Einführung in die Grundlagen der Theoretischen Physik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Grundlagen der Theoretischen Physik"

Transkript

1 Günther Ludwig Einführung in die Grundlagen der Theoretischen Physik Band 1: Raum, Zeit, Mechanik 2., durchgesehene und erweiterte Auflage Vieweg

2 Inhalt Zur Einführung 1 /. Was theoretische Physik nicht ist 3 //. Raum und Zeit als physikalische Strukturen 6 1 Die Euklidische Geometrie als übliches Hilfsmittel zur Beschreibung des Raumes 6 2 Der physikalische Abstand 10 3 Vergleich der physikalischen Abstände in verschiedenen Inertialsystemen 17 4 Das mathematische Bild eines physikalischen Raumes 19 5 Die physikalische Wirklichkeit von Stellen und Abständen 27 6 Die physikalische Zeit in einem Inertialsystem 32 7 Das mathematische Bild von Raum und Zeit 39 8 Einige grundlegende mathematische Methoden zur Beschreibung der Raum-Zeit-Struktur 42 9 Kritik an der geschilderten Methode der Einführung der Newtonschen Raum-Zeit-Struktur 43 ///. Das Verhältnis von Mathematik und Physik 46 1 Die drei Hauptteile einer physikalischen Theorie ' Der Grundbereich realer Gegebenheiten 48 3 Der Aufbau einer mathematischen Theorie 52 4 Die Abbildungsprinzipien 54 5 Unscharfe Abbildungsprinzipien 65 6 Eine axiomatische Basis einer physikalischen Theorie 68 7 Klassifizierung physikalischer Theorien 71 8 Die Endlichkeit der Physik 81

3 XII Inhalt 9 Physikalische Möglichkeit, physikalische Wirklichkeit und physikalische Unentscheidbarkeit als Begriffe einer tyx Hypothesen in einer IßX Verhalten von Hypothesen bei Erweiterung des Realtextes Verhalten von Hypothesen beim Übergang zu umfangreicheren Theorien Wirklich, möglich, unentscheidbar Mengen von Bildern realer Sachverhalte Der Wirklichkeitsbereich 119 IV. Kritische Betrachtungen zur Darstellung des Raum-Zeit-Problems in Kapitel II Kritik des Abstandsbegriffes aus II Raumgebiete Transport von Raumgebieten Raumpunkte und Abstände Kritik des Zeitbegriffes aus II 134 V. Die Grundprinzipien der klassischen Mechanik Bahnen von Massenpunkten Die Newtonsche Mechanik der Massenpunkte Masse und Kraft Einzelne Massenpunkte in Kraftfeldern Der Energiesatz für einen Massenpunkt in einem Kraftfeld Der Drehimpulssatz für einen Massenpunkt in einem Zentralkraftfeld Kraftfelder für mehrere Massenpunkte in Wechselwirkung Das Newtonsche Massenanziehungsgesetz Das Lagrangesche Extremalprinzip als Grundlage der Mechanik Bewegungsgleichung für einen Massenpunkt mit idealisierter Nebenbedingung Das Prinzip der virtuellen Arbeit Heuristischer Weg zum Lagrangeschen Variationsprinzip Das Lagrangesche Variationsprinzip als Grundaxiom der Mechanik Herleitung der Newtonschen Grundgleichungen Einige Axiome über SA Holonome Koordinaten und holonome Nebenbedingungen Explizite Form der Lagrangeschen Gleichungen Sphärische Polarkoordinaten Die schwingende Saite 204

