Klassenkartei Deutsch

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Klassenkartei Deutsch"

Transkript

1 Klssenkrtei Deutsch Kl. Titel Frge Antwort 05-d-D-12 Adjektiv Ws ist ein Adjektiv? - ein Wie- oder Eigenschftswort - eschreit, wie Nomen sind - wird klein geschrieen - knn gesteigert werden, z. B.: - groß, größer, m größten - gut, esser, m esten -> Komprtiv, -> Superltiv Adver Ws ist ein Adver? - ein Umstndswort - eschreit die Umstände, wie etws geschieht - z.b.: + hier, d, dort + heute, morgen, ld + gern, vielleicht, schnell + drum, deshl Artikel Ws ist ein Artikel? - ein Geschlechtswort, Begleiter - egleitet Nomen - zwei Arten: (1) estimmter Artikel: der, die, ds (2) unestimmter Artikel: ein, eine, ein Berichtigung, Adjektive Wie erichtige ich Adjektive? groß größer m größten Adjektiv Berichtigung, ndere Wortrten Wie erichtige ich ndere Wortrten? gr nicht gr nicht wir gr nicht zusmmen geschrieen Wortrt Dienstg, 11. Juni 2013 SEITE 1 VON 8

2 Berichtigung, Nomen Wie erichtige ich Nomen? Hus, ds des Huses die Häuser Nomen Berichtigung, Veren Wie erichtige ich Veren? lufen lief gelufen Ver Bildsprche, Personifiktion Ws ist und wie funktioniert eine Personifiktion? Es werden Dinge und Erscheinungen zu einer Person gemcht, um so lles leendiger und nschulicher drzustellen. Z.B.: + Herst ls Mler mit + Eigenschften wie lustig, fleißig, froh und + Hndlungen wie mlen, klecksen usw. Infintiv Ws ist ein Infinitiv? -> Ver Der Infinitiv ist die Grundform eines Vers zw. Tätigkeitswortes, z.b.: - zu spielen - zu lufen - zu sein - zu hen Interjektion Ws ist eine Interjektion? - ein Ausrufewort - z. B.: h, oh, u, pfui, igittt, hllo, ch Komprtiv Ws ist ein Komprtiv? - Steigerungsform eines (->) Adjektivs - z. B.: größer, esser, schlechter -> Superltiv Konjunktion Ws ist eine Konjunktion? - ein Bindewort - zwei Arten: (1) neenordnend: und, oder, sowohl - ls uch, sowie, denn, dnn (2) unterordnend: ls, wenn, weil, dmit, so dss, owohl Dienstg, 11. Juni 2013 SEITE 2 VON 8

3 Lyrik, Reim, klingend Ws ist ein klingender Reim? (-> Lyrik, Reim, stumpf, Schüttelreim) Wenn sich die letzen eiden Silen (letzte unetont, vorletzte etont) uf die letzten eiden Silen des Folgereims reimen, dnn nennt mn ds einen klingenden oder weilichen Reim. z.b.: Hose, Dose, lose, Moose Lyrik, Reim, Schüttelreim Ws ist ein Schüttelreim? (-> Lyrik, Reim, stumpf, klingend) Bei einem Schüttelreim git es m Ende eines Verses zwei Reime. Dei werden zusätzlich die sich nicht gleichenden Anlute der Reime üerkreuz getuscht. z.b.: Viereiner - Bier feiner Wttenscheid - Schtten weit Lyrik, Reim, stumpf Ws ist ein stumpfer Reim? (-> Lyrik, Reim, klingend, Schüttlereim) Wenn sich nur die letzte etonte Sile eines Verses uf die des folgenden Verses reimt, dnn nennt mn ds einen stumpfen oder uch männlichen Reim. z.b.: Hus, Mus, Lus, Sus, Brus, Lyrik, Reim, unrein Ws ist ein unreiner Reim? Ein Reim, der sich nicht völlig richtig reimt, ist unrein. Z.B.: + Krch - nch + noch - hoch Lyrik, Reimschem, Kreuzreim Ws ist ein Kreuzreim? (-> Lyrik, Reimschem, Prreim und Reim, umrmender) Wenn sich der Vers eines Gedichtes immer erst uf den üernächsten Vers reimt, spricht mn von einem Kreuzreim. Lyrik, Reimschem, Preim Ws ist ein Prreim? (Lyrik, Reimschem, Kreuzreim und Reim, umrmende) Wenn sich zwei ufeinnderfolgende Verse eines Gedichtes reimen, spricht mn von einem Prreim. Dienstg, 11. Juni 2013 SEITE 3 VON 8

