relationalen Datenbanken: Structured Query Language Datendefinition: Anlegen, Ändern und Löschen von Datenbankstrukturen Datenmanipulation:

Mehr

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten.

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten. Lehrstuhl für Datenbanken und Informationssysteme Wintersemester 1999/2000 Universität Augsburg, Institut für Informatik 25. Februar 2000 Prof. Dr. Werner Kießling A. Leubner, M. Wagner Datenbanksysteme

Mehr

GROUP BY, HAVING und Sichten

GROUP BY, HAVING und Sichten GROUP BY, HAVING und Sichten Tutorübungen 09/33 zu Grundlagen: Datenbanken (WS 14/15) Michael Schwarz Technische Universität München 11.11 / 12.11.2014 1/12 GROUP BY HAVING Sichten Eine Tabelle studenten

Mehr

Introduction to Data and Knowledge Engineering. 6. Übung SQL

Introduction to Data and Knowledge Engineering. 6. Übung SQL Introduction to Data and Knowledge Engineering 6. Übung SQL Aufgabe 6.1 Datenbank-Schema Buch PK FK Autor PK FK ISBN Titel Preis x ID Vorname Nachname x BuchAutor ISBN ID PK x x FK Buch.ISBN Autor.ID FB

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

SQL: Weitere Funktionen

SQL: Weitere Funktionen Vergleich auf Zeichenketten SQL: Weitere Funktionen LIKE ist ein Operator mit dem in Zeichenketten andere Zeichenketten gesucht werden; zwei reservierte Zeichen mit besonderer Bedeutung sind hier % (manchmal

Mehr

DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt

DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt DBS ::: SERIE 5 Die Relation produkt enthält Hersteller, Modellnummer und Produktgattung (pc, laptop oder drucker aller Produkte. Die Modellnummer ist (der Einfachheit halber eindeutig für alle Hersteller

Mehr

Übung Datenbanken in der Praxis. Datenmodifikation mit SQL

Übung Datenbanken in der Praxis. Datenmodifikation mit SQL Datenmodifikation mit SQL Folie 45 SQL - Datenmodifikation Einfügen INSERT INTO Relation [(Attribut, Attribut,...)] VALUES (Wert, Wert,...) INSERT INTO Relation [(Attribut, Attribut,...)] SFW-Anfrage Ändern

Mehr

Wiederholung VU Datenmodellierung

Wiederholung VU Datenmodellierung Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

Integritätsbedingungen / Normalformen- Beispiel: Kontoführung

Integritätsbedingungen / Normalformen- Beispiel: Kontoführung Technische Universität München WS 2003/04, Fakultät für Informatik Datenbanksysteme I Prof. R. Bayer, Ph.D. Lösungsblatt 8 Dipl.-Inform. Michael Bauer Dr. Gabi Höfling 12.01. 2004 Integritätsbedingungen

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

Lösungen der Übungsaufgaben von Kapitel 10

Lösungen der Übungsaufgaben von Kapitel 10 Lösungen der Übungsaufgaben von Kapitel 10 1. Legen Sie mit einem SQL - Befehl eine neue Tabelle PERSON_KURZ mit den Feldern Kurz_Id, Kurz_Name an. Machen Sie das so, dass Kurz_Id der Primärschlüssel wird

Mehr

3 Query Language (QL) Einfachste Abfrage Ordnen Gruppieren... 7

3 Query Language (QL) Einfachste Abfrage Ordnen Gruppieren... 7 1 Data Definition Language (DDL)... 2 1.1 Tabellen erstellen... 2 1.1.1 Datentyp...... 2 1.1.2 Zusätze.... 2 1.2 Tabellen löschen... 2 1.3 Tabellen ändern (Spalten hinzufügen)... 2 1.4 Tabellen ändern

Mehr

Übungsaufgaben mit Lösungen

Übungsaufgaben mit Lösungen Abt. Wi.-Inf. II Wirtschaftsinformatik II: SQL 1 Übungsaufgaben mit Lösungen 1) Ausgabe sämtlicher Spalten der Tabelle DEPARTMENT. SELECT * FROM DEPARTMENT 2) Ausgabe aller Projektnummern und Projektnamen.