4 Inhalt XIII 3.11 Der Energiesatz für ein System mit holonomen Nebenbedingungen Erhaltungssätze und Invarianzeigenschaften der Lagrangefunktion 215 VI. Ausbau und physikalische Konsequenzen der klassischen Mechanik Inertialsysteme und Galileigruppe Die Relation zwischen verschiedenen Inertial- und Fast-Inertialsystemen Die Galileigruppe Nicht-holonome Koordinaten und nicht-holonome Nebenbedingungen Nicht-holonome Koordinaten Nicht-holonome Nebenbedingungen Spezielle Beispiele Die Bewegungsgleichungen für den starren Körper Der rollende Reifen Die Bewegungen eines Schiffes auf einer reibungsfreien, inkompressiblen Flüssigkeit Das Verhältnis von allgemeiner Theorie und Beispielen (Physik und Technik) Das Problem des Determinismus und das Problem der Wirklichkeit der Bahnen von Massenpunkten Der dynamische Determinismus der Newtonschen Mechanik Die objektivierende Beschreibungsweise der klassischen Mechanik Die physikalische Wirklichkeit der Bahnen von Massenpunkten Die Festlegung der wirklichen Bahnen Übliche Redewendungen Die an sich exakt determinierten Bahnen? Die Kausalinterpretation der Mechanik Die Hamilton- Jacobi-Theorie Elementare Herleitung der Hamiltonschen Gleichungen Herleitung der Hamiltonschen Gleichungen aus dem Lagrangeschen Variationsprinzip Skleronome kanonische Transformationen Diezeitunabhängige//aw//fo«-7acoZ?('sche Differentialgleichung Rheonome kanonische Transformationen Die Lösung der Hamilton-Jacobischen partiellen DifferentialgleichungrrritHilfederLösungender//aw///o«schenGleichungen Die Strömung im Phasenraum 342

5 XIV Inhalt 6 Kanonische Transformationen und Erhaltungssätze Infinitesimale kanonische Transformationen Das n-fache Produkt von Ga/;7e/gruppen Notwendige und hinreichende Bedingungen für kanonische Transformationen Mehrfach periodische Systeme und ihre Störungen Lösung der Hamilton-Jacobischen Gleichung durch Separation der Variablen Periodische Bewegungen bei Systemen mit einem Freiheitsgrad Mehrfach periodische Systeme Einfachster Versuch einer Störungsrechnung und Kritik dieses Versuches Ansatz der Störungsrechnung für mehrfach periodische Systeme mit skleronomer Störung Nicht entartete Systeme Entartete Systeme Störung des Kep lerproblems Die Entdeckung der Planeten Neptun und Pluto Störung durch nicht-konservative Kräfte 396 VII. Kritik an den Grundlagen für die Einführung der Raum-Zeit-Struktur Die affine Struktur der Ereignismenge Y Die Bestimmungen der Zeitstruktur aus räumlichen Abstandsmessungen Raum- und Zeitstruktur als Ergebnis der Mechanik? Die Frage nach dem absoluten Raum und der absoluten Zeit Einige kritische Bemerkungen zu den Grundlagen der Newton-Lagrangeschen Mechanik. 420 A I. Einige Formeln der elementaren Vektorrechnung und der analytischen Geometrie 422 A II. Einige Grundformeln der Vektoranalysis 425 A III. Funktionentheoretische Berechnung der Wirkungsintegrale A IV. Die affine Vektorrechnung Affiner Vektorraum Inneres Produkt Lineare Operatoren 440 Literaturhinweise 445 Register 446

Theoretische Physik I

Theoretische Physik I Peter Reineker, Michael Schulz und Beatrix M. Schulz Theoretische Physik I Mechanik mit Aufgaben in Maple WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA VII Inhaltsverzeichnis Vorwort XV 1 Einleitung 1 1.1

Mehr

Theoretische Physik. Klassische. Römer. Eine Einführung. Dritte, durchgesehene und erweiterte Auflage mit 139 Abbildungen und 39 Übungen

Theoretische Physik. Klassische. Römer. Eine Einführung. Dritte, durchgesehene und erweiterte Auflage mit 139 Abbildungen und 39 Übungen 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Römer Klassische Theoretische Physik Eine Einführung Dritte, durchgesehene

Mehr

Einführung in die Himmelsmechanik und Ephemeridenrechnung

Einführung in die Himmelsmechanik und Ephemeridenrechnung Einführung in die Himmelsmechanik und Ephemeridenrechnung von Dr. Andreas Guthmann Universität Kaiserslautern Wissenschaftsverlag Mannheim Leipzig Wien Zürich Inhalt Vorrede 1 Inhalt 7 Notation 14 Kapitel

Mehr

Grundlagen der Analytischen Mechanik

Grundlagen der Analytischen Mechanik Höhere Technische Mechanik Grundlagen der Analytischen Mechanik Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Grundlagen der Analytischen

Mehr

Theoretische Mechanik

Theoretische Mechanik Hans Stephani / Gerhard Kluge Theoretische Mechanik Punkt- und Kontinuumsmechanik Mit 139 Abbildungen Spektrum Akademischer Verlag Heidelberg Berlin Oxford Punktmechanik 1 1. Mechanik eines freien Massenpunktes