4 Lyrik, Reimschem, Reim, umrmender Ws ist ein umrmender Reim? (-> Lyrik, Reimschem, Prreim und Kreuzreim) Wenn sich in einer Strophe eines Gedichtes der Vers vor und nch einem Prreim reimt, spricht mn von einem umrmenden Reim. Lyrik, Strophe Ws ist eine Strophe? (-> Lyrik, Vers) Die Strophe eines Gedichtes ht in der Regel mehrere Verse und ersetzt im Gedicht einen Astz. Häufig hen die Strophen eines Gedichtes eine gleiche Anzhl von Versen. Lyrik, Versmß, Jmus Ws ist ein Jmus? Ein Jmus ist ein Versmß, d.h. ein wiederkehrendes Betonungsmuster eines Verses. - Beim Jmus ist immer die erste Sile eines Verses unetont (Auftkt). Z.B.: Es STAND n SEI-nes SCHLOSs-es BRÜS-tung + uftktiger Vierheer + steigendes Versmß + eher fröhlich Lyrik, Versmß, Trochäus? Ws ist ein Trochäus? Ein Trochäus ist ein Versmß, d.h. ein wiederkehrendes Betonungsmuster eines Verses. Beim Trochäus ist immer die erste Sile eines Verses etont. Z.B.: HIN-ter EI-nes BAU-mes RIN-de + uftktloser Vierheer + fllendes Versmß + eher trurig Märchen, Merkmle Welche Merkmle hen Märchen? + usgedchte Geschichten + Anfng: "Es wr einml..." + Ende: "... leen sie noch heute." dzwischen: * Ds Gute üerwindet ds Böse. * 3 Anläufe, sich steigernd + Es kommen vor: * Zuerwesen und -gegenstände * sprechende Tiere Dienstg, 11. Juni 2013 SEITE 4 VON 8

5 Nomen Ws ist ein Nomen? - ein Nmenwort - egleitet von der, die, ds - wird groß geschrieen - zwei Arten (1) konkret: Hus, Mus, Klus (2) strkt: Treue, Truer, Schmerz -> Artikel Numerle Ws ist ein Numerl? - ein Zhlwort - zwei Arten: (1) estimmt: eins, zwei, drei... (2) unestimmt: lles, nichts, wenig, viel, mnches, etws Präposition Ws ist eine Präsposition? - ein Verhältniswort - z.b: in, im, uf, unter, üer, zwischen, entlng, hinuf, diesseits, jenseits Pronomen, personl Ws ist ein Personlpronomen? - ein persönliches Fürwort - z.b.: + ich, du, er, sie, es + wir, ihr, sie Pronomen, possessiv Ws ist ein Possessivpronomen? - ein esitznzeigendes Fürwort - z.b.: + mein, dein, sein + unser, euer, unser Pronomen, reflexiv Ws ist ein Reflexivpronomen? - ein rückezügliches Fürwort - z.b.: + mich, dich, sich + uns, euch, uns Stz Ws ist ein Stz? eine Gruppe von Worten + die zusmmen einen Sinn ergit UND + die mindestens ein Prädikt (Tt) und ein Sujekt (Täter) ht. + Weitere Stzglieder können, müssen er nicht sein. (-> Stzinspektor) Dienstg, 11. Juni 2013 SEITE 5 VON 8

6 Stz, Huptstz Ws ist ein Huptstz? + Ein Huptstz ist ein Stz. (->Stz) + Im Huptstz steht ds Prädikt nicht n letzter Stelle (sondern weiter vorne n zweiter Stzgliedstelle). + Der Huptstz knn lleine stehen. Stz, Neenstz Ws ist ein Neenstz? + Ein Neenstz ist ein Stz (-> Stz) + Im Neenstz steht ds Prädikt n letzter Stelle. + Ein Neenstz knn nicht lleine stehen. Stzinspektor Wo ist dein Stzinspektor? -> Stz + Dein Stzinspektor ist lminiert in deinem großen Krteiksten. + Er leitet dich n, im Stz die Stzglieder heruszufinden: - Tt (Prädikt) - Welche Tätigkeit? - Täter (Sujekt) - Wer o. ws? - Opfer (Akk.-Ojekt) - Wen o. ws? - Dtiv-Ojekt - Wem oder ws? - Adverile Bestimmungen: * Ort - Wo oder wohin? * Art und Weise - Wie? * Grund - Wrum? * Zeit - Wnn? * Zweck - Wozu? Superltiv Ws ist ein Superltiv? - Steigerungsform eines (->) Adjektivs - z.b.: m größten, m esten, m schlechtesten, m höchsten Tierlexikonrtikel, Gliederung Wie wird ein Tierlexikonrtikel gegliedert? 1. Nme der Tierrt 2. hervorstechende Merkmle/erster Eindruck 3. mögliche Unterrten 4. Aussehen 5. Leensrum 6. Nhrung 7. Besonderheiten 8. Leenserwrtung Dienstg, 11. Juni 2013 SEITE 6 VON 8

