Binnendifferenzierung im Mathematikunterricht

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Binnendifferenzierung im Mathematikunterricht"

Transkript

1 Binnendifferenzierung im Mathematikunterricht Beispiele und Ansätze Veronika Kollmann Staatliches Seminar für Didaktik und Lehrerbildung (Gymnasien) Stuttgart

2 Dimensionen von Heterogenität (nach SPIEGEL und WALTER) Vertikale Heterogenität Unterschiede im Leistungsniveau Horizontale Heterogenität Unterschiede in der Vorgehensweise

3 Forderung nach mehr Individualisierung des Unterrichts Klasse Lehrer bisher künftig!(?)

4 Wer fertig ist, macht noch die 3. Spalte!

5 Thesen zur Binnendifferenzierung These 1: Binnendifferenzierung im Mathematikunterricht sollte nicht über den Aufgabenumfang sondern über den Aufgabeninhalt erfolgen.

6 Binnendifferenzierung durch offene Unterrichtsformen Beispiel Stationenlauf: Pflichtstationen leichter schwerer Wahlstationen Station 1: Flächeneinheiten Station 1: Flächeneinheiten Berechne Berechne L a) 128 a 56 a b) a) 492km² a c) b) ha km² + : a d) c) a = mm² + m² 2,4 cm² - 0,25 dm² e) 2 a 25 m² f) mm² = cm²

7 Thesen zur Binnendifferenzierung These 1: Binnendifferenzierung im Mathematikunterricht sollte nicht über den Aufgabenumfang, sondern über den Aufgabeninhalt erfolgen. These 2: Binnendifferenzierung sollte nicht zu einer Zersplitterung der Lerngruppe führen, sondern langfristig zu einer Stärkung der gesamten Gruppe.

8 Anforderungen an Binnendifferenzierung 1. Die Schüler arbeiten streckenweise auf unterschiedlichen Anforderungsniveaus. 2. Es wird eine sichere, gemeinsame Basis (Kenntnisse, Fähigkeiten) erarbeitet. 3. Das Vorgehen ist im Alltag praktikabel.

9 Beispiel 1: Wie lautet deine Aufgabe? Eine offene Aufgabenstellung in Klasse 7 Arbeitsauftrag: Formuliere eine Aufgabe und löse sie! Fabio: Wie viel kostet die Flasche nun? Vanessa: Wie viel spart man bei einem Liter? Sven-Jonas: Stimmt das? Anh: Ich wusste nicht, was ich tun soll. Es ist doch schon alles berechnet!

10 Binnendifferenzierung im Mathematikunterricht Typ A Rahmen: eine gemeinsame offene Aufgabe individuelle Lösungswege der Schüler

11 Beispiel 2: Finde alle Würfelnetze! Eine Erkundung in Klasse 5

12 weitere Beispiele für Rahmenaufgaben vom Typ Finde alle / möglichst viele! Leite auf möglichst verschiedene Weisen eine Formel für den Flächeninhalt eines Trapezes her. Finde alle Dreiecke, die sich aus drei der folgenden Streckenlängen konstruieren lassen: a = 2cm; b = 7cm; c = 4,5cm; d = 11cm; e = 9cm; f = 13 cm Es gibt Stammbrüche, deren Summe wieder als Stammbruch darstellbar ist? Finde möglichst viele.

13 Beispiel 3: Variiere! Variation einer Grundaufgabe in Klasse 5 Aufgabe: Zeichne ganz genau alle möglichen Geraden, die durch je zwei Punkte verlaufen. Setze fort. 2 Punkte 3 Punkte 4 Punkte 5 Punkte

14 Beispiel 3: Lösung der Grundaufgabe von Schüler A

15 Beispiel 3: Lösung der Grundaufgabe von Schüler B

16 Beispiel 3: Lösung der Grundaufgabe von Schüler C

17 Beispiel 3: Variationen der Grundaufgabe 1. Setze fort! 6 Punkte, 7 Punkte, 2. Wie viele Geraden sind es bei 15 (100) Punkten? 3. Finde eine Formel zur Berechnung der Anzahl der Geraden bei gegebener Anzahl der Punkte. 4. Wie viele Schnittpunkte können 3 (4, 5, ) Geraden überhaupt haben? 5. Durch je 3 Punkte wird ein Dreieck bestimmt. Wie viele Dreiecke gibt es bei 3, 4, 5, Punkten? 6. 5 Personen treffen sich. Jeder gibt jedem die Hand. Wie oft werden Hände geschüttelt? Iterieren Weiterfragen Verallgemeinern Umkehren Analogisieren Kontext ändern

18 Binnendifferenzierung im Mathematikunterricht Typ B Ausgangspunkt für alle: eine Initialaufgabe individuelle Erkundungen der Aufgabenumgebung

19 Beispiel 4: Versuchen Sie, so weit wie möglich zu kommen! Eine gestufte Aufgabenstellung zu Eigenschaften von Folgen (Klasse 12) Arbeitsauftrag: 1. Legen Sie eine Tabelle nach dem folgenden Muster an und suchen Sie jeweils ein passendes Beispiel. 2. Zu einigen Fällen werden Sie kein Beispiel finden, da es Abhängigkeiten zwischen diesen drei Eigenschaften gibt. Formulieren Sie Sätze in der Form Immer wenn..., dann! 3. Begründen Sie diese Sätze mithilfe einer Skizze. monoton beschränkt konvergent Beispiel ja ja ja ja nein ja

20 Beispiel 4 / Schülerlösungen: Tabelle mit Beispielen beschränkt monoton konvergent Beispiele A ja ja ja n 1 n 1 n n n B ja nein ja 1 2 C ja ja nein n D ja nein nein keine E nein ja ja ( ) F nein nein ja n ( 1) n n 1 2 G nein ja nein keine 2 n ( 2) n H nein nein nein ( 2) n n 2 10n

21 Beispiel 4 / Schülerlösungen: Formulierung von Sätzen beschränkt monoton konvergent Beispiele C ja ja nein Es gibt keine! Immer wenn eine Folge monoton und beschränkt ist, dann ist sie auch konvergent. Immer wenn eine Folge nicht konvergent ist, dann ist sie nicht monoton oder nicht beschränkt. Immer wenn eine Folge beschränkt und nicht konvergent ist, dann ist sie nicht monoton.