Mehr

Relativität und Realität

Relativität und Realität Max Drömmer Relativität und Realität Zur Physik und Philosophie der allgemeinen und der speziellen Relativitätstheorie mentis PADERBORN Inhaltsverzeichnis Vorwort... 15 Einleitung... 17 Kapitel 1 Allgemeine

Mehr

AUFGABEN ZUR MECHANIK

AUFGABEN ZUR MECHANIK AUFGABEN ZUR MECHANIK der Punkte und starren Körper JENS BAUCHERT (Wiss. Ass.), GÜNTER HESSE (Wiss. Ass.), STEGFRIED KESSEL (Akad. Rat), JÜRGEN LENZ (Wiss. Ass.) AM LEHRSTUHL FÜR THEORETISCHE MECHANIK

Mehr

Die beste aller Welten Leibniz' Physik der Prlnzipe

Die beste aller Welten Leibniz' Physik der Prlnzipe Sitzungsberichte der Leibniz-Sozietät 13(1996) 5 67 Hans-Jürgen Treder Die beste aller Welten Leibniz' Physik der Prlnzipe Um 1700 standen nach dem Absterben der spät-scholastischen Schulwissenschaften

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

Fibonacci Zahlen: 3. Hamiltonsche Systeme. 3.1 Hamilton Dynamik. Teilverhältnis beim `goldenen Schnitt : definiert als. mit

Fibonacci Zahlen: 3. Hamiltonsche Systeme. 3.1 Hamilton Dynamik. Teilverhältnis beim `goldenen Schnitt : definiert als. mit Fibonacci Zahlen: definiert als Bemerkungen: (1) ist das Teilverhältnis beim `goldenen Schnitt : mit A T B und (2) Alle Zahlen, deren Darstellung als Kettenbruch auf endet, heißen `noble Zahlen. (3) Entwicklung

Mehr

- 1 - zum Extremum macht, wenn y(x) eine bestimmte, genau charakterisierte Funktionenklasse ( n

- 1 - zum Extremum macht, wenn y(x) eine bestimmte, genau charakterisierte Funktionenklasse ( n - 1 - Variationsrechnung Die Variationsrechnung spielt in der Physik eine entscheidende Rolle. So kann man die Grundgleichungen der Newtonschen Mechanik aus einem Lagrangeschen Variationsprinzip herleiten.

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

llya Prigogine VOM SEIN ZUM WERDEN Zeit und Komplexität in den Naturwissenschaften Überarbeitete und erweiterte Neuausgabe

llya Prigogine VOM SEIN ZUM WERDEN Zeit und Komplexität in den Naturwissenschaften Überarbeitete und erweiterte Neuausgabe llya Prigogine VOM SEIN ZUM WERDEN Zeit und Komplexität in den Naturwissenschaften Überarbeitete und erweiterte Neuausgabe Aus dem Englischen von Friedrich Griese Piper München Zürich Inhaltsverzeichnis

Mehr

2 Lagrange sche Bewegungsgleichungen

2 Lagrange sche Bewegungsgleichungen 2 Lagrange sche Bewegungsgleichungen Ausgearbeitet von Christine Cronjäger, Klaus Grambach und Ulrike Wacker 2.1 Zwangsbedingungen: Zwangsbedingungen schränken die 3 Freiheitsgrade des Teilchens ein. Unterwirft

Mehr

48 Symplektische Geometrie und Klassische Mechanik

48 Symplektische Geometrie und Klassische Mechanik 48 Symplektische Geometrie und Klassische Mechanik Zusammenfassung Zum Schluss der Vorlesung gehen wir noch auf eine geometrische Struktur ein, die wie die euklidische oder die Minkowski-Struktur im Rahmen

Mehr

Peter Hagedorn. Technische Mechanik. Band 3. Dynamik. 2., überarbeitete und erweiterte Auflage. Verlag Harri Deutsch

Peter Hagedorn. Technische Mechanik. Band 3. Dynamik. 2., überarbeitete und erweiterte Auflage. Verlag Harri Deutsch Peter Hagedorn Technische Mechanik Band 3 Dynamik 2., überarbeitete und erweiterte Auflage Verlag Harri Deutsch Inhaltsverzeichnis 1 Einleitung 1 2 Kinematik 3 2.1 Kinematik des Punktes 3 2.1.1 Die geradlinige