7 Tierlexikonrtikel, Sprche Welche sprchlichen Mittel verwende ich in einem Tierlexikonrtikel, der ndere gut und genu üer eine Tierrt informieren will. * Fchusdrücke enutzen z.b.: Hufe, Kiemen, Krllen usw. * im Präsens (Gegenwrt) schreien * pssende Adjektive verwenden * Vergleiche verwenden, mm Unterschiede und Gemeinsmkeiten zu verdeutlichen z.b.: "groß wie ein Schäferhund", er uch: "weinrot" oder "kreisrund" * uf persönliche Gefühle verzichten z.b.: "süßes Wesen" Tierlexikonrtikel, Ziel Ws sind die Ziele eines Tierlexikonrtikels * Andere gut und genu üer eine Tierrt informieren * Artikel soll leicht und gern lesr sein Ver Ws ist ein Ver? - ein Tätigkeitswort - zwei Arten: (1) Vollver (normles Ver): z.b.: lesen, lufen, lchen (2) Hilfsveren: z.b.: sein, werden, hen Wortrten Ws sind Wortrten? Nenne Beispiele! Worte können unterschiedlichen Wortrten zugeordnet werden. Wortrten sind: (->) Veren, Nomen, Adjektive, Artikel, Pronomen, Präpositionen, Adverien, Konjunktionen, Interjektionen, Numerle, Prtikel und Prtizip -> Stzglieder Zeichensetzung, Komm - Infinitivgruppe Ws ist eine Infinitivgruppe und wie werden diese in der Zeichensetzung ehndelt? -> Infinitiv Infinitivgruppen in Sätzen sind mit Neensätzen zu vergleichen: + Sie hen kein Sujekt (Täter) + Zu Ihnen können er lle nderen Stzglieder gehören (-> Stzinspektor) + Infinitivgruppen werden wie Neensätze im Stz durch Komm getrennt. + z.b.: Lnge hoffte ich, lleine nch Huse zu gelngen. Dienstg, 11. Juni 2013 SEITE 7 VON 8

8 Zeichensetzung, Komm - Neenstz Wie werden Neensätze im Stz in der Zeichensetzung ehndelt? + Neensätze werden in Sätzen vom Huptstz durch Komm getrennt. + Neensätze können in Sätzen vor und nch dem Huptstz stehen. "D er mich mg, ist er ein Freund." "Er ist ein Freund, d er mich mg." + Neensätze können in Sätzen uch mitten im Huptstz stehen. "Er ist, d er mich mg, ein Freund." Zeichensetzung, Punkt Wnn setzt mn einen Punkt? Am Ende eines Huptstzes, der unter Umständen uch Neensätze enthält, steht immer ein Punkt. Dienstg, 11. Juni 2013 SEITE 8 VON 8

UNTERRICHTSPLAN LEKTION 22

UNTERRICHTSPLAN LEKTION 22 Lektion 22 Am esten sind seine Schuhe! UNTERRICHTSPLAN LEKTION 22 1 Wohin geht er wohl? Gruppenreit, Die Bücher sind geschlossen. In Kleingruppen smmeln die TN Feste und Prtys, zu denen mn esondere Kleidung

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Klassenkartei Deutsch

Klassenkartei Deutsch Klassenkartei Deutsch Kl. Titel Frage Antwort 06-d-D-13 Adjektiv Was ist ein Adjektiv? - ein Wie- oder Eigenschaftswort - beschreibt, wie Nomen sind - wird klein geschrieben - kann gesteigert werden, z.

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

-Nomen -Artikel -Verben -Interjektionen -Numerale -Präpositionen -Pronomen -Adverbien -Konjunktionen -Adjektive -Die 4 Fälle.

-Nomen -Artikel -Verben -Interjektionen -Numerale -Präpositionen -Pronomen -Adverbien -Konjunktionen -Adjektive -Die 4 Fälle. Die Wortarten -Nomen -Artikel -Verben -Interjektionen -Numerale -Präpositionen -Pronomen -Adverbien -Konjunktionen -Adjektive -Die 4 Fälle Gliederung Nomen Nomen bezeichnen Dinge, Lebewesen, Pflanzen,

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

Eufic Guide Enfant ALL 14/12/04 15:44 Page 1 10 Tipps für Kids Spiel mit uns! Zur gesundenernährung

Eufic Guide Enfant ALL 14/12/04 15:44 Page 1 10 Tipps für Kids Spiel mit uns! Zur gesundenernährung Kids Ernährung für Tipps 10 Spiel mit uns! gesunden Zur Weißt du noch, wie du Rd fhren lerntest? Ds Wichtigste dei wr zu lernen ds Gleichgewicht zu hlten. Sold es gefunden wr, konntest du die Pedle gleichmäßig