22 Beispiel 4 / Schülerlösungen: Formulierung von Sätzen beschränkt monoton konvergent Beispiele E nein ja ja F nein nein ja Es gibt keine! Immer wenn eine Folge nicht beschränkt und monoton ist, dann ist sie auch nicht konvergent. Immer wenn eine Folge konvergent und monoton ist, dann ist sie auch beschränkt. Immer wenn eine Folge nicht beschränkt ist, dann ist sie nicht konvergent. Immer wenn eine Folge konvergent ist, dann ist sie auch beschränkt.

23 Beispiel 4 / Schülerlösungen: Begründung der gefundenen Sätze Immer wenn eine Folge monoton und beschränkt ist, dann ist sie auch konvergent. Immer wenn eine Folge konvergent ist, dann ist sie auch beschränkt.

24 Binnendifferenzierung im Mathematikunterricht Typ C gestufte Aufgabenstellung individuelle Lernwege (Abstraktionsniveau; Umfang der bearbeiteten Aufgaben)

25 Binnendifferenzierung im Mathematikunterricht Kennzeichen reichhaltiger Aufgaben bietet verschiedene Ansatzpunkte zur Bearbeitung lässt verschiedene Lösungswege zu enthält Herausforderung für leistungsstärkere Schüler (oder lässt sich zu anspruchsvolleren Fragestellungen erweitern) bietet den Schülern die Möglichkeit zur eigenständigen, aktiven Auseinandersetzung lässt den Schülern die Wahl zwischen verschiedenen Hilfsmitteln verlangt einen abschließenden Austausch und eine Zusammenführung in der ganzen Lerngruppe

26 Binnendifferenzierung im Mathematikunterricht Anforderungen an den Lehrer Vorbereitung des Unterrichts aus dem Blickwinkel der Binnendifferenzierung genaue Beobachtung der einzelnen Schüler; Entwicklung von Diagnosekompetenz Wertschätzung jeder Schülerleistung Verzicht auf vollständige Kontrolle und Korrektur Integration der verschiedenen Lernwege

27 Binnendifferenzierung im Mathematikunterricht Anforderungen an den Schüler Entwicklung von Selbstständigkeit und Eigeninitiative Entwicklung einer Haltung des Weiterfragens Kommunizieren der eigenen Ansätze und Lösungswege Entwicklung einer positiven Grundhaltung gegenüber den Leistungen der Mitschüler kritische Auseinandersetzung mit den Lösungsvorschlägen der Mitschüler Unterstützung schwächerer Mitschüler

28 Binnendifferenzierung im Mathematikunterricht: Interesse für Mathematik wecken!

Innere Differenzierung

Innere Differenzierung Innere Differenzierung C. Utech, 2009 Buck, Heidi und Gundert, U.: Symposium Lernen im Gleichschritt? Vom Umgang mit Differenz.2003 Ebert, Matthias: Mathematikaufgaben.2008 Kollmann, Veronika: Staatliches

Mehr

Zaubern im Mathematikunterricht

Zaubern im Mathematikunterricht Zaubern im Mathematikunterricht 0011 0010 1010 1101 0001 0100 1011 Die Mathematik als Fachgebiet ist so ernst, dass man keine Gelegenheit versäumen sollte, dieses Fachgebiet unterhaltsamer zu gestalten.

Mehr

Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7

Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7 Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7 LÖSUNGEN. Gib die Primfaktorzerlegung der Zahlen 0 und an. 0 0 7 7 7. Erkläre, wie man zwei ganze Zahlen addiert bzw. multipliziert. Bei gleichem

Mehr

Des Königs neues Zepter

Des Königs neues Zepter Des Königs neues Zepter Schule: Regionale Schule Untermosel Kobern-Gondorf Idee und Erprobung der Aufgabe: Franz-Josef Göbel, Ralf Nagel, Helga Schmidt Die folgende Aufgabe ist einer Aufgabensammlung entnommen,

Mehr

Materialien/ Anregungen. prozessbezogene Kompetenzen laut Kernlehrplan. inhaltsbezogene Kompetenzen laut Kernlehrplan

Materialien/ Anregungen. prozessbezogene Kompetenzen laut Kernlehrplan. inhaltsbezogene Kompetenzen laut Kernlehrplan HARDTBERG GYMNASIUM DER STADT BONN Stand: Juni 2011 Schulinternes Curriculum Mathematik Das schulinterne Curriculum folgt dem Kernlehrplan für das Gymnasium Sekundarstufe I (G8) in Nordrhein-Westfalen

Mehr

Lernen an Stationen Thema: Flächenberechnung

Lernen an Stationen Thema: Flächenberechnung Lernen an Stationen Thema: Flächenberechnung 8. Jahrgang Mathematics is a way of thinking, not a collection of facts! Ausgehend von dieser grundsätzlichen Überzeugung sollte ein Unterricht zum Thema Flächenberechnung

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Flächeninhaltsberechnung von Vielecken. Marco Bettner/Erik Dinges