Mehr

Lagrange sche Bewegungsgleichungen

Lagrange sche Bewegungsgleichungen Kapitel 2 Lagrange sche Bewegungsgleichungen Ausgearbeitet von Christine Cronjäger, Klaus Grambach und Ulrike Wacker 2.1 Zwangsbedingungen: Zwangsbedingungen schränken die 3 Freiheitsgrade des Teilchens

Mehr

Physik. Oldenbourg Verlag München Wien 5 '

Physik. Oldenbourg Verlag München Wien 5 ' Physik Mechanik und Wärme von Klaus Dransfeld Paul Kienle und Georg Michael Kalvius 10., überarbeitete und erweiterte Auflage Mit fast 300 Bildern und Tabellen 5 ' Oldenbourg Verlag München Wien Inhalt

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135

Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135 Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen 1 x1. Differentialrechnung für Funktionen von mehreren Variablen....... 1 1.1 Einführung und Beispiele.............................. 1 1.2

Mehr

Klassische Elektrodynamik

Klassische Elektrodynamik Theoretische Physik Band 3 Walter Greiner Klassische Elektrodynamik Institut für Festkörperphysik Fachgebiet Theoretische Physik Technische Hochschule Darmstadt Hochschulstr. 6 1P iu Verlag Harri Deutsch

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Kapitel 2. Lagrangesche Mechanik. 2.1 Einleitung/Motivation

Kapitel 2. Lagrangesche Mechanik. 2.1 Einleitung/Motivation Kapitel Lagrangesche Mechanik Hier entwickeln wir eine elegante und einfache Betrachtungsweise der Newtontheorie, die eine Verallgemeinerung für quantenmechanische und relativistische Systeme ermöglicht..1

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Inhaltsverzeichnis. 2 Anwendungsfelder und Software Problemklassen Kommerzielle Software 12

Inhaltsverzeichnis. 2 Anwendungsfelder und Software Problemklassen Kommerzielle Software 12 Bernd Klein FEM Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau 8., verbesserte und erweiterte Auflage Mit 230 Abbildungen, 12 Fallstudien und 20 Übungsaufgaben STUDIUM

Mehr

Mathematikunterricht in der Sekundarstufe II

Mathematikunterricht in der Sekundarstufe II Uwe-Peter Tietze Manfred Klika Hans Wolpers (Hrsg.) Mathematikunterricht in der Sekundarstufe II Band 2 Didaktik der Analytischen Geometrie und Linearen Algebra verfasst von Uwe-Peter Tietze unter Mitarbeit

Mehr

Die Chaostheorie a) Geschichtliche Betrachtung Die Chaostheorie Quellenverzeichnis

Die Chaostheorie a) Geschichtliche Betrachtung Die Chaostheorie Quellenverzeichnis Die Chaostheorie a) Geschichtliche Betrachtung i. Das mechanistische Naturbild ii. Zweikörperproblem iii. Dreikörperproblem iv. Lagrange-Punkte v. Entdeckung des Chaos b) Die Chaostheorie i. Eigenschaften

Mehr

Drehbewegungen (Rotation)

Drehbewegungen (Rotation) Drehbewegungen (Rotation) Drehungen (Rotation) Die allgemeine Bewegung eines Systems von Massepunkten lässt sich immer zerlegen in: und Translation Rotation Drehungen - Rotation Die kinematischen Variablen

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS P. K. RASCHEWSKI RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS 2. unveränderte Auflage mit 32 Abbildungen VERLAG HARRI DEUTSCH INHALTSVERZEICHNIS L Tensoren im dreidimensionalen euklidischen Baum 1. Einstufige

Mehr

Höhere Mathematik für Ingenieure Band II

Höhere Mathematik für Ingenieure Band II Teubner-Ingenieurmathematik Höhere Mathematik für Ingenieure Band II Lineare Algebra Bearbeitet von Klemens Burg, Herbert Haf, Friedrich Wille, Andreas Meister 1. Auflage 2012. Taschenbuch. xvii, 417 S.