Mehr

Spiele und logische Komplexitätsklassen

Spiele und logische Komplexitätsklassen Spiele und logische Komplexitätsklssen Mrtin Horsch 26. Jnur 2006 Inhlt des Seminrvortrges Ehrenfeucht-Frïssé-Spiel mit k Mrken Formeln mit k Vrilen und logische Komplexitätsklssen k-vrileneigenschft logischer

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

im Beruf Gespräche führen: Über Gepflogenheiten (Versammlungen, Feste und Geschenke) am Arbeitsplatz sprechen pressmaster/fotolia.

im Beruf Gespräche führen: Über Gepflogenheiten (Versammlungen, Feste und Geschenke) am Arbeitsplatz sprechen pressmaster/fotolia. 1 Sehen Sie die Fotos n und ergänzen Sie: Welches Wort psst? c pressmster/fotoli.com dp/c Jochen Lüke d e der Betriesusflug die Besprechung die Betriesversmmlung die Aschiedsfeier (von den Auszuildenden)

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

Therapiebegleiter Kopfschmerztagebuch

Therapiebegleiter Kopfschmerztagebuch Vornme & Nchnme Therpieegleiter Kopfschmerztgeuch Liee Ptientin, lieer Ptient, Wie Können sie helfen? Bitte führen Sie regelmäßig euch m esten täglich. Trgen Sie in die Splten die jeweiligen Informtionen

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

FREUNDE. 1 Bilderrätsel. 2 Ein-Minuten-Statement AB 9 / Ü 2

FREUNDE. 1 Bilderrätsel. 2 Ein-Minuten-Statement AB 9 / Ü 2 FREUNDE Bilderrätsel Entwerfen Sie uf einem Bltt Ppier ein Bilderrätsel zu Ihrer Person. Schreien Sie Ihren Nmen druf und zeichnen Sie drei Motive zu Ihrer Person, die für Sie wichtig sind, z. B. zu Ihrer

Mehr

Es schneit sehr stark. Deshalb haben alle Züge Verspätung.

Es schneit sehr stark. Deshalb haben alle Züge Verspätung. 11 Grmmtik 1 Sehen Sie ds Bild n und ergänzen Sie. Der Briefträger geht... den Gehweg... entlng. Wolfi fährt mit seinem Fhrrd... Briefträger... c Die Ktze läuft...... Strße. d Fru Löl geht...... E Reinigung.

Mehr

Prüfungsteil Mündliche Kommunikation (MK)

Prüfungsteil Mündliche Kommunikation (MK) Prüfungsteil Mündliche Kommuniktion (MK) Die mündliche Prüfung besteht us zwei Teilen. Im ersten Teil sollst du ein Gespräch führen, im zweiten Teil hältst du einen Vortrg und musst dnch Frgen dzu bentworten.

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Vorkurs Mthemtik Fchhochschule Frnkfurt, Fchereich Fchhochschule Frnkfurt m Min Fchereich Informtik und Ingenieurwissenschften Vorkurs Mthemtik Sie finden lle Mterilien sowie ergänzende Informtionen unter

Mehr

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mrco Bettner, Erik Dinges Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Downloduszug us dem Originltitel: Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Dieser Downlod ist

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Glück im Alltag. 1 Sehen Sie die Fotos an. 2 Sehen Sie die Fotos an und hören Sie. acht 8 LEKTION 1 FOLGE 1: SCHUTZENGEL

Glück im Alltag. 1 Sehen Sie die Fotos an. 2 Sehen Sie die Fotos an und hören Sie. acht 8 LEKTION 1 FOLGE 1: SCHUTZENGEL 1 Glück im Alltg 1 2 5 6 FOLGE 1: SCHUTZENGEL CD 1 2-9 1 Sehen Sie die Fotos n. Foto 1: Ws ist ein Homeservice? Dort knn mn estellen. Die kommen und Foto 2: Wrum ht Nsseer wohl einen Schutzengel im Auto?

Mehr

Hans Walser. Geometrische Spiele. 1 Vier gleiche rechtwinklige Dreiecke. 1.1 Allgemeiner Fall

Hans Walser. Geometrische Spiele. 1 Vier gleiche rechtwinklige Dreiecke. 1.1 Allgemeiner Fall Hns Wlser Geometrische Spiele 1 Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fll Wir strten mit einem elieigen rechtwinkligen Dreieck in der ülichen Beschriftung. A c B Strtdreieck C Nun versuchen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grammatik. Das komplette Material finden Sie hier: School-Scout.