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Flächeninhaltsberechnung von Vielecken. Marco Bettner/Erik Dinges DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunden Mathematik 19 8. Klasse: Flächeninhaltsberechnung von Vielecken auszug aus dem Originaltitel: Flächeninhalt Parallelogramm 1 Erstelle eine Formel zur

Mehr

Hauptstudie zur halbschriftlichen Division

Hauptstudie zur halbschriftlichen Division Thema: Vorgehensweisen von Drittklässlern bei Aufgaben zur halbschriftlichen Division Zeitpunkt: Mitte bis Ende Klasse 3 zeitlicher Umfang: ca. 45 Minuten Material: Arbeitsblatt mit Divisionsaufgaben Ziele

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Stationenlernen Nahostkonflikt - Ursprünge, Motive und Entwicklungen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Stationenlernen Nahostkonflikt - Ursprünge, Motive und Entwicklungen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Stationenlernen Nahostkonflikt - Ursprünge, Motive und Entwicklungen Das komplette Material finden Sie hier: School-Scout.de Titel:

Mehr

Flächeneinheiten und Flächeninhalt

Flächeneinheiten und Flächeninhalt Flächeneinheiten und Flächeninhalt Was ist eine Fläche? Aussagen, Zeichnungen, Erklärungen MERKE: Eine Fläche ist ein Gebiet, das von allen Seiten umschlossen wird. Beispiele für Flächen sind: Ein Garten,

Mehr

Name Vorname Schuljahr 2005/2006 Datum der Durchführung Donnerstag, ORIENTIERUNGSARBEIT

Name Vorname Schuljahr 2005/2006 Datum der Durchführung Donnerstag, ORIENTIERUNGSARBEIT Sekundarschule 4. Klasse Niveau P Name Vorname Schuljahr 2005006 Datum der Durchführung Donnerstag, 17.11.05 ORIENTIERUNGSARBEIT Sekundarschule Mathematik Niveau P (M6) Lies zuerst Anleitung und Hinweise

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe Kriterien: Der Prüfling Lösung: Punkte: a) entscheidet sich für passenden Wert 8 000 000 b) wählt ein geeignetes Verfahren zur z. B. Dreisatz Berechnung gibt das richtige Ergebnis

Mehr

HS Pians St. Margarethen. Alles Gute!

HS Pians St. Margarethen. Alles Gute! Vorübungen auf die 6. M-Schularbeit KL, KV 01 Ich habe mich bemüht, dir möglichst wieder früh Unterlagen zur Verfügung zu stellen, die Pfingstferien klopfen an die Türe, HS Pians St. Margarethen Alles

Mehr

Mathematik - Jahrgangsstufe 5

Mathematik - Jahrgangsstufe 5 Mathematik - Jahrgangsstufe 5 1. Natürliche Zahlen und Größen (Stochastik, Arithmetik/Algebra) Strichlisten, Tabellen und Diagramme Die Stellenwerttafel im Dezimalsystem & Runden Grundrechenarten: Summe,

Mehr

Zentrale Abschlussprüfung 10 zur Erlangung des Mittleren Schulabschlusses mit der Berechtigung für die Gymnasiale Oberstufe (an Gesamtschulen) 2012

Zentrale Abschlussprüfung 10 zur Erlangung des Mittleren Schulabschlusses mit der Berechtigung für die Gymnasiale Oberstufe (an Gesamtschulen) 2012 Die Senatorin für Bildung, Wissenschaft und Gesundheit Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 zur Erlangung des Mittleren Schulabschlusses mit der Berechtigung für die Gymnasiale Oberstufe

Mehr

Die Hälfte färben. Darum geht es: LP NRW S. 64 Raum und Form Symmetrie Schuleingangsphase

Die Hälfte färben. Darum geht es: LP NRW S. 64 Raum und Form Symmetrie Schuleingangsphase Die Hälfte färben Darum geht es: Der Auftrag, die Hälfte eines Zahlenfeldes geschickt zu färben, erfordert die Beschäftigung mit geometrischen Mustern. Dabei kann die Symmetrie als Mittel zur Problemlösung

Mehr

Mathematik - Klasse 6 -

Mathematik - Klasse 6 - Schuleigener Lehrplan Mathematik - Klasse 6 - Stand: 03.11.2011 2 I. Rationale Zahlen Die n Kompetenzen gelten grundsätzlich für alle Kapitel. Abweichungen werden gesondert aufgeführt. Die hier genannten

Mehr

Übungsbeispiele- Mathematik 2. Schularbeit, am

Übungsbeispiele- Mathematik 2. Schularbeit, am 011 Übungsbeispiele- Mathematik. Schularbeit, am 7.1.011 M 3b/I. KL, KV 1.11.011 . Schularbeit: MTHEMTIK KL.: M3b/I. - S. 1) Ergänze die Tabelle! a 1 3 4 5 6 7 8 9 10 a ) Fasse zusammen und schreibe als

Mehr

9.2 Augensummen beim Würfeln mit zwei Würfeln

9.2 Augensummen beim Würfeln mit zwei Würfeln 9.2 Augensummen beim Würfeln mit zwei Würfeln Thema der Unterrichtsstunde Augensummen beim Würfeln Beschreibung der Lerngruppe Die Klasse 6 setzt sich aus 9 Schülerinnen und 2 Schülern (im Folgenden kurz

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Stationenlernen Alltag im Zweiten Weltkrieg - Von der Hitlerjugend bis zum Widerstand Das komplette Material finden Sie hier: School-Scout.de

Mehr

LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN

LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN Lehrplaneinheit Methode Sozialform Einsatzmöglichkeit Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Berufsrelevantes Rechnen Einzelarbeit Wiederholung