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Ferienkurs Theoretische Mechanik Lösungen Hamilton

Ferienkurs Theoretische Mechanik Lösungen Hamilton Ferienkurs Theoretische Mechanik Lösungen Hamilton Max Knötig August 10, 2008 1 Hamiltonfunktion, Energie und Zeitabhängigkeit 1.1 Perle auf rotierendem Draht Ein Teilchen sei auf einem halbkreisförmig

Mehr

Kinetik des Massenpunktes

Kinetik des Massenpunktes Technische Mechanik II Kinetik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Höhere Mathematik für Naturwissenschaftler und Ingenieure

Höhere Mathematik für Naturwissenschaftler und Ingenieure Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-r.de/fakultaeten/nat Fak I/abels/Aktuelles.html Tag der Mathematik am Albrecht-Altdorfer-Gymnasium

Mehr

Mathematische Probleme lösen mit Maple

Mathematische Probleme lösen mit Maple Mathematische Probleme lösen mit Maple Ein Kurzeinstieg Bearbeitet von Thomas Westermann überarbeitet 2008. Buch. XII, 169 S. ISBN 978 3 540 77720 5 Format (B x L): 15,5 x 23,5 cm Weitere Fachgebiete >

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

7. Mathematische Bemerkung

7. Mathematische Bemerkung 7. Mathematische Bemerkung 7.1 Motiv Gegenüber der klassischen Mechanik bedarf die Quantenmechanik einiger neuer mathematischer Werkzeuge, die hier skizziert werden. Das von einem strikten Lokalisierungsprinzip

Mehr

Kantonsschule Ausserschwyz. Mathematik. Kantonsschule Ausserschwyz 83

Kantonsschule Ausserschwyz. Mathematik. Kantonsschule Ausserschwyz 83 Kantonsschule Ausserschwyz Mathematik Kantonsschule Ausserschwyz 83 Bildungsziele Für das Grundlagenfach Die Schülerinnen und Schüler sollen über ein grundlegendes Orientierungs- und Strukturwissen in

Mehr

Analytische Mechanik

Analytische Mechanik Institut für Theoretische Physik Fakultät für Physik Friedrich-Hund-Platz 1 37077 Göttingen Skriptum zur Vorlesung Analytische Mechanik Andreas Honecker Wintersemester 008/09 (Stand: 15. Juli 011) PDF-Fassung

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

ELEMENTAR-MATHEMATIK

ELEMENTAR-MATHEMATIK WILLERS ELEMENTAR-MATHEMATIK Ein Vorkurs zur Höheren Mathematik 13., durchgesehene Auflage von Dr.-Ing. G. Opitz und Dr. phil. H. Wilson Mit 189 Abbildungen VERLAG THEODOR STEINKOPFF DRESDEN 1968 Inhaltsverzeichnis

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Rechenverfahren und Auswertemodelle der Landesvermessung

Rechenverfahren und Auswertemodelle der Landesvermessung Bernhard Heck Rechenverfahren und Auswertemodelle der Landesvermessung Klassische und moderne Methoden Herbert Wichmann Verlag Karlsruhe IX INHALT Seite TEIL I: ALLGEMEINE GRUNDLAGEN 1 Einführung 1 1.1

Mehr

Lehramtstudium Physik für Gymnasien. Modulhandbuch Sommersemester 2009

Lehramtstudium Physik für Gymnasien. Modulhandbuch Sommersemester 2009 Lehramtstudium Physik für Gymnasien Modulhandbuch Sommersemester 2009 Unvollständiger Entwurf, 25.01.2009 Fachsemester 2 SS 2009 Experimentalphysik 2 1 EPL-2 (Lehramt für Gymnasien) 2 Lehrveranstaltungen

Mehr

Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- Westfalen

Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- Westfalen Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- durch die Schülerbücher Lambacher-Schweizer - Analysis Grundkurs Ausgabe Nordrhein- (ISBN 978-3-12-732220-0)

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

Modell der Punktmasse

Modell der Punktmasse Kinematik Die Kinematik (kinema, griech., Bewegung) ist die Lehre von der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Weg (Änderung der Ortskoordinate) s, Geschwindigkeit v und

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

Grundlagen der Physik und Meteorologie Lv.Nr. 20004 WS 2010/11

Grundlagen der Physik und Meteorologie Lv.Nr. 20004 WS 2010/11 Grundlagen der Physik und Meteorologie Lv.Nr. 20004 WS 2010/11 Mittwoch 14:15 16:45 Vorlesung Physik Donnerstag 10:15 11:45 Übung Physik Mittwoch 14:15 17:30 Vorlesung + Übung Physik Donnerstag 10:15 11:45