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grammatik. Das komplette Material finden Sie hier: School-Scout. Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grammatik Das komplette Material finden Sie hier: School-Scout.de kurz & bündig Band 6 Hartwig Lödige Grammatik INHALT Inhalt Zur

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3 Mthemtik fu r Ingenieure (Mschinenu und Sicherheitstechnik). Semester Apl. Prof. Dr. G. Herort Dr. T. Pwlschyk SoSe6 Areitsheft Bltt Hinweis: Besuchen Sie die Vorlesung und vervollst ndigen Sie Areitsheft.

Mehr

16 A. Was für eine Idee! A1 Verrückte Rekorde. a Ordne die Wortgruppen den Fotos zu. Welche Wörter kannst du auf den Fotos zeigen?

16 A. Was für eine Idee! A1 Verrückte Rekorde. a Ordne die Wortgruppen den Fotos zu. Welche Wörter kannst du auf den Fotos zeigen? 16 A Ws für eine Idee! A1 Verrückte Rekorde Ordne die Wortgruppen den Fotos zu. Welche Wörter knnst du uf den Fotos zeigen? 1 prktisch, Hre, Friseur 2 singen, Sänger, Rockkonzert 3 wiegen, Tonne (= 1000

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

2. Klausur in K2 am

2. Klausur in K2 am Nme: Punkte: Note: Ø: Profilfch Physik Azüge für Drstellung: Rundung:. Klusur in K m.. 04 Achte uf die Drstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Aufge ) (8 Punkte) In drei

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

9 Das Riemannsche Integral

9 Das Riemannsche Integral 1 9 Ds Riemnnsche Integrl 9.1 Definition und Beispiele Sei I = [, ] R mit

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

Lesen. Fit in Deutsch.2. circa 30 Minuten. Dieser Test hat drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel aus der Zeitung.

Lesen. Fit in Deutsch.2. circa 30 Minuten. Dieser Test hat drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel aus der Zeitung. Fit in Deutsh.2 Üungsstz 01 Kndidtenlätter ir 30 Minuten Dieser Test ht drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel us der Zeitung. Zu jedem Text git es Aufgen. Shreie m

Mehr

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA Ws isher geschh NFA A = (X, Q, δ, I, F ) vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimlutomt: minimler vollständiger DFA Für jede Sprche L X sind die folgenden Aussgen

Mehr

Wiederholungsaufgaben zum Grundwissenkatalog Mathematik der 7. Jahrgangsstufe

Wiederholungsaufgaben zum Grundwissenkatalog Mathematik der 7. Jahrgangsstufe Gymnsium Stein Wiederholungsufgen zum Grundwissenktlog Mthemtik der. Jhrgngsstufe ) ) Wie viele Symmetriechsen hen jeweils die folgenden Figuren? ) Welche der Figuren sind punktsymmetrisch? ❶ ❷ ❸ ❹ ❺ ❻

Mehr

KAPITEL 12 ZEIT ZM FEIERN

KAPITEL 12 ZEIT ZM FEIERN 39 KAPITEL 12 ZEIT ZM FEIERN 1. Hör zu und lies mit. (T. S. 45) Wer mcht ws? Schrei Tess, Rert, Juli der Luks vr den Stz. 1 öffnet die Tür. 2 ruft Rert, denn Juli und Luks sind gekmmen. 3 sgt, dss es ei

Mehr

1 Sehen Sie sich das Bewerbungsgespräch 1 erst einmal ohne Ton an.

1 Sehen Sie sich das Bewerbungsgespräch 1 erst einmal ohne Ton an. Lektion 12 Bewerungsgespräch Lösungen Areitsltt 1: Interkulturelle Beochtung 1 Sehen Sie sich ds Bewerungsgespräch 1 erst einml ohne Ton n. 2 Sehen Sie sich nun den ersten Aschnitt (00:00 00:15) des Films

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Tagesablauf Arbeit Freizeit

Tagesablauf Arbeit Freizeit Tgesluf Areit Freizeit Am Morgen Ü 1 Lesen Sie A 1. Ordnen Sie Frgen und Antworten zu. 1. Steht Sr B. gern uf? A 5 oder 6 Minuten. 2. Wnn fährt die U-Bhn? B Nein, sie leit gerne noh einen Moment liegen.