Mehr

Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014

Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014 Lehrstuhl für Praktische Informatik III Prof. Dr. Guido Moerkotte Email: moer@db.informatik.uni-mannheim.de Marius Eich Email: marius.eich@uni-mannheim.de Datenbanksysteme 2 8. Übungsblatt Frühjahr-/Sommersemester

Mehr

Datenbank Grundlagen. Performanceuntersuchungen

Datenbank Grundlagen. Performanceuntersuchungen Vorlesung Datenbanken, Entwurfsarbeit 1 Fachbereich Automatisierung und Informatik Wernigerode Datenbank Grundlagen Performanceuntersuchungen Entwicklung einer Datenbank zur Verwaltung eines Bestellwesens

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 10 Übung zur Vorlesung Grundlagen: Datenbanken im WS16/17 Harald Lang, Linnea Passing (gdb@in.tum.de)

Mehr

MNR NAME VORNAME STRASSE PLZ ORT TELEFON

MNR NAME VORNAME STRASSE PLZ ORT TELEFON Aufgabenstellung: (1.) Erstellen Sie eine neue Datenbank mit dem Dateinamen MITARBEITER. (2.) Legen Sie eine neue Tabelle STAMMDATEN mit den folgenden Feldern an: MNR (Typ integer, Primärschlüssel) NAME

Mehr

Relationentheorie grundlegende Elemente

Relationentheorie grundlegende Elemente Relationentheorie grundlegende Elemente Symbol Bedeutung Entsprechung in SQL π AAAA Projektion SELECT σ F Selektion WHERE ρ Umbenennung RENAME; AS Natural Join NATURAL JOIN (nicht in MS SQL Server verwendbar)

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 8 Hausaufgabe 1 Übung zur Vorlesung Grundlagen: Datenbanken im WS13/14 Henrik Mühe (muehe@in.tum.de)

Mehr

Kapitel 17: Date Warehouse

Kapitel 17: Date Warehouse Kapitel 17: Date Warehouse 1 OLTP versus OLAP OLTP (Online Transaction Processing) z.b. Flugreservierung, Handelsunternehmen kleine, kurze Transaktionen jeweils auf jüngstem Zustand OLAP (Online Analytical

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

IV. Datenbankmanagement

IV. Datenbankmanagement Wirtschaftsinformatik 2 (PWIN) IV. Datenbankmanagement Kapitel 2: Datenmanipulationssprache SQL Wirtschaftsinformatik 2 (PWIN) SS 2009, Professur für Mobile Business & Multilateral Security 1 Agenda 1.

Mehr

Datenbank- und Informationssysteme. Lösungsvorschläge zu Übungsblatt 2. Sommersemester 1999. CREATE DOMAIN KennzeichenDomain AS VARCHAR(9);

Datenbank- und Informationssysteme. Lösungsvorschläge zu Übungsblatt 2. Sommersemester 1999. CREATE DOMAIN KennzeichenDomain AS VARCHAR(9); Institut für Angewandte Informatik AIFB und Formale Beschreibungsverfahren Universität Karlsruhe (TH) Prof. Dr. W. Stucky U. Schmidle Tel.: 0721 / 608-3812, 3509 Fax.: 0721 / 693717 e-mail: stucky schmidle

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

Datenbanksysteme Kapitel: SQL Data Definition Language

Datenbanksysteme Kapitel: SQL Data Definition Language Datenbanksysteme Kapitel: SQL Data Definition Language Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter Chamoni - Prof.

Mehr

Datenbanken: Datenintegrität. www.informatikzentrale.de

Datenbanken: Datenintegrität. www.informatikzentrale.de Datenbanken: Datenintegrität Definition "Datenkonsistenz" "in der Datenbankorganisation (...) die Korrektheit der gespeicherten Daten im Sinn einer widerspruchsfreien und vollständigen Abbildung der relevanten

Mehr

Konstante Relationen

Konstante Relationen Konstante Relationen values-syntax erzeugt konstante Relation values ( [, Konstante] * )[, ( [, Konstante] * )]* Beispiel values (1, eins ), (2, zwei ), (3, drei ); Resultat ist eine

Mehr

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) DDL ist Teil von SQL (Structured

Mehr

Sructred Query Language

Sructred Query Language Sructred Query Language Michael Dienert 11. November 2010 Inhaltsverzeichnis 1 Ein kurzer Versionsüberblick 1 2 SQL-1 mit einigen Erweiterungen aus SQL-92 2 3 Eine Sprache zur Beschreibung anderer Sprachen

Mehr

MySQL-Befehle. In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben.

MySQL-Befehle. In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben. MySQL-Befehle 1. Einleitung In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben. 2. Arbeiten mit Datenbanken 2.1 Datenbank anlegen Eine Datenbank kann man wie folgt

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Datenbanken. Datenintegrität + Datenschutz. Tobias Galliat. Sommersemester 2012

Datenbanken. Datenintegrität + Datenschutz. Tobias Galliat. Sommersemester 2012 Datenbanken Datenintegrität + Datenschutz Tobias Galliat Sommersemester 2012 Professoren PersNr Name Rang Raum 2125 Sokrates C4 226 Russel C4 232 2127 Kopernikus C3 310 2133 Popper C3 52 2134 Augustinus

Mehr

Datenbanksysteme. Semantische Modellierung mit dem Entity/Relationship-Modell. Burkhardt Renz. Fachbereich MNI Technische Hochschule Mittelhessen

Datenbanksysteme. Semantische Modellierung mit dem Entity/Relationship-Modell. Burkhardt Renz. Fachbereich MNI Technische Hochschule Mittelhessen Datenbanksysteme Semantische Modellierung mit dem Entity/Relationship-Modell Burkhardt Renz Fachbereich MNI Technische Hochschule Mittelhessen Sommersemester 2016 Inhalt Vorgehensweise und ein Beispiel

Mehr

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis.

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis. SQL Lehr- und Forschungseinheit Datenbanken und Informationssysteme Ziele Grundlagen von SQL Beziehung zur relationalen Algebra SELECT, FROM, WHERE Joins ORDER BY Aggregatfunktionen Lehr- und Forschungseinheit

Mehr

MySQL: Einfaches Rechnen. www.informatikzentrale.de

MySQL: Einfaches Rechnen. www.informatikzentrale.de MySQL: Einfaches Rechnen Vorweg: Der Merksatz Warum geht Herbert oft laufen? Vorweg: Der Merksatz Warum geht Herbert oft laufen?...... WHERE... GROUP BY... HAVING... ORDER BY... LIMIT Beispieldatenbank

Mehr

SQL-Befehlsliste. Vereinbarung über die Schreibweise

SQL-Befehlsliste. Vereinbarung über die Schreibweise Vereinbarung über die Schreibweise Schlüsselwort [optionale Elemente] Beschreibung Befehlsworte in SQL-Anweisungen werden fett und in Großbuchstaben geschrieben mögliche, aber nicht zwingend erforderliche

Mehr

Finalklausur zur Vorlesung Datenbanksysteme I Wintersemester 2003/2004 Prüfer: Prof. R. Bayer, Ph.D. Datum: Zeit: 16.

Finalklausur zur Vorlesung Datenbanksysteme I Wintersemester 2003/2004 Prüfer: Prof. R. Bayer, Ph.D. Datum: Zeit: 16. Finalklausur zur Vorlesung Datenbanksysteme I Wintersemester 2003/2004 Prüfer: Prof. R. Bayer, Ph.D. Datum: 13.02.2004 Zeit: 16. Uhr Hinweis: Die Bearbeitungszeit beträgt 90 Minuten. Bitte benutzen Sie

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einleitung... 15

Inhaltsverzeichnis. Vorwort Kapitel 1 Einleitung... 15 Vorwort..................................................... 13 Kapitel 1 Einleitung.......................................... 15 Kapitel 2 SQL der Standard relationaler Datenbanken... 19 2.1 Die Geschichte................................

Mehr

5. Datendefinition in SQL

5. Datendefinition in SQL Datendefinition 5. Datendefinition in SQL Schema, Datentypen, Domains Erzeugen von Tabellen (CREATE TABLE) Schemaevolution: Ändern/Löschen von Tabellen Sichtkonzept (Views) CREATE VIEW / DROP VIEW Problemfälle

Mehr

4. Objektrelationales Typsystem Kollektionstypen. Nested Table

4. Objektrelationales Typsystem Kollektionstypen. Nested Table Nested Table Bei einer Nested Table handelt es sich um eine Tabelle als Attributwert. Im Gegensatz zu Varray gibt es keine Beschränkung bei der Größe. Definition erfolgt auf einem Basistyp, als Basistypen

Mehr

Universität Augsburg, Institut für Informatik WS 2007/2008 Prof. Dr. W. Kießling 18. Jan Dr. A. Huhn, M. Endres, T. Preisinger Übungsblatt 12

Universität Augsburg, Institut für Informatik WS 2007/2008 Prof. Dr. W. Kießling 18. Jan Dr. A. Huhn, M. Endres, T. Preisinger Übungsblatt 12 Universität Augsburg, Institut für Informatik WS 2007/2008 Prof Dr W Kießling 18 Jan 2008 Dr A Huhn, M Endres, T Preisinger Übungsblatt 12 Datenbanksysteme I Hinweis: Das vorliegende Übungsblatt besteht

Mehr

Datenbank- und Informationssysteme - Übungsblatt 6 -

Datenbank- und Informationssysteme - Übungsblatt 6 - Datenbank- und Informationssysteme - Übungsblatt 6 - Prof. Dr. Klaus Küspert Dipl.-Inf. Andreas Göbel Friedrich-Schiller-Universität Jena Lehrstuhl für Datenbanken und Informationssysteme 0) Vorbereitung

Mehr

SQL. SQL: Structured Query Language. Früherer Name: SEQUEL. Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99

SQL. SQL: Structured Query Language. Früherer Name: SEQUEL. Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99 SQL Früherer Name: SEQUEL SQL: Structured Query Language Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99 SQL ist eine deklarative Anfragesprache Teile von SQL Vier große Teile:

Mehr

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL Relationales Modell: SQLDDL SQL als Definitionssprache SQLDDL umfaßt alle Klauseln von SQL, die mit Definition von Typen Wertebereichen Relationenschemata Integritätsbedingungen zu tun haben Externe Ebene

Mehr

Grundlagen der Informatik III ERM-Modell Thema: Grundlagen der Datenbanken

Grundlagen der Informatik III ERM-Modell Thema: Grundlagen der Datenbanken Hochschule Harz FB Automatisierung und Informatik Versuch: Grundlagen der Informatik III ERM-Modell Thema: Grundlagen der Datenbanken Versuchsziele Vertiefung in der ERM-Modellierung. Benutzen eines Designers.

Mehr

SQL-DDL und SQL-Anfragen. CREATE TABLE Kategorie (Bezeichnung VARCHAR(15) NOT NULL PRIMARY KEY, Klassifikationskriterium VARCHAR(100) NOT NULL )

SQL-DDL und SQL-Anfragen. CREATE TABLE Kategorie (Bezeichnung VARCHAR(15) NOT NULL PRIMARY KEY, Klassifikationskriterium VARCHAR(100) NOT NULL ) Technische Universität München WS 2003/04, Fakultät für Informatik Datenbanksysteme I Prof. R. Bayer, Ph.D. Lösungsblatt 6 Dipl.-Inform. Michael Bauer Dr. Gabi Höfling 1.12.2003 SQL-DDL und SQL-Anfragen

Mehr

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13 Auf einen Blick Vorwort 13 Teil 1 Vorbereitung Kapitel 1 Einleitung 17 Kapitel 2 SQL - der Standard relationaler Datenbanken 21 Kapitel 3 Die Beispieldatenbanken 39 Teil 2 Abfrage und Bearbeitung Kapitel

Mehr

SQL-Vertiefung. VU Datenbanksysteme. Reinhard Pichler

SQL-Vertiefung. VU Datenbanksysteme. Reinhard Pichler SQL-Vertiefung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester 2015/16 Gliederung

Mehr

Objektrelationale und erweiterbare Datenbanksysteme

Objektrelationale und erweiterbare Datenbanksysteme Objektrelationale und erweiterbare Datenbanksysteme Erweiterbarkeit SQL:1999 (Objekt-relationale Modellierung) In der Vorlesung werden nur die Folien 1-12 behandelt. Kapitel 14 1 Konzepte objekt-relationaler

Mehr

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung 6. Datenintegrität Motivation Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung nur sinnvolle Attributwerte (z.b. keine negativen Semester) Abhängigkeiten

Mehr

SQL-Befehlsliste. Vereinbarung über die Schreibweise

SQL-Befehlsliste. Vereinbarung über die Schreibweise Vereinbarung über die Schreibweise Schlüsselwort [optionale Elemente] Beschreibung Befehlsworte in SQL-Anweisungen werden in Großbuchstaben geschrieben mögliche, aber nicht zwingend erforderliche Teile

Mehr

Multimedia im Netz Wintersemester 2013/14. Übung 03 (Nebenfach)

Multimedia im Netz Wintersemester 2013/14. Übung 03 (Nebenfach) Multimedia im Netz Wintersemester 2013/14 Übung 03 (Nebenfach) Ludwig-Maximilians-Universität München Multimedia im Netz WS 2013/14 - Übung 3-1 Datenbanken und SQL Mit Hilfe von Datenbanken kann man Daten

Mehr

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt.

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt. Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Datenbanken und Informationssysteme II Szenario: Projektverwaltung. Es gibt Projekte, Projektleiter, Mitarbeiter und ihre Zuordnung zu Projekten.

Mehr

Klausur Datenbanken Wintersemester 2011/2012 Prof. Dr. Wolfgang May 8. Februar 2012, 14-16 Uhr Bearbeitungszeit: 90 Minuten

Klausur Datenbanken Wintersemester 2011/2012 Prof. Dr. Wolfgang May 8. Februar 2012, 14-16 Uhr Bearbeitungszeit: 90 Minuten Klausur Datenbanken Wintersemester 2011/2012 Prof. Dr. Wolfgang May 8. Februar 2012, 14-16 Uhr Bearbeitungszeit: 90 Minuten Vorname: Nachname: Matrikelnummer: Studiengang: Bei der Klausur sind keine Hilfsmittel

Mehr

5.6 Praktischer Teil. Modellierung einer Schulen-Lehrer-Verwaltung, kurz SLV (was sonst )

5.6 Praktischer Teil. Modellierung einer Schulen-Lehrer-Verwaltung, kurz SLV (was sonst ) 5.6 Praktischer Teil Modellierung einer Schulen-Lehrer-Verwaltung, kurz SLV (was sonst ) Vorgehen - Aufgabenbeschreibung - Erstellung des E/R-Modells Entities, Attribute, Relationen, Schlüssel Kardinalitäten,

Mehr

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007 6. Übung zur Vorlesung Datenbanken im Sommersemester 2007 mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007 Aufgabe 1: Rekursion Betrachten Sie die folgende Tabelle

Mehr

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language)

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language) Einführung in SQL 1. Grundlagen Structured Query Language Viele Dialekte Unterteilung: i. DDL (Data Definition Language) ii. iii. DML (Data Modifing Language) DRL (Data Retrival Language) 1/12 2. DDL Data

Mehr

ACCESS SQL ACCESS SQL

ACCESS SQL ACCESS SQL ACCESS SQL Datenbankabfragen mit der Query-Language ACCESS SQL Datenbankpraxis mit Access 34 Was ist SQL Structured Query Language Bestehend aus Datendefinitionssprache (DDL) Datenmanipulationssprache

Mehr

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme Handout zur Unit Web-Technologien SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: nane.kratzke@fh-luebeck.de (Praktische

Mehr

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198 Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen

Mehr

Fachbereich Informatik Praktikum 1

Fachbereich Informatik Praktikum 1 Hochschule Darmstadt DATA WAREHOUSE SS2015 Fachbereich Informatik Praktikum 1 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.April.2015 1. Kurzbeschreibung In diesem Praktikum geht

Mehr

Informations- und Wissensmanagement

Informations- und Wissensmanagement Übung zur Vorlesung Informations- und Wissensmanagement (Übung 1) Frank Eichinger IPD, Lehrstuhl für Systeme der Informationsverwaltung Zur Person Beruflicher Hintergrund Studium an der TU Braunschweig

Mehr

Klausur mit Musterlösung

Klausur mit Musterlösung Carl-Schurz-Schule 14.03.2012 Informatik, Kurs Q2Info01 Victor Hahn Klausur mit Musterlösung Ihr Name: Maximal erreichbare Anzahl Verrechnungspunkte (VP): 66 Einziges zugelassenes Hilfsmittel: Ein Blatt

Mehr

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language: SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In

Mehr

Das SQL-Schlüsselwort ALL entspricht dem Allquantor der Prädikatenlogik

Das SQL-Schlüsselwort ALL entspricht dem Allquantor der Prädikatenlogik Beispielaufgaben Informationssysteme erstellt von Fabian Rump zur IS Vorlesung 2009/10 1 Multiple Choice Aussage richtig falsch Eine SQL-Abfrage beginnt immer mit dem Schlüsselwort SELECT Eine Datenbank

Mehr

DB2 SQL, der Systemkatalog & Aktive Datenbanken

DB2 SQL, der Systemkatalog & Aktive Datenbanken DB2 SQL, der Systemkatalog & Aktive Datenbanken Lehr- und Forschungseinheit Datenbanken und Informationssysteme 1 Ziele Auf DB2 Datenbanken zugreifen DB2 Datenbanken benutzen Abfragen ausführen Den Systemkatalog

Mehr

4.14.3 Bedingungen über Werte. 4.14.4 Statische Integrität. CHECK-Klausel

4.14.3 Bedingungen über Werte. 4.14.4 Statische Integrität. CHECK-Klausel 4.14.3 Bedingungen über Werte 4.14.4 Statische Integrität Zu jeder Tabelle werden typischerweise ein Primärschlüssel und möglicherweise weitere Schlüssel festgelegt (UNIQUE-Klausel). In jeder Instanz zu

Mehr

Probeklausur Datenbanktechnologie

Probeklausur Datenbanktechnologie Probeklausur Datenbanktechnologie Prof. Dr. Ingo Claßen Name: Vorname: MatrNr: Bewertung 1 25 2 15 3 10 4 10 Übung 40 Σ = 100 Punkte Punkte: Note: Notenspiegel 100 95 1,0 94 90 1,3 89 85 1,7 84 80 2,0

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

SQL: Übersicht. SQL (Structured Query Language) ist ANSI und ISO Standard 1975 SEQUEL = Structured English Query Language für System R

SQL: Übersicht. SQL (Structured Query Language) ist ANSI und ISO Standard 1975 SEQUEL = Structured English Query Language für System R SQL: Übersicht SQL (Structured Query Language) ist ANSI und ISO Standard 1975 SEQUEL = Structured English Query Language für System R (IBM) 1979 Oracle V2 (Relational Software Inc. ) erstes SQL Produkt

Mehr

SQL 2. Ziele. Fortgeschrittene SQL-Konstrukte. Aggregatfunktionen revisited. Subqueries. Korrelierte Subqueries

SQL 2. Ziele. Fortgeschrittene SQL-Konstrukte. Aggregatfunktionen revisited. Subqueries. Korrelierte Subqueries SQL 2 Lehr- und Forschungseinheit Datenbanken und Informationssysteme 1 Ziele Fortgeschrittene SQL-Konstrukte groupby having union / intersect / except Aggregatfunktionen revisited Subqueries Korrelierte

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 7 Übung zur Vorlesung Grundlagen: Datenbanken im WS13/14 Henrik Mühe (muehe@in.tum.de) http://www-db.in.tum.de/teaching/ws1314/dbsys/exercises/

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3) Vorlesung #5 SQL (Teil 3) Fahrplan Besprechung der Übungsaufgaben Rekursion Rekursion in SQL-92 Rekursion in DBMS- Dialekten (Oracle und DB2) Views (Sichten) - gespeicherte Abfragen Gewährleistung der

Mehr

7. Datenbank-Zugriff. Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn. Zum Beispiel aus PHP-Skripten: Client 7-2

7. Datenbank-Zugriff. Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn. Zum Beispiel aus PHP-Skripten: Client 7-2 5 Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn 7 7. Datenbank-Zugriff Zum Beispiel aus PHP-Skripten: Client 7-2 Struktur einer Datenbank 7-3 Erzeugen von Datenbanken

Mehr

SQL: statische Integrität

SQL: statische Integrität SQL: statische Integrität.1 SQL: statische Integrität Im allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen erfüllen. Integritätsbedingungen

Mehr

6. Datendefinition in SQL

6. Datendefinition in SQL 6. Datendefinition in SQL Datendefinition Schema, Datentypen, Domains Erzeugen von Tabellen (CREATE TABLE) Schemaevolution: Ändern/Löschen von Tabellen Sichtkonzept (Views) CREATE VIEW / DROP VIEW Problemfälle

Mehr

Datenbanken. Sommersemester 2010 Probeklausur

Datenbanken. Sommersemester 2010 Probeklausur Prof. Dr. V. Linnemann Christoph Reinke Universität zu Lübeck Institut für Informationssysteme Lübeck, den 29. Juli 2010 Datenbanken Sommersemester 2010 Probeklausur Hinweise: Es ist sinnvoll, die Aufgaben

Mehr

Kapitel 4 Dynamisches SQL

Kapitel 4 Dynamisches SQL Kapitel 4 Dynamisches SQL Flien zum Datenbankpraktikum Wintersemester 2010/11 LMU München 2008 Thmas Bernecker, Tbias Emrich unter Verwendung der Flien des Datenbankpraktikums aus dem Wintersemester 2007/08

Mehr

SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO";

SET SQL_MODE=NO_AUTO_VALUE_ON_ZERO; phpmyadmin SQL Dump version 3.2.4 http://www.phpmyadmin.net Host: localhost Erstellungszeit: 13. April 2011 um 18:44 Server Version: 5.1.41 PHP-Version: 5.3.1 SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO"; /*!40101

Mehr

Indexstrukturen in SQL

Indexstrukturen in SQL Indestrukturen in SQL Anlegen eines Primärinde in SQL: Anlegen eines Sekundärinde in SQL: Bsp: create table Dozenten ( DNr integer primary key, Name varchar(0), Geburt date, ) create [Unique] inde indename

Mehr

Objektrelationale, erweiterbare Datenbanken WS 04/05

Objektrelationale, erweiterbare Datenbanken WS 04/05 Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Institut für Informationssysteme Dr.C.Türker Objektrelationale, erweiterbare Datenbanken WS 0405 Übung 8 Aufgabe

Mehr

Kapitel 5 Dr. Jérôme Kunegis. SQL: Grundlagen. WeST Institut für Web Science & Technologien

Kapitel 5 Dr. Jérôme Kunegis. SQL: Grundlagen. WeST Institut für Web Science & Technologien Kapitel 5 Dr. Jérôme Kunegis SQL: Grundlagen WeST Institut für Web Science & Technologien Lernziele Kenntnis der Grundkonzepte von SQL Fähigkeit zur praktischen Anwendung von einfachen SQL-Anweisungen

Mehr

SQL: Abfragen für einzelne Tabellen

SQL: Abfragen für einzelne Tabellen Musterlösungen zu LOTS SQL: Abfragen für einzelne Tabellen Die Aufgaben lösen Sie mit dem SQL-Training-Tool LOTS der Universität Leipzig: http://lots.uni-leipzig.de:8080/sql-training/ Wir betrachten für

Mehr

Relationales Datenbanksystem Oracle

Relationales Datenbanksystem Oracle Relationales Datenbanksystem Oracle 1 Relationales Modell Im relationalen Modell wird ein relationales Datenbankschema wie folgt beschrieben: RS = R 1 X 1 SC 1... R n X n SC n SC a a : i=1...n X i B Information

Mehr

Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik

Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik von Wolfgang König, Heinrich Rommelfanger, Dietrich Ohse, Oliver Wendt, Markus Hofmann, Michael Schwind, Klaus Schäfer, Helmut Kuhnle, Andreas

Mehr