Mehr

Einführung 17. Teil I Zu den Grundlagen der linearen Algebra 21. Kapitel 1 Schnelleinstieg in die lineare Algebra 23

Einführung 17. Teil I Zu den Grundlagen der linearen Algebra 21. Kapitel 1 Schnelleinstieg in die lineare Algebra 23 Inhaltsverzeichnis Einführung 17 Zu diesem Buch 17 Konventionen in diesem Buch 17 Törichte Annahmen über den Leser 17 Wie dieses Buch aufgebaut ist 18 Teil I: Zu den Grundlagen der linearen Algebra 18

Mehr

Grundlagen der Strömungsmechanik

Grundlagen der Strömungsmechanik Franz Durst Grundlagen der Strömungsmechanik Eine Einführung in die Theorie der Strömungen von Fluiden Mit 349 Abbildungen, davon 8 farbig QA Springer Inhaltsverzeichnis Bedeutung und Entwicklung der Strömungsmechanik

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Inhaltsverzeichnis Einleitung Die Kinematik des Punktes Kinetik des Massenpunktes

Inhaltsverzeichnis Einleitung Die Kinematik des Punktes Kinetik des Massenpunktes Inhaltsverzeichnis 1 Einleitung... 1 1.1 Aufgabenstellungen der Dynamik.... 1 1.2 Einige Meilensteine in der Geschichte der Dynamik... 3 1.3 EinteilungundInhaltedesBuches... 5 1.4 ZieledesBuches... 6 2

Mehr

Wozu brauchen wir theoretische Physik? Ziele der Physik

Wozu brauchen wir theoretische Physik? Ziele der Physik Wozu brauchen wir theoretische Physik? Wolfgang Kinzel Lehrstuhl für theoretische Physik III Universität Würzburg Ziele der Physik Die Physik sucht nach allgemeinen Naturgesetzen. Sie möchte die Natur

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

1 Lagrange sche Gleichung 1. Art

1 Lagrange sche Gleichung 1. Art 1 Lagrange sche Gleichung 1. Art 1.1 Einführung und Beispiel Bewege sich ein Massepunkt auf einer Geraden (G) im Raum, so hat dieser einen Freiheitsgrad, d.h. es müssen 2 Zwangsbedingungen für ihn gelten.

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Vorlesung: Klassische Theoretische Physik I

Vorlesung: Klassische Theoretische Physik I Vorlesung: Klassische Theoretische Physik I M. Zirnbauer Institut für Theoretische Physik Universität zu Köln Sommersemester 2015 Contents 1 Newtonsche Mechanik 3 1.1 Affine und Euklidische Räume.............................

Mehr

MakroÖkonomik und neue MakroÖkonomik

MakroÖkonomik und neue MakroÖkonomik Bernhard Felderer Stefan Homburg MakroÖkonomik und neue MakroÖkonomik Siebte, verbesserte Auflage 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover RRL GO- KMK EPA Mathematik Jahrgang 11 Propädeutischer Grenzwertbegriff Rekursion /Iteration Ableitung Ableitungsfunktion von Ganzrationalen Funktionen bis 4. Grades x 1/(ax+b) x sin(ax+b) Regeln zur Berechnung

Mehr

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014 Mathematik für Kapitel 4-6 Universität Trier Wintersemester 2013 / 2014 Kapitel 4 1. Extremwerte 2. Lokale Optimalpunkte 3. Wendepunkte 2 Kapitel 4.1 EXTREMWERTE 3 Extrempunkte und Extremwerte 4 Strikte

Mehr

Lehrplan 2013: Klassenstufe 11: 2015/16 Klassenstufe 12: 2016/17 Analytische Geometrie und Vektorrechnung

Lehrplan 2013: Klassenstufe 11: 2015/16 Klassenstufe 12: 2016/17 Analytische Geometrie und Vektorrechnung Lehrplan 2013: Klassenstufe 11: 2015/16 Klassenstufe 12: 2016/17 Analytische Geometrie und Vektorrechnung Erfurt, 05.03.2015 Wolfgang Häfner Analytische Geometrie und Vektorrechnung Änderungen im Lehrplan