Mehr

SATZGLIEDER UND WORTARTEN

SATZGLIEDER UND WORTARTEN SATZGLIEDER UND WORTARTEN 1. SATZGLIEDER Was ist ein Satzglied? Ein Satzglied ist ein Bestandteil eines Satzes, welches nur als ganzes verschoben werden kann. Beispiel: Hans schreibt einen Brief an den

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Lösungsskizze zu Übungsblatt Nr. 13

Lösungsskizze zu Übungsblatt Nr. 13 Technische Universität Dortmund Lehrstuhl Informtik VI Prof Dr Jens Teuner Pflichtmodul Informtionssysteme (SS 2014) Prof Dr Jens Teuner Leitung der Üungen: Mrcel Preuß, Sestin Breß, Mrtin Schwitll, Krolin

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Wortarten Merkblatt. Veränderbare Wortarten Unveränderbare Wortarten

Wortarten Merkblatt. Veränderbare Wortarten Unveränderbare Wortarten Wortarten Merkblatt Veränderbare Wortarten Deklinierbar (4 Fälle) Konjugierbar (Zeiten) Unveränderbare Wortarten Nomen Konjunktionen (und, weil,...) Artikel Verben Adverbien (heute, dort,...) Adjektive

Mehr

2 Kinobesuch GRAMMATIK. perfekt. Im September LEICHT. wann die Vorstellung beginnt. Schreiben Sie Sätze! Beginnen Sie mit den grün markierten Wörtern!

2 Kinobesuch GRAMMATIK. perfekt. Im September LEICHT. wann die Vorstellung beginnt. Schreiben Sie Sätze! Beginnen Sie mit den grün markierten Wörtern! DEUTSCH GRAMMATIK VERBPOSITION S. 0 Im Septemer LEICHT Shreien Sie Sätze! Beginnen Sie mit den grün mrkierten Wörtern! der Herst / m. Septemer / eginnt ds Oktoerfest / in Münhen / findet sttt die Österreiher

Mehr

Lösungsskizze zu Übungsblatt Nr. 13

Lösungsskizze zu Übungsblatt Nr. 13 Technische Universität Dortmund Lehrstuhl Informtik VI Prof Dr Jens Teuner Pflichtmodul Informtionssysteme (SS 2013) Prof Dr Jens Teuner Leitung der Üungen: Geoffry Bonnin, Sven Kuisch, Moritz Mrtens,

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

5 Gleichungen (1. Grades)

5 Gleichungen (1. Grades) Mthemtik PM Gleichungen (. Grdes) Gleichungen (. Grdes). Einführung Betrchtet mn und (, Q) und vergleicht sie miteinnder, so git es Möglichkeiten:. > ist grösser ls. = ist gleich gross wie. < ist kleiner

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Reinigung 146. Reinigen des Hindernissensors. Reinigung der Projektoroberfläche. Reinigen des Projektionsfensters. Warnung. Warnung.

Reinigung 146. Reinigen des Hindernissensors. Reinigung der Projektoroberfläche. Reinigen des Projektionsfensters. Warnung. Warnung. Reinigung 146 Bei Verschmutzung oder Bildverschlechterung muss der Projektor gereinigt werden. Schlten Sie den Projektor vor der Reinigung us. Reinigung der Projektoroberfläche Reinigen Sie die Projektoroberfläche

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Lektion 9: Kein Problem?!

Lektion 9: Kein Problem?! Lektion : Kein Prolem?! Lernziele Die Fortsetzung einer Geschichte schreien Einen Text zusmmenfssen Rtschläge geen und druf regieren Plusqumperfekt Indirekte Rede (Gegenwrt) S.103 Einstiegsseite 1. Bitte

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

SPRACHFERIEN KÜNZELSAU 2008

SPRACHFERIEN KÜNZELSAU 2008 SPRACHFERIEN KÜNZELSAU 2008 (Mittelstufe) CODENUMMER: I. Lesen Sie den Text. Entsheiden Sie, welhe der Antworten ( ) psst. Es git jeweils nur eine rihtige Lösung. GEMEINSAM FÚR SPRACHE UND KULTUR Ashenputtel,

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit bietet, ihre statistischen Meldungen über das Internet auszufüllen und einzureichen.

edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit bietet, ihre statistischen Meldungen über das Internet auszufüllen und einzureichen. Mnuell edatenq Fremdenverkehrs- und Gstgeweresttistik Einleitung edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit ietet, ihre sttistischen Meldungen üer ds Internet uszufüllen und einzureichen.

Mehr

17 Doppelbündel-Rekonstruktion mit Semitendinosussehne

17 Doppelbündel-Rekonstruktion mit Semitendinosussehne Kpitel 17 143 17 Doppelündel-Rekonstruktion mit Semitendinosussehne Wolf Petersen 17.1 Einleitung Ds vordere Kreuznd (VKB) esteht us 2 funktionellen Bündeln: einem nteromedilen (AM) und einem posterolterlen

Mehr

Eine Lerneinheit. über. regelmäßige Vielecke. und

Eine Lerneinheit. über. regelmäßige Vielecke. und BLK-Modellversuch SINUS Rheinlnd-Pflz Netzwerkschule Cusnus-Gymnsium Wittlich Fchbereich Mthemtik Kurfürstenstrsse 14 54516 Wittlich Eine Lerneinheit über regelmäßige Vielecke C D C A B E A B A B C D und

Mehr

Sehen Sie das Bild an. Welche Medien benutzt die junge Frau im Zug? Was kann sie damit alles machen?

Sehen Sie das Bild an. Welche Medien benutzt die junge Frau im Zug? Was kann sie damit alles machen? medien 1 Mediennutzung AB 4 / U 2 Sehen Sie ds Bild n. Welche Medien benutzt die junge Fru im Zug? Ws knn sie dmit lles mchen? b Welche Medien benutzte mn vor circ 20 Jhren für diese Aktivitäten? Smmeln

Mehr

Rock? Passt der. Personen beschreiben

Rock? Passt der. Personen beschreiben 10 Psst der Rok? Personen eshreien Denken Sie n drei Personen. Ws ist für die Personen typish? Mhen Sie Notizen. Ws gefällt Ihnen ( )? Ws finden Sie niht so gut ( )? Wie sieht die Person us? jung / lt

Mehr

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003 Personl und Finnzen der öffentlich estimmten Fonds, Einrichtungen, Betriee und Unternehmen (FEU) in privter Rechtsform im Jhr 003 Dipl.-Volkswirt Peter Emmerich A Mitte der 980er-Jhre ist eine Zunhme von

Mehr

Hören Sie die Durchsagen 1 4 der Bahn und ordnen Sie sie den jeweiligen Gründen zu. Hinweis auf Zugausstattung Übersehen einer Haltestelle

Hören Sie die Durchsagen 1 4 der Bahn und ordnen Sie sie den jeweiligen Gründen zu. Hinweis auf Zugausstattung Übersehen einer Haltestelle IM TOURISMUS 1 Umgngsformen Welche Eigenschften rucht jemnd, der eruflich mit Reisenden oder Touristen zu tun ht? Unterhlten Sie sich in Gruppen. Auf jeden Fll muss mn immer freundlich zu den Kunden sein!

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Grenzwerte von Funktionen

Grenzwerte von Funktionen Grenzwert und Stetigkeit von Funktionen Methodische Bemerkungen H Hinweise und didktisch-methodische Anmerkungen zum Einstz der Areitslätter und Folien für den Themenkreis Grenzwert und Stetigkeit von

Mehr

t ) - auch Zerfallsrate genannt - ist

t ) - auch Zerfallsrate genannt - ist Differentilgleichungen - Ausgewählte Proleme us der Phsik Beisiel: Rdioktiver Zerfll Eine gnze Reihe hsiklischer Erscheinungen lässt sich unter dem Stichwort Zerfll ngeregter Zustände einordnen. Ein Beisiel

Mehr

Stichwortverzeichnis. Anhang. Bedingungssatz siehe Konditionalsatz Befehlsform

Stichwortverzeichnis.  Anhang. Bedingungssatz siehe Konditionalsatz Befehlsform Anhang 130 A Adjektiv 68 73, 112 Bildung aus anderen Wörtern 69 mit Genitiv 63 Übersicht Deklination 108 109 Adverb 74 77, 112 Steigerung 76 Stellung 77 Typen (lokal, temporal, kausal, modal) 75 adverbiale

Mehr

Werben auf askenrico

Werben auf askenrico Weren uf skenrico skenrico Ihr Online-Reiseführer für Mitteleurop Unser Online-Reiseführer ht eine rsnte Entwicklung zu verzeichnen. Gegründet Ende 2009, zählt er mit üer 10.000 montlichen Besuchern Mitte

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

+++ Viel Spaß 2+++ Viel Spaß+++ Viel Spaß+++ Viel Spaß+++ Viel Spaß+++ Viel Spaß +++ Viel Spaß+++ Viel Spaß+++ Viel Spaß+++ Viel

+++ Viel Spaß 2+++ Viel Spaß+++ Viel Spaß+++ Viel Spaß+++ Viel Spaß+++ Viel Spaß +++ Viel Spaß+++ Viel Spaß+++ Viel Spaß+++ Viel +++ Viel Spß +++ Viel Spß +++ Viel Spß +++ Viel Spß +++ Viel Spß +++ Viel Spß +++ Viel Spß +++ Viel Spß +++ Viel Spß +++ Viel 2Viel Spß 1.12 Sie mchen mit einer Reisegruppe eine Tour durch Deutschlnd,

Mehr

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013)

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013) Berlin, 17.07.2013 Nme:... Mtr.-Nr.:... Klusur TheGI 2 Automten und Komplexität (Niedermeier/Hrtung/Nichterlein, Sommersemester 2013) 1 2 3 4 5 6 7 8 Σ Bereitungszeit: mx. Punktezhl: 60 min. 60 Punkte

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2003/04 ILKD Prof. Dr. D. Wgner 14. April 2004 2. Klusur zur Vorlesung Informtik III Wintersemester 2003/2004 Lösung! Bechten Sie: Bringen

Mehr

START DEUTSCH 1. Übungssatz 02. Goethe-Institut 2008. ISBN 3-936753-31-8 Übungsheft ISBN 3-936753-32-6 Tonkassette ISBN 3-936753-33-4 CD

START DEUTSCH 1. Übungssatz 02. Goethe-Institut 2008. ISBN 3-936753-31-8 Übungsheft ISBN 3-936753-32-6 Tonkassette ISBN 3-936753-33-4 CD in puncto Bonn 04_08_08 SD1_Ü02_04 START DEUTSCH 1 Goethe-Institut 2008 ISBN 3-936753-31-8 Üungsheft ISBN 3-936753-32-6 Tonkssette ISBN 3-936753-33-4 CD Inhlt Vorwort 3 Kndidtenlätter Hören 5 Lesen, Schreien

Mehr

Franz Binder. Vorlesung im 2006W

Franz Binder. Vorlesung im 2006W Formle Reguläre und Formle Institut für Alger Johnnes Kepler Universität Linz Vorlesung im 2006W http://www.lger.uni-linz.c.t/students/win/ml Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm δ: Σ (Q

Mehr

1 Aktivität 1 Sehen ohne Ton (Track 1 bis Und eine Schokolade. )

1 Aktivität 1 Sehen ohne Ton (Track 1 bis Und eine Schokolade. ) Shritte 1/2 interntionl Hinweise für die Kursleiter Film 3:»Die Josuhe«Mteril zu Film 3 Die Josuhe : Film 3,. 05:00 Min. Zustzmteril: Mein Beruf,. 01:30 Min., 5 kurze Sttements zum Them 5 Areitslätter

Mehr

Hinweise für den schulischen Umgang mit lese-/rechtschreibschwachen Kindern speziell in der Sekundarstufe I

Hinweise für den schulischen Umgang mit lese-/rechtschreibschwachen Kindern speziell in der Sekundarstufe I Hilfe, Legsthenie Hinweise für den schulischen Umgng mit lese-/rechtschreischwchen Kindern speziell in der Sekundrstufe I 2 Brigitt Amnn, Schulpsychologie Bludenz Annelies Fliri, Lehrerin für spezifische

Mehr

13 Rekonfigurierende binäre Suchbäume

13 Rekonfigurierende binäre Suchbäume 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf.

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

Schritte international im Beruf

Schritte international im Beruf 1 Ws mchen die Leute uf dem Foto? Kreuzen Sie n. Die Leute sind ei der Berufsertung. mchen zusmmen ein Seminr. hen gerde Puse. pnthermedi / Werner H. Wer sind die Leute? Ergänzen Sie. die Referentin /

Mehr

Grundbegriffe der Informatik Aufgabenblatt 6

Grundbegriffe der Informatik Aufgabenblatt 6 Mtr.nr.: Nchnme: Vornme: Grundbegriffe der Informtik Aufgbenbltt 6 Tutorium: Nr. Nme des Tutors: Ausgbe: 2. Dezember 2015 Abgbe: 11. Dezember 2015, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Gebäude

Mehr

Vergleichsarbeiten 2010 3. Jahrgangsstufe (VERA-3) Deutsch TESTHEFT I Lesen

Vergleichsarbeiten 2010 3. Jahrgangsstufe (VERA-3) Deutsch TESTHEFT I Lesen Vergleichsrbeiten. Jhrgngsstufe (VERA-) eutsch TESTHEFT I Lesen ANLEITUNG In diesem Test wirst du einige Leseufgben berbeiten. Es gibt verschiedene Arten von Aufgben. Für einige Frgen werden dir mehrere

Mehr

Übungssatz 01 FIT IN DEUTSCH 2. Kandidatenblätter/Prüferblätter ISBN: 3-938744-79-0. FIT2_ÜS01_Kandidaten-/Prueferblaetter_Juli_2005

Übungssatz 01 FIT IN DEUTSCH 2. Kandidatenblätter/Prüferblätter ISBN: 3-938744-79-0. FIT2_ÜS01_Kandidaten-/Prueferblaetter_Juli_2005 KASTNER AG ds medienhus FIT2_ÜS01_Kndidten-/Prueferletter_Juli_2005 FIT IN DEUTSCH 2 Kndidtenlätter/Prüferlätter ISBN: 3-938744-79-0 Inhlt Vorwort 3 Kndidtenlätter Hören 5 Lesen 13 Shreien 21 Sprehen 25

Mehr