Mehr

Synopse zum Kernlehrplan für die Gesamtschule/Sekundarschule/Realschule

Synopse zum Kernlehrplan für die Gesamtschule/Sekundarschule/Realschule Synopse zum Kernlehrplan für die Gesamtschule/Sekundarschule/Realschule Schnittpunkt Mathematik Band 8 978-3-12-742485-0 x x G-Kurs E-Kurs Zeitraum Inhaltsverzeichnis Rahmenlehrplan für die Sekundarstufe

Mehr

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK 1. Allgemeine mathematische Kompetenzen Primarbereich Allgemeine mathematische Kompetenzen zeigen sich in der lebendigen Auseinandersetzung mit Mathematik und

Mehr

Download. Mathematik üben Klasse 8 Fläche und Umfang. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Fläche und Umfang. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Fläche und Umfang Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Fläche und

Mehr

mathbuch Unkorrigertes Vorabmaterial Mathematik für die Sekundarstufe I Begleitband für die integrative Förderung Klassen 7 bis 9

mathbuch Unkorrigertes Vorabmaterial Mathematik für die Sekundarstufe I Begleitband für die integrative Förderung Klassen 7 bis 9 mathbuch Mathematik für die Sekundarstufe I Begleitband für die integrative Förderung Klassen 7 bis 9 IF Mit reichhaltigem Online-Material 1 Inhalt 3 Inhaltliche und didaktische Konzeption Ausgangslage

Mehr

Hochbegabungsförderung in der Praxis

Hochbegabungsförderung in der Praxis Hochbegabungsförderung in der Praxis (Sommerakademien, Pull-Out-Kurse, Unterricht) Beispiele aus Mathematik Hildegard Urban-Woldron Gymnasium Sacre Coeur Pressbaum, KPH Wien/Krems, AECC Physik Übersicht

Mehr

Funktionen Lineare Zuordnungen mit eigenen Worten in Wertetabellen, Graphen und in Termen darstellen und zwischen diesen Darstellungen wechseln.

Funktionen Lineare Zuordnungen mit eigenen Worten in Wertetabellen, Graphen und in Termen darstellen und zwischen diesen Darstellungen wechseln. Kernlernplan Jahrgangsstufe 8 8 Lineare Funktionen und lineare Gleichungen 1. Lineare Funktionen 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte Funktionen Interpretieren

Mehr

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN Schulinternes Curriculum der Klasse 8 am Franz-Stock-Gymnasium (vorläufige Version, Stand: 20.08.16) Grundlage ist das Lehrbuch, Cornelsen Verlag, ISBN 978-3-06-040323-3 ca. 6 Wochen Kapitel I: Terme Terme

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Thema I: Lineare und lineare Gleichungen 1. Lineare 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte 1. Klassenarbeit Thema II: Reelle 1. Von bekannten und neuen 2. Wurzeln

Mehr

Umfang des Parallelogramms. Flächeninhalt des Parallelogramms

Umfang des Parallelogramms. Flächeninhalt des Parallelogramms Parallelogramm Umfang des Parallelogramms Gegeben ist ein Parallelogramm mit den Seitenlängen a und b. Um den Umfang (u P ) zu berechnen, wird folgende Formel verwendet: u P = 2a + 2b a b a = 6 cm; b =

Mehr

2. Strahlensätze Die Strahlensatzfiguren

2. Strahlensätze Die Strahlensatzfiguren 2. Strahlensätze 2.1. Die Strahlensatzfiguren 1) Beispiel Die nebenstehende Figur zeigt eine zentrische Streckung mit Zentrum Z. Man kennt einige Streckenlängen. a) Wie gross ist der Streckungsfaktor k?

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 6 Reihenfolge Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 1.1 1.7 Brüche mit gleichem

Mehr

Kernlehrplan für das FSG Fachbereich Mathematik Jahrgangsstufe 6, 2016

Kernlehrplan für das FSG Fachbereich Mathematik Jahrgangsstufe 6, 2016 Kernlehrplan für das FSG Fachbereich Mathematik Jahrgangsstufe 6, 2016 Zeitraum 10 Unterrichtsvorhaben 1 Brüche und Dezimalzahlen 1.1 Natürliche Zahlen und Teilbarkeitsregeln 1.2 Brüche 1.3 Anteile 1.4

Mehr

Schulinterner Lehrplan Mathematik Klasse 8

Schulinterner Lehrplan Mathematik Klasse 8 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 8 Als Lehrwerk wird das Buch Mathematik real 8, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09. Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler

Mehr

Lisa und ihre Freundin haben in den Ferien einen Kochkurs besucht. Nun versuchen sie eine Torte nach einem Rezept im Internet zu backen.

Lisa und ihre Freundin haben in den Ferien einen Kochkurs besucht. Nun versuchen sie eine Torte nach einem Rezept im Internet zu backen. Muster 1 131. Setze die fehlende Malrechnung so ein, dass die Waage im Gleichgewicht ist. 4 9 3 8 8 5 8 5 151. Für welche Zahl steht das Smily am Schluss? 40 - = 32 + =. 3 = : 6 = Für das Smily steht die

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 8 Lambacher Schweizer 8

Stoffverteilungsplan Mathematik im Jahrgang 8 Lambacher Schweizer 8 Mathematik Jahrgangsstufe 8 (Lambacher Schweitzer 8) Zeitraum prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Informationen aus authentischen Texten Überprüfen von Ergebnissen und Ordnen Rationale

Mehr

Notwendiges Grundwissen am Ende der Klasse 4 für den Übergang ans Gymnasium

Notwendiges Grundwissen am Ende der Klasse 4 für den Übergang ans Gymnasium Notwendiges Grundwissen am Ende der Klasse 4 für den Übergang ans Gymnasium Für einen effektiven Mathematikunterricht ist es unerlässlich, dass Schüler auf grundlegende Kenntnisse und Fertigkeiten zurückgreifen

Mehr

MATHEMATIK 7. Schulstufe Schularbeiten

MATHEMATIK 7. Schulstufe Schularbeiten MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)

Mehr

Klassenarbeit im Fach Mathematik, Nr.:

Klassenarbeit im Fach Mathematik, Nr.: Klassenarbeit im Fach Mathematik, Nr.: (Bearbeitungszeit: 40 Minuten) Bitte ausfüllen: Name: Vorname: Klasse: Datum: Bitte nicht ausfüllen: Punktzahl: Note: Mündliche Bemerkung: Teilnote: von max. 24 Aufgabe

Mehr

Basiswissen WADI Basiswissen und Sicherung des Basiswissens durch WADI

Basiswissen WADI Basiswissen und Sicherung des Basiswissens durch WADI Basiswissen und Sicherung des Basiswissens durch WADI Manfred Zinser 2009 1 Lernen als Aufbauen einer Mauer Stein um Stein Reihe um Reihe Fehlende Steine können die Mauer zum Einsturz bringen. Knüpfen

Mehr

GES Espenstraße Schulinterner Lehrplan Mathematik Stand Vorbemerkung

GES Espenstraße Schulinterner Lehrplan Mathematik Stand Vorbemerkung Vorbemerkung Die im Folgenden nach Jahrgängen sortierten Inhalte, inhaltsbezogenen Kompetenzen (IK) und prozessbezogenen Kompetenzen (PK) sind für alle im Fach Mathematik unterrichtenden Lehrer verbindlich.

Mehr

Individuelle Förderung und Differenzierung SINUS Bayern

Individuelle Förderung und Differenzierung SINUS Bayern Mathematik Gymnasium Jgst. 10 Individuelle Förderung und Differenzierung durch Computereinsatz - die allgemeine Sinusfunktion Die Bedeutungen der Parameter a, b und c bei der allgemeinen Sinusfunktion

Mehr

Ferienaufgaben Mathematik 6. Klasse

Ferienaufgaben Mathematik 6. Klasse Ferienaufgaben Mathematik 6. Klasse 6.A Bruchzahlen 6.A. Brüche ) Welcher Bruchteil a) aller Figuren sind Kreise, b) aller Figuren sind Vierecke, c) aller Figuren sind schwarz, d) aller Figuren sind weiß,

Mehr

Fachdidaktische Ausbildung Ausbildungsplan Umsetzung

Fachdidaktische Ausbildung Ausbildungsplan Umsetzung Fachdidaktische Ausbildung Ausbildungsplan Umsetzung Ausbildungsplan (Mathe) Rahmencurriculum & Didaktiken der Unterrichtsfächer (hier nicht allgemein betrachtet) A. Ziele der Ausbildung B. Didaktik und

Mehr

Schulinterner Lehrplan

Schulinterner Lehrplan Fach Mathematik Jahrgangsstufe 5 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Natürliche Zahlen und Größen - große Zahlen - Stellentafel - Zahlenstrahl - Runden - Geld, Länge, Gewicht,Zeit

Mehr

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen Grundwissen Mathematik G8 6. Klasse Zahlen. Brüche.. Bruchteile und Bruchzahlen Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Ganzes: 0 Kästchen 6 6 graue Kästchen, also: 0

Mehr

Orientierungsarbeit Mathematik Schuljahr 2013/2014

Orientierungsarbeit Mathematik Schuljahr 2013/2014 Name: Klasse: Orientierungsarbeit Mathematik Schuljahr 2013/2014 In der Welt der Figuren und Körper Aufgabe 1 Die Tabelle beschreibt die Eigenschaften eines Quaders. Ergänze die fehlenden Angaben. Eigenschaft

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2011 REALSCHULABSCHLUSS MATHEMATIK. Arbeitszeit: 180 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2011 REALSCHULABSCHLUSS MATHEMATIK. Arbeitszeit: 180 Minuten Arbeitszeit: 180 Minuten Es sind die drei Pflichtaufgaben und zwei Wahlpflichtaufgaben zu bearbeiten. Seite 1 von 8 Pflichtaufgaben Pflichtaufgabe 1 (erreichbare BE: 10) a) Bei einem Experiment entstand

Mehr

7.5 Der Schwerpunkt im Dreieck und seine Konstruktion

7.5 Der Schwerpunkt im Dreieck und seine Konstruktion 7.5 Der Schwerpunkt im Dreieck und seine Konstruktion Thema der Unterrichtsstunde Der Schwerpunkt im Dreieck und seine Konstruktion Anmerkungen zur Lerngruppe Seit Beginn des Schuljahres unterrichte ich

Mehr

Stoffverteilungsplan Mathematik Klasse 5 RS,

Stoffverteilungsplan Mathematik Klasse 5 RS, Stoffverteilungsplan Mathematik Klasse 5 RS, 04.12.2006 Inhalte Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Methoden 1 Die natürlichen Zahlen Unsere neue Klasse 1 Strichlisten und Diagramme

Mehr

Quaderhunde und Würfelkörper

Quaderhunde und Würfelkörper R. Reimer Staatliches Seminar für Didaktik und Lehrerbildung (Gymnasien) Karlsruhe Quaderhunde und Würfelkörper Kurzprojekte in den Klassenstufen 5 und 6 Anregungen für einen schülerverantwortlichen Mathematikunterricht

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck.

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck. Bruchzahlen Zeichne Rechtecke von cm Länge und cm Breite. Dieses Rechteck soll Ganzes ( G) darstellen. Hinweis: a.) Färbe ; ; ; ; ; ; 6 b.) Färbe ; ; ; ; ; ; 6 von diesem Rechteck. von diesem Rechteck.

Mehr

Aufgabenvariation als produktive Schülertätigkeit Beispiele und Erfahrungen

Aufgabenvariation als produktive Schülertätigkeit Beispiele und Erfahrungen Dr. Brigitte Leneke Otto-von-Guericke-Universität Magdeburg Postfach 4120 39016 Magdeburg email: brigitte.leneke@mathematik.uni-magdeburg.de Aufgabenvariation als produktive Schülertätigkeit Beispiele

Mehr

5. Jgst Tag. 1. Berechne: Punkte. a) = b) : 53 = 2. Berechne die Zahl, für die der Platzhalter steht.

5. Jgst Tag. 1. Berechne: Punkte. a) = b) : 53 = 2. Berechne die Zahl, für die der Platzhalter steht. Schulstempel Probeunterricht 00 Mathematik 5. Jgst. -. Tag. Tag. Tag gesamt Note Lies die Aufgaben genau durch! Arbeite sorgfältig und schreibe sauber! Deine Lösungen und Lösungswege müssen gut erkennbar

Mehr

Kompetenzorientierung im Unterricht: Chancen für eine neue Aufgaben- und Unterrichtskultur durch die Bildungsstandards

Kompetenzorientierung im Unterricht: Chancen für eine neue Aufgaben- und Unterrichtskultur durch die Bildungsstandards Kompetenzorientierung im Unterricht: Chancen für eine neue Aufgaben- und Unterrichtskultur durch die Bildungsstandards Prof. Dr. Olaf Köller Institut zur Qualitätsentwicklung im Bildungswesen iqboffice@iqb.hu-berlin.de

Mehr

Abfolge in 7 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Abfolge in 7 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 1. Dreisatz Tabelle und Graph einer Zuordnung Zueinander proportionale Größen proportionale Dreisatz bei proportionalen Zueinander antiproportionale Größen antiproportionale Dreisatz bei antiproportionalen

Mehr

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGEN)

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGEN) LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGEN) Aufgabe 1: Das verflixte x Ermittle die Lösungen der Gleichungen: a) x + 5 = 17 b) 17x = 187 c) 36x = -504 d) 45/44 = 9x/11 Aufgabe 2: Flaschenpfand Eine

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Übungen für zwischendurch - 9./10. Schuljahr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Übungen für zwischendurch - 9./10. Schuljahr Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Mathe-Übungen für zwischendurch - 9./10. Schuljahr Das komplette Material finden Sie hier: Download bei School-Scout.de Inhalt Vorwort

Mehr

Lösungen und definitive Korrekturanweisung

Lösungen und definitive Korrekturanweisung Bündner Mittelschulen Einheitsprüfung 2016 Geometrie Lösungen und definitive Korrekturanweisung Es werden nur ganze Punkte vergeben. Negative Punktzahlen sind nicht möglich. Punktzahl in die freie Spalte

Mehr

UNTERRICHT MIT NEUEN MEDIEN. Karl Ulrich Templ Didaktik der Politischen Bildung

UNTERRICHT MIT NEUEN MEDIEN. Karl Ulrich Templ Didaktik der Politischen Bildung UNTERRICHT MIT NEUEN MEDIEN Didaktische Anforderungen an Unterricht mit Medien Unterricht soll jeweils von einer für die Lernenden bedeutsamen Aufgabe ausgehen (Probleme, Entscheidungsfälle, Gestaltungsund

Mehr

Zahlenmuster beschreiben

Zahlenmuster beschreiben Zahlenmuster beschreiben Zwischen individuellen Ausdrucksweisen und normierter Fachsprache Michael Link Übersicht A. Zahlenmuster was ist das? B. Was macht eine gute Beschreibung aus? A. Zahlenmuster was

Mehr

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28.

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28. Demoseiten für Mathematik für Klasse 6/7 Prozentrechnen Trainingseinheiten zum Üben und Vertiefen Teil Grundlagen Teil 2 Anwendungen Datei Nr. 055 Stand 28. März 2008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Neue Wege Klasse 8. Schulcurriculum EGW. Zeiteinteilung/ Kommentar 1.4 Ungleichungen weglassen 1.5 Gleichungen mit Parametern weglassen

Neue Wege Klasse 8. Schulcurriculum EGW. Zeiteinteilung/ Kommentar 1.4 Ungleichungen weglassen 1.5 Gleichungen mit Parametern weglassen Neue Wege Klasse 8 Schulcurriculum EGW Inhalt Neue Wege 8 prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Kapitel 1 Die Sprache der Algebra Terme und Gleichungen 1.1 Rechnen mit Termen Summen und

Mehr

Intelligentes Üben im kompetenzorientierten Mathematikunterricht der Mittelschule 26. Schwäbischer Lehrertag

Intelligentes Üben im kompetenzorientierten Mathematikunterricht der Mittelschule 26. Schwäbischer Lehrertag Intelligentes Üben im kompetenzorientierten Mathematikunterricht der Mittelschule Heute ist der 23.04.2016 Berechnen Sie nun aus diesen Zahlen 23 0 4 2 0 1 6 durch Einsetzen Ihnen bekannter mathematischer

Mehr

Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums

Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums Marie-Curie-Gymnasium Waldstrasse 1a 16540 Hohen Neuendorf Tel.: 03303/9580 Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums Um euch den Einstieg in den Mathematikunterricht zu erleichtern,

Mehr

Schulinterner Lehrplan Mathematik G8 Klasse 8

Schulinterner Lehrplan Mathematik G8 Klasse 8 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/7 Jg 8, Stand: 1.11.2011 Schulinterner Lehrplan Mathematik G8 Klasse 8 Verbindliche Inhalte: Ergänzungen aus Kl. 7:Stochastik Wahrscheinlichkeit im ein-und

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Ernährung - Stationenlernen. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Ernährung - Stationenlernen. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Ernährung - Stationenlernen Das komplette Material finden Sie hier: School-Scout.de Titel: Stationenlernen: Ernährung Bestellnummer:

Mehr

QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2015 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 1. Juli :30 Uhr 10:20 Uhr

QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2015 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 1. Juli :30 Uhr 10:20 Uhr QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 05 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. Juli 05 8:30 Uhr 0:0 Uhr Hinweise zur Durchführung, Korrektur und Bewertung (gemäß 58 MSO) Seite Allgemeine Hinweise

Mehr

Möglichkeiten der Begabtenförderung im Mathematik-Unterricht durch natürliche Differenzierung

Möglichkeiten der Begabtenförderung im Mathematik-Unterricht durch natürliche Differenzierung Möglichkeiten der Begabtenförderung im Mathematik-Unterricht durch natürliche Differenzierung Frank Förster & Wolfgang Grohmann Technische Universität Braunschweig Lessing-Grundschule Braunsbedra Zur Einstimmung

Mehr

Kantonale Prüfungen 2013. Mathematik II Prüfung für den Übertritt aus der 8. Klasse

Kantonale Prüfungen 2013. Mathematik II Prüfung für den Übertritt aus der 8. Klasse Kantonale Prüfungen 2013 für die Zulassung zum gymnasialen Unterricht im 9. Schuljahr Mathematik II Serie H8 Gymnasien des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 8. Klasse Bitte beachten:

Mehr

Der Höhenschnittpunkt im Dreieck

Der Höhenschnittpunkt im Dreieck Der Höhenschnittpunkt im Dreieck 1. Beobachte die Lage des Höhenschnittpunktes H. Wo befindet sich H? a) bei einem spitzwinkligen Dreieck, b) bei einem rechtwinkligen Dreieck, c) bei einem stumpfwinkligen

Mehr

Abschlussprüfung 11 zur Erlangung der Erweiterten Berufsbildungsreife. Mathematik. Werkschule 2012

Abschlussprüfung 11 zur Erlangung der Erweiterten Berufsbildungsreife. Mathematik. Werkschule 2012 Die Senatorin für Bildung, Wissenschaft und Gesundheit Freie Hansestadt Bremen Abschlussprüfung 11 zur Erlangung der Erweiterten Berufsbildungsreife Mathematik Projekt: Festessen Schulzentrum Blumenthal

Mehr

Mathematik 1 Sekundarstufe I DAS MATHEMATIK-LEHRMITTEL

Mathematik 1 Sekundarstufe I DAS MATHEMATIK-LEHRMITTEL Mathematik 1 Sekundarstufe I DAS MATHEMATIK-LEHRMITTEL Aufbau des Lehrmittels Moderner Mathematik- Unterricht im Kanton Zürich Wie unterrichten wir im PETERMOOS Fragen Aufbau des Lehrmittels 1. Das Themenbuch

Mehr

Schatzsuche statt Fehlerfahndung Forum individuelle Förderung in Schulen

Schatzsuche statt Fehlerfahndung Forum individuelle Förderung in Schulen Schatzsuche statt Fehlerfahndung Forum individuelle Förderung in Schulen am Oberstufenkolleg Bielefeld am 9.2.07 Aufgaben für eine kompetenzorientierte Diagnose Mathematik Ergebnisse der Arbeit im Sinus

Mehr

Synopse zum neuen Kernlehrplan für die Hauptschule Schule: Schnittpunkt Plus Mathematik Differenzierende Ausgabe. Band Lehrer:

Synopse zum neuen Kernlehrplan für die Hauptschule Schule: Schnittpunkt Plus Mathematik Differenzierende Ausgabe. Band Lehrer: Synopse zum neuen Kernlehrplan für die Hauptschule Schule: Schnittpunkt Plus Mathematik Differenzierende Ausgabe Band 6 978-3-12-742421-8 Lehrer: - eine Sachsituation mit Blick auf eine konkrete Fragestellung

Mehr

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche?

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche? So fit BIST du 1 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! Quadrat 3) Erkennst du die Fläche? Rechteck 4) Versuch es gleich noch einmal: Rechteck 102 So fit

Mehr

Kernlehrplan Mathematik in Klasse 9 am Städtischen Gymnasium Gütersloh (für das 8-jährige Gymnasium)

Kernlehrplan Mathematik in Klasse 9 am Städtischen Gymnasium Gütersloh (für das 8-jährige Gymnasium) Kernlehrplan Mathematik in Klasse 9 am Städtischen Gymnasium Gütersloh (für das 8-jährige Gymnasium) Zeitraum Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Lehrbuchkapitel Elemente der Mathematik

Mehr

Probeunterricht 2011 an Wirtschaftsschulen in Bayern

Probeunterricht 2011 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 6. Jahrgangsstufe - Haupttermin Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 7: 45 Minuten 45 Minuten Name:....

Mehr

Mathematisches Professionswissen für das Lehramt an Grundschulen. Das ist mein/e erster Versuch. 1.Wiederholung. 2. Wiederholung.

Mathematisches Professionswissen für das Lehramt an Grundschulen. Das ist mein/e erster Versuch. 1.Wiederholung. 2. Wiederholung. Dr. C. Scharlach Dipl.-Math. U. Skambraks Mathematisches Professionswissen für das Lehramt an Grundschulen Klausur 11.08.2016 Name: Vorname: Matrikelnummer: Das ist mein/e erster Versuch. 1.Wiederholung.