Mehr

WOLFRAM SCHOMMERS ZEIT UND REALITÄT PHYSIKALISCHE ANSÄTZE - PHILOSOPHISCHE ASPEKTE DIE GRAUE EDITION

WOLFRAM SCHOMMERS ZEIT UND REALITÄT PHYSIKALISCHE ANSÄTZE - PHILOSOPHISCHE ASPEKTE DIE GRAUE EDITION WOLFRAM SCHOMMERS ZEIT UND REALITÄT PHYSIKALISCHE ANSÄTZE - PHILOSOPHISCHE ASPEKTE Y DIE GRAUE EDITION INHALT VORWORT 17 EINLEITENDE BEMERKUNGEN 21 I. ZEIT UND WIRKLICHKEIT, SUBJEKT UND OBJEKT 23 1.1 Wenn

Mehr

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser Hamilton-Mechanik Simon Filser 4.9.09 Inhaltsverzeichnis 1 Einleitung 1 Verallgemeinerter oder kanonischer Impuls 1 3 Hamiltonfunktion und kanonische Gleichungen 4 Die Hamiltonfunktion als Energie und

Mehr

Physik für Ingenieure

Physik für Ingenieure Physik für Ingenieure von Prof. Dr. Ulrich Hahn OldenbourgVerlag München Wien 1 Einführung 1 1.1 Wie wird das Wissen gewonnen? 2 1.1.1 Gültigkeitsbereiche physikalischer Gesetze 4 1.1.2 Prinzipien der

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Newton'schen Axiome mit einer Farbfolie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Newton'schen Axiome mit einer Farbfolie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Die Newton'schen Axiome mit einer Farbfolie Das komplette Material finden Sie hier: Download bei School-Scout.de 14. Die Newton schen

Mehr

Mathematica kompakt. Einführung-Funktionsumfang-Praxisbeispiele von Dipl.-Math.Christian H.Weiß. Oldenbourg Verlag München

Mathematica kompakt. Einführung-Funktionsumfang-Praxisbeispiele von Dipl.-Math.Christian H.Weiß. Oldenbourg Verlag München Mathematica kompakt Einführung-Funktionsumfang-Praxisbeispiele von Dipl.-Math.Christian H.Weiß Oldenbourg Verlag München Inhaltsverzeichnis Vorwort Tabellenverzeichnis VII XVII 1 Einleitung 1 1 Grundlagen

Mehr

Einführung in die Astronomie und Astrophysik I

Einführung in die Astronomie und Astrophysik I Einführung in die Astronomie und Astrophysik I Teil 5 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Themen Einstieg: Was ist Astrophysik? Koordinatensysteme Astronomische Zeitrechnung Sonnensystem

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Analysis für Wirtschaftswissenschaftler und Ingenieure

Analysis für Wirtschaftswissenschaftler und Ingenieure Dieter Hoffmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Analysis für Wirtschaftswissenschaftler und Ingenieure

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Bandl: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 4., neu bearbeitete

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Ein geistiges Rüstzeug für Mathematik

Ein geistiges Rüstzeug für Mathematik Günther Fuchs Ein geistiges Rüstzeug für Mathematik Verlag Dr. Kovac Hamburg 2015 IX 1 nhaltsverzeich n is 1. Was ist Mathematik? 2. Das abstrakte Universum der Mathematik 3 2.1. Das mathematische Universum

Mehr

Gravitation und Krümmung der Raum-Zeit - Teil 1

Gravitation und Krümmung der Raum-Zeit - Teil 1 Gravitation und Krümmung der Raum-Zeit - Teil 1 Gauß hat gezeigt, daß es Möglichkeiten gibt, die Krümmung von Flächen durch inhärente Messungen auf der Fläche selbst zu bestimmen Gauß sches Krümmungsmaß

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Kurze Geschichte der linearen Algebra

Kurze Geschichte der linearen Algebra Kurze Geschichte der linearen Algebra Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 20 Entwicklung Die Historische Entwicklung

Mehr

MATHEMATIK. Allgemeine Bildungsziele. Richtziele. Grundkenntnisse

MATHEMATIK. Allgemeine Bildungsziele. Richtziele. Grundkenntnisse MATHEMATIK Allgemeine Bildungsziele Der Mathematikunterricht vermittelt ein intellektuelles Instrumentarium, das ein vertieftes Verständnis der Mathematik, ihrer Anwendungen und der wissenschaftlichen

Mehr

Der begriffliche Aufbau der theoretischen Physik

Der begriffliche Aufbau der theoretischen Physik Carl Friedrich von Weizsäcker Der begriffliche Aufbau der theoretischen Physik Vorlesung gehalten in Göttingen im Sommer 1948 Herausgegeben von Holger Lyre S. Hirzel Verlag Stuttgart Leipzig VORWORT von

