7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen

Größe: px
Ab Seite anzeigen:

Download "7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen"

Transkript

1 7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 1

2 OJM 7. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und grammatikalisch einwandfreien Sätzen dargestellt werden. Zur Lösungsgewinnung herangezogene Aussagen sind zu beweisen. Nur wenn eine so zu verwendende Aussage aus dem Schulunterricht oder aus Arbeitsgemeinschaften bekannt ist, genügt es ohne Beweisangabe, sie als bekannten Sachverhalt anzuführen. Aufgabe : In F U E N F + Z W E I S I E B E N sollen die Buchstaben so durch Ziffern ersetzt werden, daß die Addition zu einem richtigen Ergebnis führt. Dabei sollen gleiche Buchstaben gleiche Ziffern und verschiedene Buchstaben verschiedene Ziffern bedeuten. Untersuchen Sie, wie viele Lösungen die Aufgabe hat! Aufgabe : Gegeben sei ein Rechteck ABCD. Der Mittelpunkt von AB sei M. Man verbinde C und D mit M und A mit C. Der Schnittpunkt von AC und MD sei S. Ermitteln Sie das Verhältnis des Flächeninhalts des Rechtecks ABCD zum Flächeninhalt des Dreiecks SMC! Aufgabe : Beweisen Sie, daß für jedes natürliche n, n > 1, die Zahl 2 2n + 1 mit der Ziffer 7 endet! Aufgabe : Auf einem ebenen Tisch liegen 4 Holzkugeln, von denen jede den Radius der Länge r hat und die sich gegenseitig so berühren, daß ihre Berührungspunkte mit der Tischplatte die Ecken eines Quadrates bilden. Auf die entstandene mittlere Lücke wird eine fünfte Holzkugel mit gleichem Radius gelegt. Geben Sie den Abstand d des höchsten Punktes dieser fünften Kugel von der Tischplatte an! 2

3 OJM 7. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Lösungen Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und grammatikalisch einwandfreien Sätzen dargestellt werden. Zur Lösungsgewinnung herangezogene Aussagen sind zu beweisen. Nur wenn eine so zu verwendende Aussage aus dem Schulunterricht oder aus Arbeitsgemeinschaften bekannt ist, genügt es ohne Beweisangabe, sie als bekannten Sachverhalt anzuführen. Lösung : Es gilt: F UENF = F + UENF. UENF und ZWEI haben dieselbe Anzahl Ziffern. Addiert man beide Zahlen, so erhält man keinen Übertrag oder einen Übertrag von 1. Damit gilt weiterhin: F + 1 = SI oder F = SI. Da S > 0 (sonst ist SIEBEN keine 6-stellige Zahl) muß S = 1, der Übertrag vorhanden und F = 9 sowie I = 0 sein. Nun betrachte ich das letzte F in F UENF. Es muß gelten: F + I = N oder F + I = N da aber I = 0 ist, müßte N = F sein, was der Forderung von verschiedenen Buchstaben sind verschiedene Ziffern widerspricht. Die Aufgabe hat also keine Lösung! 2. Lösungsweg von Stefan Knott: Wir betrachten das vorgegebene Kryptogramm und stellen dabei folgendes fest: (1) Kommt es, so wie in dem vorgegebenen Beispiel, bei der Addition zwischen einem fünfstelligen Summanden (F U EN F ) und einem vierstelligen Summanden (ZW EI) zu einer sechstellige Summe (SIEBEN), so beginnt diese sechsstelligen Summe an den ersten beiden Dezimalstellen definitiv mit der Ziffernfolge 10, da = ist. Demnach gilt: S = 1 und I = 0 (2) Das höchstwertigste Digit des fünfstelligen Summanden F U EN F muss eine 9 sein, damit sich bei der Addition mit einem vierstelligen Summanden (ZW EI) ein Übertrag einstellt, da die Summe (SIEBEN) sechsstellig ist. Demnach gilt: F = 9. (3) Die Summenbildung der Einerstelle des Kryptogramms ist laut Aufgabenstellung mit F + I = N vorgegeben. (4) Die oben aufgestellten Aussagen (1) und (3) stehen allerdings somit im Widerspruch. Einerseits wird im Punkt (1) die Variable I sicher mit 0 belegt, zum anderen aber muss, wie im Punkt (3) gezeigt, die Summe der Variablen F mit eben dieser Variablen I eine neue Variable N ergeben. Damit wäre aber, wegen F + 0 = F = N, eine Gleichheit der beiden Variablen F und N gegeben. Diese Gleichheit wird aber in der Aufgabenstellung absolut ausgeschlossen, da verschiedene Buchstaben auch verschiedene Ziffern bedeuten. Auf Grund der eben gemachten Feststellungen können wir abschließend nur zu der Aussage gelangen, das die gestellte Aufgabe keine einzige Lösung besitzt. Aufgeschrieben und gelöst von Manuela Kugel und Stefan Knott 3