Mehr

Mathematik 8 Version 09/10

Mathematik 8 Version 09/10 Mathematik 8 Version 09/10 Informationen aus authentischen Texten mehrschrittige Argumentationen Spezialfälle finden Verallgemeinern Untersuchung von Zahlen und Figuren Überprüfen von Ergebnissen und Lösungswegen

Mehr

4. Jgst Tag. Name:

4. Jgst Tag. Name: Schulstempel Probeunterricht 0 Mathematik 4. Jgst. -. Tag Name: Punkte. Tag Punkte. Tag Punkte gesamt Note Lies die Aufgaben genau durch. Arbeite sorgfältig und schreibe sauber. Deine Lösungen und Lösungswege

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 150 Minuten Tafelwerk Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler, die einen CAS-Taschencomputer

Mehr

Sprachsensibel umgestaltete Unterrichtsdokumente

Sprachsensibel umgestaltete Unterrichtsdokumente Sprachsensibel umgestaltete Unterrichtsdokumente Technisches Zeichnen: Maßangaben verstehen Sprachsensible Umgestaltung eines Arbeitsblattes, das im Rahmen einer Unterrichtseinheit zum Verständnis von

Mehr

Schulinterner Lehrplan Mathematik G8 Klasse 5

Schulinterner Lehrplan Mathematik G8 Klasse 5 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/7 Jg 5, Stand: 07.12.2008 Schulinterner Lehrplan Mathematik G8 Klasse 5 Verbindliche Inhalte zu Kapitel I Natürliche Zahlen 1 Zählen und 2 Große Zahlen

Mehr

Mathematik im 3. Schuljahr. Kompetenzen und Inhalte

Mathematik im 3. Schuljahr. Kompetenzen und Inhalte Mathematik im 3. Schuljahr Kompetenzen und Inhalte Prozessbezogene Kompetenzen Problemlösen / kreativ sein Die S. bearbeiten Problemstellungen. Modellieren Die S. wenden Mathematik auf konkrete Aufgabenstellungen

Mehr

Aufgabenbeispiele für Klassen der Flexiblen Grundschule

Aufgabenbeispiele für Klassen der Flexiblen Grundschule Aufgabenbeispiele für Klassen der Flexiblen Grundschule Zentrales Kernelement der Flexiblen Grundschule ist es, die vorhandene Heterogenität der Schülerinnen und Schüler in der Klasse als Chance zu sehen

Mehr

Satz des Pythagoras Lösung von Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Lösung von Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Lösung von Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Länge x der Hypotenuse: Ansatz: x² = 8² + 15² x = 17 cm b ) Beispiel für den Nachweis der Rechtwinkligkeit:

Mehr

Aufgaben im Mathematikunterricht

Aufgaben im Mathematikunterricht Aufgaben im Mathematikunterricht K I N G A S Z Ü C S F R I E D R I C H - S C H I L L E R - U N I V E R S I T Ä T J E N A F A K U L T Ä T F Ü R M A T H E M A T I K U N D I N F O R M A T I K A B T E I L

Mehr

1. Schularbeit R

1. Schularbeit R 1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:

Mehr

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 8 8 Kapitel I Reelle Zahlen 1 Von bekannten und neuen Zahlen 2 Wurzeln und Streckenlängen 3 Der geschickte Umgang mit Wurzeln

Mehr

Ein Quiz zur Wiederholung geometrischer Grundbegriffe. Ilse Gretenkord, Ahaus. Körper und ihre Eigenschaften Quizkarten

Ein Quiz zur Wiederholung geometrischer Grundbegriffe. Ilse Gretenkord, Ahaus. Körper und ihre Eigenschaften Quizkarten S 1 Ein Quiz zur Wiederholung geometrischer Grundbegriffe Ilse Gretenkord, Ahaus M 1 So geht s Körper und ihre Eigenschaften Quizkarten Bildet Gruppen zu vier bis fünf Schülerinnen bzw. Schülern. Eine

Mehr

Dr. Daniela Götze Natürliche Differenzierung von Anfang an! Johannes Kühnel ( ) Anforderungsbereiche der Bildungsstandards

Dr. Daniela Götze Natürliche Differenzierung von Anfang an! Johannes Kühnel ( ) Anforderungsbereiche der Bildungsstandards Überblick über das Fortbildungsmaterial Dr. Daniela Götze Natürliche Differenzierung von Anfang an! Natürliche Differenzierung von Anfang an! Wie wird im Unterrichtsalltag auf die Heterogenität in den

Mehr

MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 00/00 DES LANDES HESSEN AUFGABEN DER GRUPPE A PFLICHTAUFGABEN P. Von 40 Schülern fahren 44 mit öffentlichen Verkehrsmitteln zur Schule. Wie viel Prozent sind das? P. Nach einer Preiserhöhung

Mehr

Die 11 Eigenschaften der Standardvierecke

Die 11 Eigenschaften der Standardvierecke Die 11 Eigenschaften der Standardvierecke Die 11 Eigenschaften der 6 Familien der Standardvierecke 3 Aussagen 1. Die Diagonalen sind gleich lang. 2. Die Diagonalen halbieren sich. 3. Die Diagonalen sind

Mehr

Probeunterricht 2010 an Wirtschaftsschulen in Bayern

Probeunterricht 2010 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 7: 45 Minuten 45 Minuten Name:.... Vorname:.

Mehr

Kombinatorik mit dem Dominospiel (Klasse 4)

Kombinatorik mit dem Dominospiel (Klasse 4) Kombinatorik mit dem Dominospiel (Klasse 4) Alexandra Thümmler Einführung: Kombinatorik ist die Kunst des geschickten Zählens. In den Bildungsstandards werden kombinatorische Aufgaben inhaltlich dem Bereich

Mehr