Mehr

Ausgleichsvorgänge in elektro-mechanischen Systemen mit Maple analysieren

Ausgleichsvorgänge in elektro-mechanischen Systemen mit Maple analysieren Rolf Müller Ausgleichsvorgänge in elektro-mechanischen Systemen mit Maple analysieren Grundwissen für Antriebstechnik und Mechatronik Mit 69 Abbildungen, 17 Tabellen sowie zahlreichen Beispielen und Maple-Plots

Mehr

Grundlagen, Vorgehensweisen, Aufgaben, Beispiele

Grundlagen, Vorgehensweisen, Aufgaben, Beispiele Hans Benker - Wirtschaftsmathematik Problemlösungen mit EXCEL Grundlagen, Vorgehensweisen, Aufgaben, Beispiele Mit 138 Abbildungen vieweg TEIL I: EXCEL 1 EXCEL: Einführung 1 1.1 Grundlagen 1 1.1.1 Tabellenkalkulation

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

Starrer Körper: Drehimpuls und Drehmoment

Starrer Körper: Drehimpuls und Drehmoment Starrer Körper: Drehimpuls und Drehmoment Weitere Schreibweise für Rotationsenergie: wobei "Dyade" "Dyadisches Produkt" Def.: "Dyadisches Produkt", liefert bei Skalarmultiplikation mit einem Vektor : und

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Ein konzeptioneller Einblick Von Jan Kaprolat Gliederung Einleitung Übergang SRT -> ART Grundlegende Fragestellungen der ART Kurzer Einblick: Tensoralgebra Einsteinsche Feldgleichungen

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale

Mehr

STUDIENBEREICH MATHEMATIK ANWENDUNGEN DER MATHEMATIK LEHRPLAN DER GYMNASIALSTUDIEN. 1. Stundendotation pro Woche. 2. Bildungsziele. 3.

STUDIENBEREICH MATHEMATIK ANWENDUNGEN DER MATHEMATIK LEHRPLAN DER GYMNASIALSTUDIEN. 1. Stundendotation pro Woche. 2. Bildungsziele. 3. Direction de l'instruction publique, de la culture et du sport Direktion für Erziehung, Kultur und Sport Service de l enseignement secondaire du deuxième degré Amt für Unterricht der Sekundarstufe 2 CANTON

Mehr

Schrödingers Katze -oder- Wo ist der Übergang?

Schrödingers Katze -oder- Wo ist der Übergang? Schrödingers Katze -oder- Wo ist der Übergang? Themen Vergleich Quantenmechanik klassische Mechanik Das Gedankenexperiment Interpretationen des Messprozesses (Kopenhagener Deutung, Viele-Welten-Theorie,

Mehr

Mathematik im Betrieb

Mathematik im Betrieb Heinrich Holland/Doris Holland Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen 7, überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort 1 Mathematische Grundlagen 1.1 Zahlbegriffe 1.2

Mehr

Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik 2.1.1 ÜBERSICHTSRASTER UNTERRICHTSVORHABEN EINFÜHRUNGSPHASE Unterrichtsvorhaben I: Unterrichtsvorhaben II: Beschreibung

Mehr

Inhaltsverzeichnis. Kurz, G�nther Strà mungslehre, Optik, Elektrizit�tslehre, Magnetismus digitalisiert durch: IDS Basel Bern

Inhaltsverzeichnis. Kurz, GÃ?nther Strà mungslehre, Optik, ElektrizitÃ?tslehre, Magnetismus digitalisiert durch: IDS Basel Bern Inhaltsverzeichnis I Strömungslehre 11 1 Ruhende Flüssigkeiten (und Gase) - Hydrostatik 11 1.1 Charakterisierung von Flüssigkeiten 11 1.2 Druck - Definition und abgeleitete 11 1.3 Druckänderungen in ruhenden

Mehr

Georg-August-Universität Göttingen. Modulverzeichnis

Georg-August-Universität Göttingen. Modulverzeichnis Georg-August-Universität Göttingen Modulverzeichnis für den Bachelor-Teilstudiengang "Mathematik" (zu Anlage II.28 der Prüfungs- und Studienordnung für den Zwei-Fächer-Bachelor-Studiengang) (Amtliche Mitteilungen

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr