RabenWerkstatt Effektsystem Geometrie in Fläche und Raum. erarbeitet von Peter Herbert Maier. Lösungen

Größe: px
Ab Seite anzeigen:

Download "RabenWerkstatt Effektsystem Geometrie in Fläche und Raum. erarbeitet von Peter Herbert Maier. Lösungen"

Transkript

1 RabenWerkstatt Effektsystem Geometrie in Fläche und Raum erarbeitet von Peter Herbert Maier Lösungen

2 Muster legen Figuren legen Lege die Muster nach. Setze sie fort. Entwirf ein eigenes Muster. 2

3 Figuren legen Figuren legen 3 Lege nach. Zeichne die Trennlinien ein Nimm 4 bis 8 Formen. Lege daraus eine schöne Figur auf ein Blatt Papier. Zeichne den Umriss deiner Figur nach. Gib das Blatt deinem Partner. Er soll die Trennlinien einzeichnen. 3

4 Vielecke legen Figuren legen 4 Ich habe ein Viereck gelegt. Und ich ein Fünfeck. LISA FELIX Lege Figuren wie Lisa und Felix aus Quadraten und Dreiecken. Zeichne deine schönsten Figuren auf. Dreieck Viereck Fünfeck Sechseck Siebeneck Achteck Neuneck Zehneck 4

5 Vielecke legen Figuren legen 5 Bei diesem Sechseck kann ich ein Streichholz so legen, dass nicht das ganze Streichholz in der Figur liegt. Bei meinem Sechseck geht das nicht. Hier liegt immer das ganze Streichholz in der Figur. LISA FELIX Lege jetzt nur solche Figuren wie Felix. Nimm Quadrate und Dreiecke. Zeichne deine Figuren auf. Dreieck Viereck Fünfeck Sechseck Siebeneck Achteck Neuneck Zehneck 5

6 Vierlinge aus Quadraten entdecken Mehrlinge Aus 2 Quadraten kann man einen Zwilling legen. Ich lasse um den Zwilling ein Quadrat wandern. Damit habe ich genau 2 verschiedene Drillinge gefunden, die man nicht durch Drehen oder Wenden passend aufeinanderlegen kann. FELIX LISA Experimentiere: Lege die Drillinge. Lass um jeden Drilling ein Quadrat wandern. Wie viele verschiedene Vierlinge entdeckst du, die man nicht durch Drehen oder Wenden passend aufeinanderlegen kann? Zeichne die gefundenen Vierlinge Kontrolliere! Kommt auch wirklich keine Figur doppelt vor? 6

7 Fünflinge aus Quadraten entdecken Mehrlinge 2 Ich habe aus 5 Quadraten einen Fünfling gelegt. Es gibt noch genau weitere Fünflinge, die man nicht durch Drehen oder Wenden passend aufeinanderlegen kann. FELIX LISA (offener Würfel) Wie viele verschiedene Fünflinge findest du? Zeichne sie. 5 (offener Würfel) 9 L W L 2 6 U (offener Würfel) (offener Würfel) Y 0 I 3 7 Z (offener Würfel) P F 4 8 X (offener Würfel) N (offener Würfel) (offener Würfel) 7

8 Fünflinge aus Dreiecken entdecken Mehrlinge 3 Aus 2 Dreiecken kann man einen Zwilling legen. Um den Zwilling lasse ich ein Dreieck wandern. Damit habe ich einen Drilling gefunden. Jetzt lasse ich um den Drilling ein Dreieck wandern. Damit habe ich genau 3 verschiedene Vierlinge gefunden, die man nicht durch Drehen oder Wenden passend aufeinanderlegen kann. LISA FELIX Experimentiere: Lege die Vierlinge. Lass um jeden Vierling ein Dreieck wandern. Wie viele verschiedene Fünflinge entdeckst du, die man nicht durch Drehen oder Wenden passend aufeinanderlegen kann? Zeichne die gefundenen Fünflinge Kontrolliere! Kommt auch wirklich keine Figur doppelt vor? 8

9 Sechslinge aus Dreiecken entdecken Mehrlinge 4 Ich habe aus 6 Dreiecken einen Sechsling gelegt. Es gibt noch genau weitere Sechslinge, die man nicht durch Drehen oder Wenden passend aufeinanderlegen kann. FELIX LISA Wie viele verschiedene Sechslinge findest du? Zeichne sie

10 Symmetrische Figuren legen Symmetrie Befestigt einen en Faden auf dem Tisch. Das ist eure Symmetrieachse. Wählt beide 6 gleiche Teile aus. Ich beginne und lege ein Teil direkt an die Symmetrieachse. Ich lege dazu das Spieild und setze mit einem weiteren Teil fort. LISA FELIX Das Bild ist fertig, wenn alle Teile gelegt sind. In der 2. Runde beginnt der Partner. Ihr dürft für jede Runde auch neue Teile auswählen. 2 Fehlersuche: Finde die Fehler. Kreise sie ein. 0

11 Symmetrische Figuren zeichnen Symmetrie 2 Befestigt als Symmetrieachse einen en Faden auf dem Tisch. Lege die Figuren. Ergänze ihr Spieild. Zeichne auf. Zeichne mit Lineal oder Geodreieck.

12 Mit symmetrischen Figuren experimentieren Symmetrie 3 Ich zeichne eine Figur, die achsensymmetrisch und drehsymmetrisch ist. Meine Figur ist nur achsensymmetrisch. Meine Figur ist nur drehsymmetrisch. Und meine Figur ist gar nicht symmetrisch. LISA FELIX MARIE ((Illu Raabe)) 2 Lisa Felix Marie Trax 3 4 Lisa Felix Marie Trax Marie Lisa Marie Lisa Felix Trax Felix Trax 2

13 Flächen- und Körpersteckbriefe ausfüllen Körper bauen Ein Quadrat hat eine Fläche, Ecken und Seiten. Ein Würfel hat Flächen, Ecken und Kanten. Aha, ein Quadrat hat Seiten und ein Würfel hat Kanten. FELIX Seite Fläche Ecke Fläche Kante Ecke LISA Nimm ein Dreieck und ein Viereck. Untersuche und fülle die Steckbriefe aus. Steckbrief Dreieck Steckbrief Viereck Anzahl Anzahl Flächen Flächen Ecken 3 Ecken 4 Seiten 3 Seiten 4 Baue einen Würfel und eine Pyramide. Untersuche und fülle die Steckbriefe aus. Steckbrief Würfel Steckbrief Pyramide Anzahl Anzahl Flächen 6 Flächen 4 oder 5 Ecken 8 Ecken 4 oder 5 Kanten 2 Kanten 6 oder 8 Dreieckspyramide quadratische Pyramide 3

14 Körper aus Quadraten und Dreiecken bauen Körper bauen 3 Verwende nur Dreiecke und Quadrate. Baue daraus Körper. Du darfst immer so viele Dreiecke verwenden, wie du möchtest (maximal 8 Dreiecke). Mit einem Quadrat: Mit 2 Quadraten: Mit 3 Quadraten: Mit 5 Quadraten: Mit 4 Quadraten: Mit 6 Quadraten: 4

15 Körper nach der Form der Ecken bauen Körper bauen 4 Die Symbole sagen mir, dass an jeder Ecke des gesuchten Körpers Dreieck und 2 Quadrate zusammentreffen. Ich habe diesen Körper gebaut. Er hat 6 Ecken. Ich nenne ihn Dreieckssäule. LISA FELIX Versuche, dir die Körper zuerst vorzustellen. Baue sie dann und fülle die Tabelle aus. möglicher Name Dreieckssäule (Dreiecksprisma) Anzahl der Ecken Würfel 8 Dreieckspyramide (Tetraeder) Quader (quadratische Säule) lange Dreieckssäule (langes Dreiecksprisma) Doppel-Viereckspyramide (Oktaeder) Vierecksantiprisma ( verdrehter Würfel ) Kuboktaeder (Körper aus 6 Quadraten und 8 Dreiecken)

16 Körper und Netze zuordnen Netze 4 Körper und Netze: Welches Netz gehört zu welchem Körper? Ordne zu und kreuze an

17 Netze überprüfen Netze 2 Du siehst neben jedem Körper mehrere Figuren. Welche Figuren kannst du so zusammenfalten, dass der Körper entsteht? Kreuze an! Baue dann und kontrolliere. Die Figuren, die man zu einem Körper zusammenfalten kann, heißen Netze! 7

18 Netze entdecken Netze 3 Finde zu jedem abgebildeten Körper je 2 verschiedene Netze. Lege zuerst. Probiere dann aus. Zeichne die Netze auf

19 Würfelnetze entdecken Würfelnetze

20 Würfelnetze zuordnen Würfelnetze 2 Ich habe einen Würfel gebaut, bei dem die gegenüberliegenden Quadrate die gleiche Farbe haben. Welche Würfelnetze gehören zu diesem Würfel? Kreuze an! Löse zuerst im Kopf! Baue dann nach und kontrolliere. FELIX LISA

21 Sechslinge untersuchen Würfelnetze 3 Male die Quadrate, die beim Zusammenfalten einander gegenüberliegen in der gleichen Farbe an. Verwende die Farben Rot, Blau und Gelb. Welche Sechslinge sind Würfelnetze? Kreuze an! Baue dann und kontrolliere. Rot kommt hier 3-mal vor. Das ist kein Würfelnetz!

22 Seiten und Ecken zuordnen Würfelnetze 4 Zeichne Seiten, die beim Falten zusammenstoßen, mit der gleichen Farbe. Kennzeichne die beiden Ecken, die mit der markierten Ecke zusammenstoßen. Löse zuerst im Kopf. Baue dann und kontrolliere

23 Ansichten von Körpern zuordnen Bauen und schauen Zuerst siehst du 6 Körper. Darunter sind ihre Ansichten von vorn, links, rechts oder oben dargestellt. Welche Ansichten passen zu welchen Körpern? Kreuze an. 2 3 Löse zuerst im Kopf. Baue dann nach und kontrolliere ( )( )

24 Körper nach Ansichten bauen Bauen und schauen 2 Du siehst in der Tabelle zu verschiedenen Körpern die Ansicht von vorn und von oben. Baue die Körper. Wie könnten sie heißen? Ansicht von vorn Ansicht von oben Anzahl der Teile möglicher Name Quadrat 4 Dreiecke Viereckspyramide 6 Quadrate 4 Dreiecke 2 Quadrate 4 Rechtecke 2 Dreiecke 3 Rechtecke 5 Quadrate 4 Dreiecke 8 Dreiecke 3 Quadrate 4 Dreiecke Würfel Dreieckspyramide (Tetraeder) Quader Dreieckssäule (Dreiecksprisma) Würfel mit Viereckspyramide Vierecks-Doppelpyramide Dreieckssäule mit Dreieckspyramide 24

25 Stifte im offenen Würfel Bauen und schauen 3 Baue einen oben offenen Würfel. Stelle jeweils Stifte wie abgebildet in den offenen Würfel und betrachte den Würfel wie in der Abbildung. Welche Ansicht siehst du von rechts, links, hinten und oben? Beschrifte. oben links rechts rechts hinten links rechts hinten oben links hinten oben 25

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Geometrie Ich kann... Formen und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Symmetrien in Figuren erkennen

Mehr

Körper kennen lernen Station 1

Körper kennen lernen Station 1 Körper kennen lernen Station 1 Aufgabe 1.1) Der kleine Lars hat mit Bauklötzen eine Stadt nachgebaut. Welche Teile (geometrische Körper) hat er dabei verwendet? Fertigt eine Liste an. Aufgabe 1.2) Viele

Mehr

Mein Indianerheft: Geometrie 4. Lösungen

Mein Indianerheft: Geometrie 4. Lösungen Mein Indianerheft: Geometrie 4 Lösungen So lernst du mit dem Indianerheft Parallele Linien Flächen Kapitel: Flächen Flächen nicht? Prüfe mit dem Geodreieck. e parallele Linien. parallel nicht parallel

Mehr

Serie W1, Kl Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K:

Serie W1, Kl Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K: Serie W1, Kl. 5 1. 89 + 32 = 2. 17 8 = 3. 120 : 5 = 4. 123 42 = 5. Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K: 6. 165 cm = dm 7. 48 000 g = kg 8. Skizziere das abgebildete Würfelnetz.

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:

Mehr

Raum und Form Körpernetze erkennen und zeichnen, Körpernetze von Würfeln und

Raum und Form Körpernetze erkennen und zeichnen, Körpernetze von Würfeln und Raum und Form Körpernetze erkennen und zeichnen, Körpernetze von Würfeln und Quadern abwickeln Inhaltsbezogene Kompetenzen: - Körpernetze erkennen - Würfelnetze gedanklich überprüfen - Körpernetze von

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs :00-17:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs :00-17:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 6 09.10.2014 09:00-17:00 Uhr 1 (1) Vorbereitung Abschlussdokumentation (2) Modul 10 (3) Modul 11 (4) Modul 12

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Stereometrie

Mehr

Inhaltsverzeichnis. Leseprobe Mathetiger 1 - Schülerbuch Bestell-Nr Mildenberger Verlag

Inhaltsverzeichnis. Leseprobe Mathetiger 1 - Schülerbuch Bestell-Nr Mildenberger Verlag Inhaltsverzeichnis Erstes Zählen, Strichlisten, Zahlen darstellen, Formen und Figuren 4 In der Schule Zahlen entdecken 4 Zahlen erkennen 5 Menge, Zahl und Würfelbild 6 Sortieren und Strichlisten erstellen

Mehr

Bündeln im Zahlenraum bis 100 Zehnerzahlen zu den Schülerbuchseiten 8, 9

Bündeln im Zahlenraum bis 100 Zehnerzahlen zu den Schülerbuchseiten 8, 9 Bündeln im Zahlenraum bis 100 Zehnerzahlen zu den Schülerbuchseiten 8, 9 1 Bündle. Wie viele sind es? 40 + 8 = 4 Z + 8 E = + = Z + E = + = Z + E = Zeichne Punkte in der vorgegebenen Anzahl und setze die

Mehr

DOWNLOAD. Eigenschaften geometrischer Körper. Arbeitsblätter für Schüler mit sonderpädagogischem. Förderbedarf. Körper und Rauminhalte

DOWNLOAD. Eigenschaften geometrischer Körper. Arbeitsblätter für Schüler mit sonderpädagogischem. Förderbedarf. Körper und Rauminhalte DOWNLOAD Andrea Schubert / Martin Schuberth Eigenschaften geometrischer Körper Arbeitsblätter für Schüler mit sonderpädagogischem Förderbedarf Andrea Schuberth Martin Schuberth Downloadauszug aus dem Originaltitel:

Mehr

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 5x5-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

Aufgaben aus den Vergleichenden Arbeiten im Fach Mathematik Verschiedenes Verschiedenes

Aufgaben aus den Vergleichenden Arbeiten im Fach Mathematik Verschiedenes Verschiedenes 2012 A 1e) Verschiedenes Schreiben Sie die Namen der drei Vierecke auf. 2011 A 1e) Verschiedenes Wie heißen diese geometrischen Objekte? Lösungen: Aufgabe Lösungsskizze BE 2012 A 1e) Rechteck Parallelogramm

Mehr

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis 5/6 5./6. 12. 08 SINUS Transfer Grundschule 5. Jahrestagung Berlin Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis Workshop: Faltwinkel, rechte Winkel, Flächeninhalt

Mehr

Bereich: Raum und Form. Schwerpunkt: Ebene Figuren. Zeit/ Stufe

Bereich: Raum und Form. Schwerpunkt: Ebene Figuren. Zeit/ Stufe Schwerpunkt: Ebene Figuren Ebene Figuren - untersuchen weitere ebene Figuren, - benennen sie und verwenden Fachbegriffe zu deren Beschreibung - setzen Muster fort (z.b. Bandornamente, Parkettierungen),

Mehr

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5 Stand:.0.206 Sommerferien Zahlen und Operationen» Zahlen sachangemessen runden» große Zahlen lesen und schreiben» konkrete Repräsentanten großer Zahlen nennen» Zahlen auf der Zahlengeraden und in der Stellenwerttafel

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Station 1. In mir werden oft Eiskugeln versteckt. Eine Tischplatte hat meine Form. In Ägypten stehen ganz große Verwandte von mir. Viele Becher haben

Station 1. In mir werden oft Eiskugeln versteckt. Eine Tischplatte hat meine Form. In Ägypten stehen ganz große Verwandte von mir. Viele Becher haben Station 1 Ordne die Eigenschaften und Beschreibungen den einzelnen Bildern auf dem Arbeitsblatt zu. Vergleiche mit dem Lösungsblatt auf dem Lehrertisch und stelle richtig, wenn nötig. In Ägypten stehen

Mehr

Aufgaben 1. a) Male die Seite (Skala) des Geodreiecks, mit der Strecken gemessen werden, rot an. b) Markiere den Nullpunkt des Geodreiecks gelb.

Aufgaben 1. a) Male die Seite (Skala) des Geodreiecks, mit der Strecken gemessen werden, rot an. b) Markiere den Nullpunkt des Geodreiecks gelb. Station 2 Strecken Eine Strecke hat einen Anfangspunkt und einen Endpunkt. Diese Strecke ist 2 cm lang. 1. a) Male die Seite (Skala) des Geodreiecks, mit der Strecken gemessen werden, rot an. b) Markiere

Mehr

Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

Probeunterricht 2012 Mathematik Jgst Tag

Probeunterricht 2012 Mathematik Jgst Tag Schulstempel Probeunterricht 202 Mathematik Jgst. 5. Tag Punkte. Tag Punkte 2. Tag Name: Punkte gesamt Note Lies die Aufgaben genau durch. Arbeite sorgfältig und schreibe sauber. Deine Lösungswege und

Mehr

JAHRGANGSSTUFENTEST 2015 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 6 DER REALSCHULEN IN BAYERN (ARBEITSZEIT: 45 MINUTEN) b)9096 : 758

JAHRGANGSSTUFENTEST 2015 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 6 DER REALSCHULEN IN BAYERN (ARBEITSZEIT: 45 MINUTEN) b)9096 : 758 JAHRGANGSSTUFENTEST 205 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 6 DER REALSCHULEN IN BAYERN (ARBEITSZEIT: 45 MINUTEN) LÖSUNGSMUSTER Berechne. a) 000 0 :0 0 0 0 b)9096 : 758 /2 900 2 2 MIT SYMBOLISCHEN,

Mehr

16. Platonische Körper kombinatorisch

16. Platonische Körper kombinatorisch 16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

Trage passende Zahlen in das Hunderterfeld ein. Suche dann Rechnungen dazu!

Trage passende Zahlen in das Hunderterfeld ein. Suche dann Rechnungen dazu! Ich zeige, was ich kann! Name: 3. Klasse / EC 1 Trage passende Zahlen in das Hunderterfeld ein. Suche dann Rechnungen dazu! 2 3 Rechenrätsel: Denke an das Hunderterfeld! Die Zahl steht unter der Zahl mit

Mehr

32,70. Pos. 01. Artikelnummer: Imaginets - Geometrie-Legespiel

32,70. Pos. 01. Artikelnummer: Imaginets - Geometrie-Legespiel Pos. 01 Artikelnummer: 11786994 Imaginets - Geometrie-Legespiel So gelingt der Einstieg in die Geometrie. Ob Schmetterling, Rakete oder bunte Muster - begeistert legen Kinder die vorgegebenen Bilder nach.

Mehr

Bereich: Raum und Form Schwerpunkt: Ebene Figuren. Klasse 1. Beobachtungshinweise. Kompetenzerwartungen

Bereich: Raum und Form Schwerpunkt: Ebene Figuren. Klasse 1. Beobachtungshinweise. Kompetenzerwartungen AB 5: Schuleigener Arbeitsplan Mathematik Kontinuität von Klasse 1-4 aufgezeigt an einer ausgewählten Kompetenzerwartung aus dem Bereich Raum und Form Schwerpunkt Ebenen Figuren Bereich: Raum und Form

Mehr

Aufgabe S1 (4 Punkte)

Aufgabe S1 (4 Punkte) Aufgabe S1 (4 Punkte) Gegeben sei die Folge a 1 = 3, a 2 = 5, die für n 3 durch fortgesetzt wird Berechnen Sie a 2014 Wir setzen die Folge fort: a n = a n 1 a n 2 n = 1 2 3 4 5 6 7 8 9 a n = 3 5 2 3 5

Mehr

Die Platonischen Körper

Die Platonischen Körper Wie viele Platonische Körper gibt es? Der griechische Philosoph Platon (427-348/347 v. Chr.) beschrieb die regelmässigen, geometrischen Körper im Dialog Timaios. Es ist leicht nachzuweisen, dass es nur

Mehr

Eingangsdiagnostik: Klasse 3 KV 1

Eingangsdiagnostik: Klasse 3 KV 1 Eingangsdiagnostik: Klasse KV Z E Z E Z E 80 + 7 = Verbinde. 6 7 67 79 80 98 9 8 75 V Z N V Z N VZ Z NZ 9 70 90 5 7 60 89 00 0 Rechne. 7 + = 5 + 0 = 9 8 = 7 0 = + 8 = + 7 = = 68 = 5 + 9 = + 56 = 5 9 =

Mehr

Die Proportionen der regelmässigen Vielecke und die

Die Proportionen der regelmässigen Vielecke und die geometricdesign Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Rechtecke gebildet aus Seite und Diagonale

Mehr

Zahl der Unterrichtsstunden: 5 Wochen Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler

Zahl der Unterrichtsstunden: 5 Wochen Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler Nr. 1 des s (1. Halbjahr) Thema: Zahlen Zahl der Unterrichtsstunden: 5 Wochen stellen im Bereich Arithmetik/Algebra natürliche Zahlen dar (Zifferndarstellung, Stellenwerttafel, Wortform, Zahlenstrahl),

Mehr

Stoffverteilungsplan Mathematik Klasse 5 RS,

Stoffverteilungsplan Mathematik Klasse 5 RS, Stoffverteilungsplan Mathematik Klasse 5 RS, 04.12.2006 Inhalte Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Methoden 1 Die natürlichen Zahlen Unsere neue Klasse 1 Strichlisten und Diagramme

Mehr

Stoffverteilungsplan Mathematik 5 für den G9-Zweig

Stoffverteilungsplan Mathematik 5 für den G9-Zweig Stoffverteilungsplan Mathematik 5 für den G9-Zweig prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lehrbuch Argumentieren / Darstellungen (Text, Bild, Tabelle) mit eigenen Worten Begriffe, Regeln

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks

Mehr

Klasse 5. Inhalt(sfelder) Inhaltsbezogene Kompetenzen. Prozessbezogene Kompetenzen. Die Schülerinnen und Schüler... Die Schülerinnen und Schüler...

Klasse 5. Inhalt(sfelder) Inhaltsbezogene Kompetenzen. Prozessbezogene Kompetenzen. Die Schülerinnen und Schüler... Die Schülerinnen und Schüler... I Natürliche Zahlen 1. Zählen und darstellen stellen Beziehungen zwischen Zahlen und Größen in Tabellen bzw. Diagrammen (Säulendiagramm, Balkendiagramm) dar, lesen Informationen aus Tabellen und Diagrammen

Mehr

Station Von Zuckerwürfeln und Schwimmbecken Teil 1

Station Von Zuckerwürfeln und Schwimmbecken Teil 1 Station Von Zuckerwürfeln und Teil 1 Tischnummer Arbeitsheft Teilnehmercode Liebe Schülerinnen und Schüler! Mathematik-Labor Station Von Zuckerwürfeln und Was haben ein Zuckerwürfel und ein Schwimmbecken

Mehr

Download. Kopfrechentraining Klasse Kopfrechnen 9 /10. Räumliches Vorstellungsvermögen. Elke Königsdorfer 7 9 =

Download. Kopfrechentraining Klasse Kopfrechnen 9 /10. Räumliches Vorstellungsvermögen. Elke Königsdorfer 7 9 = Download Elke Königsdorfer Kopfrechentraining Klasse 9+10 Räumliches Vorstellungsvermögen Sekundarstufe I Elke Königsdorfer Downloadauszug aus dem Originaltitel: Kopfrechnen 9 /10 Ü b u n g s a u f g a

Mehr

Symmetrien und Winkel

Symmetrien und Winkel Symmetrien und Winkel 20 1 13 Symmetrien Zeichnungen und Konstruktionen zur Symmetrie 401 A Wähle das erste oder das zweite Bild von Vasarely im mathbuch 1 auf Seite 65. Beschreibe es. B Zeichne das Bild

Mehr

2. Platonische Körper

2. Platonische Körper 2 Platonische Körper 27 2. Platonische Körper Dieses Kapitel legt den Schwerpunkt auf die Geometrie. Geometrie in der Grundschule befasst sich mit zwei zentralen Gebieten: Symmetrie und Raumvorstellung.

Mehr

Altersgruppe Klasse 5

Altersgruppe Klasse 5 Altersgruppe Klasse 5 Ein Kreis und ein Dreieck können einander auf verschiedene Arten schneiden. Im Folgenden sollen immer Punkte betrachtet werden, wo Kreis und Dreieck einander richtig schneiden und

Mehr

Polyeder, Konvexität, Platonische und archimedische Körper

Polyeder, Konvexität, Platonische und archimedische Körper Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten (Ecken genannt), Strecken (Kanten

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Seiten 5 / 6. Lösungen Geometrie-Dossier Würfel und Quader

Seiten 5 / 6. Lösungen Geometrie-Dossier Würfel und Quader 1 a) c) d) Seiten 5 / 6 Lösungen eometrie-ossier Würfel und Quader Aufgaben Würfel (Lösungen sind verkleinert gezeichnet) Bei allen drei entsteht das gleiche Bild. ie Lösungsidee: 1. Zuerst anhand der

Mehr

Orientierungsarbeit Mathematik Schuljahr 2013/2014

Orientierungsarbeit Mathematik Schuljahr 2013/2014 Name: Klasse: Orientierungsarbeit Mathematik Schuljahr 2013/2014 In der Welt der Figuren und Körper Aufgabe 1 Die Tabelle beschreibt die Eigenschaften eines Quaders. Ergänze die fehlenden Angaben. Eigenschaft

Mehr

Raum: Bewegungen und Orientierung im Raum, räumliche Beziehungen, Lagebeziehungen, Wege, Die Ebene mit Richtungen, Entfernungen und Koordinaten

Raum: Bewegungen und Orientierung im Raum, räumliche Beziehungen, Lagebeziehungen, Wege, Die Ebene mit Richtungen, Entfernungen und Koordinaten Hausaufgabe: Didaktik der Geometrie 1. Klassenstufe: 1 Klasse Inhalte dieser Klassenstufe: Raum: Bewegungen und Orientierung im Raum, räumliche Beziehungen, Lagebeziehungen, Wege, Die Ebene mit Richtungen,

Mehr

Teilnahmeurkunde. 4.Klasse. 3. Klasse

Teilnahmeurkunde. 4.Klasse. 3. Klasse 6 Kreisdiagramm Oma hatte am Wochenende Geburtstag. Tante Julia bestellte beim Bäcker verschiedene Kuchensorten. a) Welche Kuchensorte gab es am meisten? Welche Kuchensorte gab es am wenigsten? linkes

Mehr

Kompetenzraster Geometrie

Kompetenzraster Geometrie Mathebox 6 I Themenbereich 3 Kompetenzraster Geometrie Eigenschaften von Vierecken und Dreiecken finden Einfachen Anwendungsaufgaben Vierecken lösen unterscheiden Symmetrieachsen in Vierecken und Dreiecken

Mehr

Tag der Mathematik 2006

Tag der Mathematik 2006 Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Von Sternen und allerlei anderen Körpern

Von Sternen und allerlei anderen Körpern In der Mathematik ist das Fragen wichtiger als das Rechnen. Georg Cantor (1845 1918) Mathematik-Professor in Halle Von Sternen und allerlei anderen Körpern Diese drei Abbildungen stellen Modelle von Polyedern

Mehr

Drei Lernbausteine für garantiert bessere Noten!

Drei Lernbausteine für garantiert bessere Noten! 2. Klasse Drei Lernbausteine für garantiert bessere Noten! WISSEN ÜBEN TESTEN 7 1 1 2 3 + 8 2 5 So lernst du mit diesem Buch: Wissen Hier findest du auf einen Blick die wichtigsten Erklärungen und Regeln

Mehr

Inhaltsbereich. Größen und Messen benachbarte Einheiten umrechnen

Inhaltsbereich. Größen und Messen benachbarte Einheiten umrechnen Schulcurriculum Mathematik Hauptschule Klassse 8 Hauptschule Lehrwerk: Maßstab Band 8 Verlag: Schrödel ISBN: 3-507-84304-8 Inhalte Medien e gemäß Kerncurriculum Thema 1 LB S. 8-21 Zahlen und Größen Addition

Mehr

Lisa und ihre Freundin haben in den Ferien einen Kochkurs besucht. Nun versuchen sie eine Torte nach einem Rezept im Internet zu backen.

Lisa und ihre Freundin haben in den Ferien einen Kochkurs besucht. Nun versuchen sie eine Torte nach einem Rezept im Internet zu backen. Muster 1 131. Setze die fehlende Malrechnung so ein, dass die Waage im Gleichgewicht ist. 4 9 3 8 8 5 8 5 151. Für welche Zahl steht das Smily am Schluss? 40 - = 32 + =. 3 = : 6 = Für das Smily steht die

Mehr

Ich wünsche dem Betrachter viel Erfolg beim Entdecken tiefer Zusammenhänge!

Ich wünsche dem Betrachter viel Erfolg beim Entdecken tiefer Zusammenhänge! Eine Pyramide aus Kugeln Eine Pyramide aus übereinander gelegten Kugeln das ist sehr einfach und kompliziert zugleich! In der Draufsicht So wie in den Abbildungen links wurden damals im Mittelalter Kanonenkugeln

Mehr

Mein Tipp: Das stimmt.

Mein Tipp: Das stimmt. Station P: Prismen aus Netzen bauen 1 a) Gib einen Tipp ab. Ergeben die folgenden Netze ein Prisma? Trage deine Meinung in die folgende Liste ein. Stelle dir gedanklich vor, wie die Netze geklappt werden

Mehr

KGS Curriculum Mathematik Hauptschule Klasse 5. Inhalte Inhaltsbereiche gemäß Kerncurriculum Eigene Bemerkungen Kapitel 1 Zahlen und Daten

KGS Curriculum Mathematik Hauptschule Klasse 5. Inhalte Inhaltsbereiche gemäß Kerncurriculum Eigene Bemerkungen Kapitel 1 Zahlen und Daten Cornelsen: Schlüssel zur Mathematik Klasse 5 Differenzierende Ausgabe Niedersachsen ISBN: 978-3-06-006720-6 KGS Curriculum Mathematik Hauptschule Klasse 5 Inhalte Inhaltsbereiche gemäß Kerncurriculum Eigene

Mehr

1 Der Goldene Schnitt

1 Der Goldene Schnitt Goldener Schnitt 1 Der Goldene Schnitt 1 1.1 Das regelmäßige Zehneck 1 1. Ein anderer Name für den Goldenen Schnitt 4 1.3 Der Goldene Schnitt in Zahlen 6 1.4 Die Potenzen von und 8 1.5 Drei Beispiele 10

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.

Mehr

Geometrische Knobeleien ein Stationenlauf zum räumlichen Vorstellungsvermögen. Walter Czech, Krumbach

Geometrische Knobeleien ein Stationenlauf zum räumlichen Vorstellungsvermögen. Walter Czech, Krumbach S 1 Geometrische Knobeleien ein Stationenlauf zum räumlichen Vorstellungsvermögen Walter Czech, Krumbach Spiele mit Streichhölzern und Holzwürfeln Laufzettel Trage zunächst das Datum, deinen Namen und

Mehr

2) Anna und Bertha haben zusammen 10 Zuckerln. Bertha hat 2 mehr als Anna. Wie viele hat Bertha?

2) Anna und Bertha haben zusammen 10 Zuckerln. Bertha hat 2 mehr als Anna. Wie viele hat Bertha? - 3 Punkte Beispiele - ) Was ist 2005 00 + 2005? A) 2005002005 B) 20052005 C) 2007005 D) 22055 E) 202505 200500 + 2005 = 202505 2) Anna und Bertha haben zusammen 0 Zuckerln. Bertha hat 2 mehr als Anna.

Mehr

Lehrplanbezug der VERA-8-Aufgaben. Mathematik Testheft B [Wirtschaftsschule] Schuljahr 2008/09

Lehrplanbezug der VERA-8-Aufgaben. Mathematik Testheft B [Wirtschaftsschule] Schuljahr 2008/09 Lehrplanbezug der VERA-8-Aufgaben Mathematik Testheft B [Wirtschaftsschule] Schuljahr 28/9 Überblick zum Lehrplanbezug der VERA-8-Aufgaben 29 Mathematik - Testheft B [Wirtschaftsschule] Nr. Name der Aufgabe

Mehr

Erste schriftliche Wettbewerbsrunde. Klasse 4

Erste schriftliche Wettbewerbsrunde. Klasse 4 Klasse 4 Erste schriftliche Wettbewerbsrunde Die hinter den Lösungen stehenden Prozentzahlen zeigen, wie viel Prozent der Wettbewerbsteilnehmer die gegebene Lösung angekreuzt haben. Die richtigen Lösungen

Mehr

Geometrische Körper bauen

Geometrische Körper bauen www.erfolgreicheslernen.de April 2009 Geometrische Körper bauen Michael Schmitz Zusammenfassung Aus dünner Pappe oder stabilem Kopierpapier (z.b. 200 g/m 2 ) und Gummiringen kann man ebenflächig begrenzte

Mehr

Sachkompetenz Zahlen. Zahlen lesen und schreiben. zählen, Zahlen ordnen. Zahlen erfassen. Zahlen als Operatoren verwenden

Sachkompetenz Zahlen. Zahlen lesen und schreiben. zählen, Zahlen ordnen. Zahlen erfassen. Zahlen als Operatoren verwenden Zahlen Zahlen lesen und schreiben Zahlen und Zahlwörter lesen und schreiben Zahlen und Zahlwörter bis 20 lesen und schreiben Zahlen bis 100 lesen und schreiben große Zahlen lesen und schreiben die Bedeutung

Mehr

Problemlösen. Modellieren

Problemlösen. Modellieren Die Menge Bruchzahlen (Fortsetzung) Primfaktorzerlegungen zur Ermittlung von ggt und kgv Darstellen von Bruchteilen in Sachzusammenhängen und am Zahlenstrahl Eigenschaften von Bruchzahlen, Kürzen, Erweitern

Mehr

Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 5

Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 5 Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 5 1 Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Kommunizieren bei der Lösung von Problemen im Team arbeiten; über Begründen

Mehr

räumlichen Strukturen - Von Flächen und Körpern und Denken in Maßen und Größen im Mittelpunkt.

räumlichen Strukturen - Von Flächen und Körpern und Denken in Maßen und Größen im Mittelpunkt. In der Mathematik-Lernwerkstatt wurde mit dem 5. Jahrgang ein neues, innovatives Projekt zum Thema Königswege zur Raumvorstellung entwickelt und erprobt. Dabei standen die inhaltsbezogenen Kompetenzbereiche

Mehr

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Ausgewählte Aufgaben zur Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Ausführliche Hinweise zur Verwendung der folgenden

Mehr

GS Rethen. Themenzuordnung. Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler

GS Rethen. Themenzuordnung. Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler GS Rethen Kompetenzorientierung Fach: Mathematik Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler - verwenden eingeführte mathematische Fachbegriffe sachgerecht. - erläutern

Mehr

Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5

Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5 Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5 3 pro (maximal 45 Minuten) Rechnen mit natürlichen Zahlen; Darstellung natürlicher Zahlen und einfacher Bruchteile; Rechnen mit Größen Maßstabsverhältnisse;

Mehr

Geometrische Körper. Hinweise. zu diesem. Freiarbeitsmaterial. Kurzinformation

Geometrische Körper. Hinweise. zu diesem. Freiarbeitsmaterial. Kurzinformation Geometrische Körper Quader Kubus - Kegel - Kugel - dreiseitiges Prisma - dreiseitige Pyramide - Pyramide - Zylinder - Ovoid Ellipsoid Kurzinformation Thema Fach Formenkundliche Betrachtung geometrischer

Mehr

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A 1. Schulaufgabe aus der Mathematik * Klasse 7c * 17.11.2014 * Gruppe A 1. Finde den Term a) Finde einen Term, der zur folgenden Tabelle passt: x 2 3 4 5 T(x) 82 76 70 64 b) Peter legt aus blauen und roten

Mehr

Känguru der Mathematik 2001 LÖSUNGEN

Känguru der Mathematik 2001 LÖSUNGEN Känguru der Mathematik 2001 LÖSUNGEN GRUPPE ÉCOLIER 1) Wie viel ist 123 + 45 =? (A) 678 (B) 573 (C) 568 (D) 178 (E) 168 2) Karin wog vor 2 Jahren 37 kg. Jetzt wiegt sie 41 kg. Wie viel hat sie zugenommen?

Mehr

Abb. 1: Unterteilung des Quadrates

Abb. 1: Unterteilung des Quadrates Hans Walser, [20131019] Würfelpuzzle 1 Unterteilung des Quadrates Wir unterteilen ein Quadrat durch seine Diagonalen in vier Dreiecke (Abb. 1) und färben diese mit genau vier Farben, zum Beispiel schwarz,

Mehr

Amt für Volksschule März 2011

Amt für Volksschule März 2011 Amt für Volksschule März 2011 Lehrplan Grobziele im Überblick (LP Seiten 78 + 79) Grobziele /Symbole Möglichkeiten und Hinweise Eas Schwerpunkt Kl. 4 5 6 1 Die Schüler und Schüle- eben, waagrecht, horizontal,

Mehr

Download. Mathe an Stationen Handlungsorientierte Materialien für die Klassen 3 und 4. Mathe an Stationen SPEZIAL Geometrie 3-4

Download. Mathe an Stationen Handlungsorientierte Materialien für die Klassen 3 und 4. Mathe an Stationen SPEZIAL Geometrie 3-4 Download Carolin Donat Mathe an Stationen SPEZIAL Geometrie 3-4 Ebene Figuren - geometrische Formen zielt üben Anforderungen des ch Geometrie erfüllen wichtige Inhalte und leiten zugleich Ihre eiten trotz

Mehr

Schulinterner Lehrplan Mathematik Klasse 6

Schulinterner Lehrplan Mathematik Klasse 6 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 6 Als Lehrwerk wird das Buch Mathematik real 6, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

WELT DER ZAHL Schuljahr 1

WELT DER ZAHL Schuljahr 1 Zahlen bis 10 kennen und schreiben Zahlvorstellung entwickeln Anzahlen mit verschiedenen Sinnen erfassen, Mengen erfassen, Zahlen vergleichen Zahlzerlegung, Kraft der Fünf Zerlegungsgeschichten, mit der

Mehr

r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:

r)- +1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus: Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck

Mehr

Bruchrechnung. Bruchrechnung. Brüche und brechen. Brüche und die Hunderterscheibe. Arbeitsauftrag:

Bruchrechnung. Bruchrechnung. Brüche und brechen. Brüche und die Hunderterscheibe. Arbeitsauftrag: Brüche und brechen Bearbeite das beiliegende Arbeitsblatt. Beim n der Plättchen benutze bitte Buntstifte. Vergleiche die Zeichnungen und die Rechnungen. Bruchrechnung Brüche und die Hunderterscheibe Hole

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

Links und rechts. rechts. links Pfeile, Hunde und Hände entsprechend der Farbvorgabe färben bzw. einkreisen 1 L

Links und rechts. rechts. links Pfeile, Hunde und Hände entsprechend der Farbvorgabe färben bzw. einkreisen 1 L Links und rechts L links rechts 8 Pfeile, Hunde und Hände entsprechend der Farbvorgabe färben bzw. einkreisen Zahldarstellungen Verbinde. 6 0 4 5 Male und schreibe. Male. 5 6 Darstellungen gleicher Anzahl

Mehr

Geometrische Körper. Übungen: 1 2. Wer bin ich? Übung mit den 10 Steckbriefen Zunächst einen Satz der Steckbriefe

Geometrische Körper. Übungen: 1 2. Wer bin ich? Übung mit den 10 Steckbriefen Zunächst einen Satz der Steckbriefe Geometrische Körper Für die drei folgenden Übungen mit geometrischen Körpern benötigen Sie lediglich die Kopiervorlagen der folgenden Seiten sowie ausreichend Stifte, Scheren, Klebestifte und ein Heftgerät.

Mehr

4. Jgst Tag. Name:

4. Jgst Tag. Name: Schulstempel Probeunterricht 0 Mathematik 4. Jgst. -. Tag Name: Punkte. Tag Punkte. Tag Punkte gesamt Note Lies die Aufgaben genau durch. Arbeite sorgfältig und schreibe sauber. Deine Lösungen und Lösungswege

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Lisa und ihre Freundin haben in den Ferien einen Kochkurs besucht. Nun versuchen sie eine Torte nach einem Rezept im Internet zu backen.

Lisa und ihre Freundin haben in den Ferien einen Kochkurs besucht. Nun versuchen sie eine Torte nach einem Rezept im Internet zu backen. 1 131. Setze die fehlende Malrechnung so ein, dass die Waage im Gleichgewicht ist. 4 9 3 8 8 5 8 5 151. Für welche Zahl steht das Smily am Schluss? 40 - = 32 + =. 3 = : 6 = Für das Smily steht die Zahl.

Mehr

Rechenkönig 9 7 = = 3. Spielinhalt. Das Prinzip der Karten. Wer ist der beste Rechenkünstler?

Rechenkönig 9 7 = = 3. Spielinhalt. Das Prinzip der Karten. Wer ist der beste Rechenkünstler? Copyright - Spiele Bad Rodach 2013 Rechenkönig Wer ist der beste Rechenkünstler? Eine Lernspiele-Sammlung rund um das Rechnen im Zahlenraum von 1 bis 20. Enthalten sind sieben Spielideen in unterschiedlichen

Mehr

Mathematik Jahrgangsstufe 2

Mathematik Jahrgangsstufe 2 Grundschule Bad Münder Stand: 12.03.2014 Schuleigener Arbeitsplan Mathematik Jahrgangsstufe 2 Zeitraum Kompetenzen Verbindliche Sommerferien bis Herbstferien Kommunizieren und eigene Vorgehensweisen beschreiben

Mehr

Stoffverteilungsplan Mathematik 5 / 6 auf der Grundlage des neuen G8 Kernlehrplans 2007 _ Stand:Okt.2015

Stoffverteilungsplan Mathematik 5 / 6 auf der Grundlage des neuen G8 Kernlehrplans 2007 _ Stand:Okt.2015 Jg 5. I Natürliche Zahlen Stochastik Zählen und Tabellen, Balken- und Säulendiagramme Große Zahlen Runden von Zahlen, Zahldarstellung, Potenzschreibweise Rechnen mit natürlichen Zahlen Grundrechenarten,

Mehr

Die Anleitung ist optimiert für Microsoft Word 02 und Microsoft Paint.

Die Anleitung ist optimiert für Microsoft Word 02 und Microsoft Paint. Benötigte Hard- oder Software Textverarbeitungsprogramm Zeichnungsprogramm Anmerkung: Die Anleitung ist optimiert für Microsoft Word 02 und Microsoft Paint. Ziel ClipArt auswählen und in ein Dokument im

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 6 Reihenfolge Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 1.1 1.7 Brüche mit gleichem

Mehr

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):

Mehr

4. Jahrestagung Berlin

4. Jahrestagung Berlin 29. 02./1. 03. 08 SINUS Transfer Grundschule 4. Jahrestagung Berlin Lernumgebungen für Rechenschwache bis Hochbegabte Natürliche Differenzierung im Mathematikunterricht der Grundschule Workshop: Von einfach

Mehr

Legt man die vom Betrachter aus gesehen vor den, wird die spätere Konstruktion kleiner als die Risse. Legt man die hinter das Objekt, wird die perspek

Legt man die vom Betrachter aus gesehen vor den, wird die spätere Konstruktion kleiner als die Risse. Legt man die hinter das Objekt, wird die perspek Gegeben ist ein und ein. Der wird auf eine gezeichnet, der unterhalb von dieser in einiger Entfernung und mittig. Parallel zur wird der eingezeichnet. Dieser befindet sich in Augenhöhe. Üblicherweise wird

Mehr

Anlage 4: Claudia Schmidt: Viele Ecken, viele Winkel und ihre Summe

Anlage 4: Claudia Schmidt: Viele Ecken, viele Winkel und ihre Summe Anlage 4: Claudia Schmidt: Viele Ecken, viele Winkel und ihre Summe Mathe-Koffer Raum und Form (Karte 4) durchgeführt in den Erweiterungskursen 7 und 8 der Europaschule Dortmund MK Raum und Form Einsatz:

Mehr