4 Lösung : 1. Lösungsweg von Matthias Lösche Es sei a = AB und b = AD. H sei ein Hilfspunkt mit H AD mit HS AB. Dann gilt nach Strahlensatz: DC : AM = DS : SM = DH : HA = 2 : 1, da M der Mittelpunkt von AB ist und AB = CD. Also ist HA = b : 3. Der Flächeninhalt des Dreiecks AMS beträgt dann A AMS = 1 2 AM HA = a 1 3 b = 1 12 ab. Weiterhin gilt: A SMC = A ABC A AMS A MBC = 1 2 ab 1 12 ab 1 4 ab = 1 6 ab. A ABCD : A SMC = ab : 1 6ab = 6 : Lösungsweg von Stefan Knott gegeben: Rechteck mit eingeschriebenem Dreieck gemäß nachstehender Planfigur: gesucht: Lösung: Verhältnis Flächeninhalt Rechteck A ABCD zum Flächeninhalt Dreieck A SMC, also A ABCD : A SMC Wir erweitern zunächst die durch die Aufgabenstellung vorgegebene Planfigur um eine Hilfslinie, in dem wir parallel zur Rechteckseite AD durch den Punkt S eine Gerade zeichnen. Diese Gerade schneidet die benachbarten Rechteckseiten AB und CD im rechten Winkel. Der Schnittpunkt dieser Geraden mit der Rechteckseite AB sei Y, der Schnittpunkt mit der Rechteckseite CD sei X (siehe rote Eintragungen im Bild 1). Da diese Gerade bzw. Strecke XY durch den Punkt S verläuft und wie bereits erwähnt, senkrecht auf AB steht, ist die Strecke SY gleichzeitig Höhe des Dreieckes AM S. Um nun das Verhältnis der beiden Flächen zu berechnen, müssen diese zunächst bekannt sein. Der Flächeninhalt der Rechteckes A ABCD lässt sich leicht mit der allgemeinen gültigen Formel bestimmen. Für unseren konkreten Fall lautet diese: A = a b (1) A ABCD = AB BC (2) 4

5 Nun soll der Flächeninhalt des Dreieckes A SMC ermittelt werden. Dieser Flächeninhalt ist die Differenz aus der Fläche des Dreieckes A AMC und der Fläche des Dreieck A AMS, es gilt: A SMC = A AMC A AMS (3) Laut Aufgabenstellung teilt der Punkt M auf der Rechteckseite AB diese in zwei gleich lange Hälften: AM = MB = 1 AB (4) 2 Die Strecke AM ist gleichzeitig Grundseite des Dreieckes AM C. Da auch dessen Höhe bekannt ist, kann nun der Flächeninhalt dieses Dreieckes bestimmt werden: A AMC = 1 AM BC 2 AM ersetzen (siehe (4)) (5) A AMC = AB BC 2 Brüche multiplizieren (6) A AMC = 1 AB BC (7) 4 Da es sich bei der vorgegebenen Figur um ein Rechteck handelt, verlaufen natürlich auch dessen Seiten AB und CD zueinander parallel (AB CD). Diese Parallelenschaar wird von einer gedachten Verlängerung der Diagonalen AC über die Eckpunkte A und C des Rechteckes hinaus geschnitten. Gleichzeitig schneidet natürlich auch unsere neu eingezeichnete Strecke XY bzw. deren Verlängerung diese Parallelenschaar. Damit gelten an der dargestellten Figur die Gesetze des Strahlensatzes. So verhalten sich nach dem zweiten Strahlensatz die Strahlenabschnitte SA und SC wie die zugehörigen Parallelenabschnitte AM und CD. Daher gilt: SA SC = AM CD (8) Der Parallelenabschnitt AM ist gleichzeitig, wie oben gezeigt, die Hälfte der Rechteckseite AB (siehe (4)), der Parallelenabschnitt CD stellt die gegenüberliegende Seite des Rechteckes ABCD dar. Daher stehen diese beiden Abschnitte im Verhältnis 1 : 2, was natürlich auch auf die entsprechenden Strahlenabschnitte zutrifft. Mithin gilt: Nach dem ersten Strahlensatz gilt weiterhin: SA SC = AM CD = 1 2 SA SC = SY SX Durch Verschmelzen der Gleichungen (9) und (10) erhalten wir: (9) (10) SA SC = SY SX = 1 2 Demnach stehen auch die beiden Abschnitte SY und SX der Strecke XY im Verhältnis 1 : 2. Gleichzeitig besitzt aber auch die Strecke XY (welche ja der Summe von SX und SY entspricht) die Länge der Rechteckseite BC. Somit gilt das Verhältnis: (11) SY : SX : XY = 1 : 2 : 3 (12) 5

6 Wir wenden das oben stehende Verhältnis (12) an und erhalten damit bezogen auf die Seite BC des Rechteckes ABCD für die beiden Strahlenabschnitte SY und SX: SY = 1 3 BC und SX = 2 3 BC (13) Durch die Gleichung (13) ist nun aber auch die Höhe des Dreieckes AMS bekannt, somit kann dessen Flächeninhalt A AMS ermittelt werden: A AMS = 1 2 AM SY AM = 1 2 AB (siehe (4)) (14) A AMS = AB SY SY = 1 3 BC (siehe (13)) (15) A AMS = AB 1 BC Brüche multiplizieren (16) 3 A AMS = 1 AB BC (17) 12 Schließlich kann mit Hilfe der Gleichung (3) der Flächeninhalt des Dreieckes SM C bestimmt werden, da nun alle erforderlichen Werte vorliegen: A SMC = A AMC A AMS A AMC ersetzen (siehe (7)) (18) A SMC = 1 4 AB BC A AMS A AMS ersetzen (siehe (17)) (19) A SMC = 1 4 A SMC = AB BC AB BC Hauptnenner bilden (20) 12 1 AB BC AB BC Brüche subtrahieren (21) 12 A SMC = 2 AB BC Kürzen (22) 12 A SMC = 1 AB BC (23) 6 Schlußendlich sind wir nun in der Lage, das gesuchte Verhältnis zu bilden: A ABCD A SMC = AB BC 1 6 AB BC Doppelbruch auflösen (24) A ABCD A SMC = 6 AB BC 1 AB BC Kürzen (25) A ABCD A SMC = 6 1 (26) A ABCD : A SMC = 6 : 1 (27) Abschließend kann also gesagt werden: Der Flächeninhalt des Rechteckes A ABCD verhält sich zum Flächeninhalt des Dreieckes A SMC wie 6 : 1, d.h. die Fläche des Rechteckes ist genau 6 mal größer als die Fläche des Dreieckes. Aufgeschrieben und gelöst von M. Lösche und S. Knott 6

7 Lösung : Voraussetzung: x = 2 2n + 1; n N; n 2 (1) Behauptung: x 7(10) (Einerziffer ist stets eine 7) Beweis: Wir betrachten zunächst die geschachtelte Potenz in der vorausgesetzten Gleichung und erinnern uns daran, das geschachtelte Potenzen in der Schreibweise 2 2n grundsätzlich rechts assoziativ sind. Die Operatorreihenfolge beginnt also immer von rechts. Die nachfolgende Klammerschreibweise soll dies noch einmal verdeutlichen: x = 2 2n + 1 = 2 (2n) + 1 (2) Wir versuchen nun die obenstehende Gleichung (2) durch Anwendung einzelner bekannter Potenzgesetze umzuformen: x = 2 (2n) + 1 Potenzgesetz a (m+n) = a m a n anwenden (3) x = 2 (2(2) 2 (n 2) ) = 4 (4) x = 2 (4 2(n 2) ) + 1 Potenzgesetz a (r s) = (a r ) s anwenden (5) x = ( 2 4) 2 (n 2) = 16 (6) x = 16 2(n 2) + 1 (7) Mit der so erhaltenen Gleichung (7) haben wir nun eine äquivalente Umformung zu unserer Ausgangsgleichung (1) gefunden. Für alle n im festgelegten Bereich (n 2) ist der Exponent 2 (n 2) ganzzahlig positiv, es gilt also 2 (n 2) 1. Jede ganzzahlige positive Potenz von 16 endet nun stets mit der Ziffer 6. Dies trifft natürlich auch auf den Term 16 2(n 2) zu, solange sich n im festgelegtem Bereich befindet. Deshalb endet auch unser vorgegebener Term 2 2n stets auf sechs, da ja 16 2(n 2) durch äquivalente Umformung aus 2 2n hervorgegangen ist (siehe oben Schritte (3) bis (7)). Wenn nun aber 2 2n immer auf sechs endet, dann ist die letzte Ziffer der Gleichung 2 2n + 1 garantiert eine 7, da = 7 gilt. Aufgeschrieben und gelöst von Stefan Knott 7

8 Lösung : gegeben: gesucht: d = Y X im Aufrißbild Lösung: Das durch die Berührungspunkte gebildete Quadrat ABCD (Abbildung Grundriß) hat die Seitenlänge 2r und die Diagonalenlänge 2r 2. Ein senkrecht zur Tischebene geführter, die Diagonale AC enthaltender Schnitt ergibt das Aufrißbild. Da das Dreieck A C E gleichschenklig ist und die Seitenlängen A C = AC = 2r 2, A E = AE = C E = CE = 2r hat, so ist es gleichschenklig-rechtwinklig; das Lot von E auf AC hat folglich die Länge r 2. Der gesuchte Abstand d beträgt daher d = r + r 2 + r = r (2 + 2). Aufgeschrieben von Manuela Kugel und Stefan Knott Quelle: (25) 8

9 Quellenverzeichnis (25) Offizielle Lösung der Aufgabenkommission 9

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade. Stufe (Bezirksolympiade) Klasse 9 Saison 967/968 Aufgaben und Lösungen OJM 7. Mathematik-Olympiade. Stufe (Bezirksolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

6. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen 6. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen 6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

16. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 5 Saison 1976/1977 Aufgaben und Lösungen

16. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 5 Saison 1976/1977 Aufgaben und Lösungen 16. Mathematik Olympiade Saison 1976/1977 Aufgaben und Lösungen 1 OJM 16. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1964/1965 Aufgaben und Lösungen 4. Mathematik Olympiade. Stufe (Kreisolympiade) Klasse 9 Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade. Stufe (Kreisolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen

31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 1 OJM 31. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 7 Aufgaben Hinweis: er Lösungsweg mit Begründungen

Mehr

4. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1964/1965 Aufgaben und Lösungen . Mathematik Olympiade Saison 196/1965 Aufgaben und Lösungen 1 OJM. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und grammatikalisch

Mehr

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen . Mathematik Olympiade. Stufe (Schulolympiade) Saison 96/96 Aufgaben und Lösungen OJM. Mathematik-Olympiade. Stufe (Schulolympiade) Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

9. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1969/1970 Aufgaben und Lösungen

9. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1969/1970 Aufgaben und Lösungen 9. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1969/1970 Aufgaben und Lösungen 1 OJM 9. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

26. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen 26. Mathematik Olympiade Saison 1986/1987 Aufgaben und Lösungen 1 OJM 26. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

20. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1980/1981 Aufgaben und Lösungen

20. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1980/1981 Aufgaben und Lösungen 20. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1980/1981 Aufgaben und Lösungen 1 OJM 20. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen

12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen 12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen 1 OJM 12. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

6. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1966/1967 Aufgaben und Lösungen 6. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen 4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 1 Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 1 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 4. athematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 1 OJ 4. athematik-olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

9. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1969/1970 Aufgaben und Lösungen

9. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1969/1970 Aufgaben und Lösungen 9. Mathematik Olympiade Saison 1969/1970 Aufgaben und Lösungen 1 OJM 9. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

30. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen

30. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen 30. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen 1 OJM 30. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

4. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen 4. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 1 Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade 4. Stufe (DDR-Olympiade) Klasse 1 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

8. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1968/1969 Aufgaben und Lösungen

8. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1968/1969 Aufgaben und Lösungen 8. Mathematik Olympiade Saison 1968/1969 Aufgaben und Lösungen 1 OJM 8. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 1 OJM 21. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

5. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen

5. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen 5. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen 1 OJM 5. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

28. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1988/1989 Aufgaben und Lösungen

28. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1988/1989 Aufgaben und Lösungen 28. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1988/1989 Aufgaben und Lösungen 1 OJM 28. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 6 Saison 1993/1994 Aufgaben und Lösungen

33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 6 Saison 1993/1994 Aufgaben und Lösungen 33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 6 Saison 1993/1994 Aufgaben und Lösungen 1 OJM 33. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 6 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

24. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1984/1985 Aufgaben und Lösungen

24. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1984/1985 Aufgaben und Lösungen 4. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1984/1985 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

5. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen

5. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen 5. Mathematik Olympiade Saison 1965/1966 Aufgaben und Lösungen 1 OJM 5. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

11. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1971/1972 Aufgaben und Lösungen

11. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1971/1972 Aufgaben und Lösungen 11. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1971/1972 Aufgaben und Lösungen 1 OJM 11. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

26. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 5 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 5 Saison 1986/1987 Aufgaben und Lösungen . Mathematik Olympiade. Stufe (Schulolympiade) Klasse Saison / Aufgaben und Lösungen OJM. Mathematik-Olympiade. Stufe (Schulolympiade) Klasse Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

28. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1988/1989 Aufgaben und Lösungen

28. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1988/1989 Aufgaben und Lösungen 28. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1988/1989 Aufgaben und Lösungen 1 OJM 28. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 6 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1966/1967 Aufgaben und Lösungen 6 Mathematik Olympiade 2 Stufe (Kreisolympiade) Saison 1966/1967 ufgaben und Lösungen 1 OJM 6 Mathematik-Olympiade 2 Stufe (Kreisolympiade) ufgaben Hinweis: Der Lösungsweg mit egründungen und Nebenrechnungen

Mehr

12. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1972/1973 Aufgaben und Lösungen

12. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1972/1973 Aufgaben und Lösungen 12. Mathematik Olympiade Saison 1972/1973 Aufgaben und Lösungen 1 OJM 12. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

19. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1979/1980 Aufgaben und Lösungen

19. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1979/1980 Aufgaben und Lösungen 19. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1979/1980 Aufgaben und Lösungen 1 OJM 19. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 6 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

33. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 5 Saison 1993/1994 Aufgaben und Lösungen

33. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 5 Saison 1993/1994 Aufgaben und Lösungen 33. Mathematik Olympiade Saison 1993/1994 Aufgaben und Lösungen 1 OJM 33. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit egründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Die Strahlensätze machen eine Aussage über Streckenverhältnisse, nämlich:

Die Strahlensätze machen eine Aussage über Streckenverhältnisse, nämlich: Elementargeometrie Der. Strahlensatz Geschichte: In den Elementen des Euklid wird im 5.Buch die Proportionenlehre behandelt, d.h. die geometrische Theorie aller algebraischen Umformungen der Proportion.

Mehr

2. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1962/1963 Aufgaben und Lösungen

2. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1962/1963 ufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 11 ufgaben Hinweis: Der Lösungsweg mit egründungen

Mehr

http://www.olympiade-mathematik.de 4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 4. Mathematik Olympiade Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

29. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1989/1990 Aufgaben und Lösungen

29. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1989/1990 Aufgaben und Lösungen 29. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1989/1990 Aufgaben und Lösungen 1 OJM 29. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 6 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

34. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 6 Saison 1994/1995 Aufgaben und Lösungen

34. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 6 Saison 1994/1995 Aufgaben und Lösungen 34. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 6 Saison 994/995 Aufgaben und Lösungen OJM 34. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 6 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen

40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen 40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen TU Graz, 29. Mai 2009 1. Für welche Primzahlen p ist 2p + 1 die dritte Potenz einer natürlichen Zahl? Lösung. Es soll also gelten 2p + 1

Mehr

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge 0 Mathematik-Olympiade Stufe (Schulstufe) Klasse 9 0 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden ev wwwmathematik-olympiadende Alle Rechte vorbehalten 00 Lösung 0 Punkte Teil a) Auch bei

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

http://www.olympiade-mathematik.de 1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1961/1962 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1961/1962 Aufgaben und Lösungen 1. Mathematik Olympiade Saison 1961/1962 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

MATHEMATIK-STAFFEL Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500

MATHEMATIK-STAFFEL Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500 MATHEMATIK-STAFFEL 2013 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500 1 (20 Punkte) Eine lange Zahl Es werden die Jahreszahlen von 1 bis 2013 hintereinander (ohne Leerzeichen,

Mehr

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen : Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden

Mehr

13. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7. Aufgaben und Lösungen

13. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7. Aufgaben und Lösungen 13. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Aufgaben und Lösungen Gewidmet meinen Kindern Cosima, Elias und Adrian Vorwort Im vorliegenden Heftchen benden sich Aufgaben und Lösungen der

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

34. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 5 Saison 1994/1995 Aufgaben und Lösungen

34. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 5 Saison 1994/1995 Aufgaben und Lösungen 4. Mathematik Olympiade. Stufe (Schulrunde) Klasse 5 Saison 994/995 ufgaben und Lösungen OJM 4. Mathematik-Olympiade. Stufe (Schulrunde) Klasse 5 ufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

Städtewettbewerb Frühjahr 2009

Städtewettbewerb Frühjahr 2009 Städtewettbewerb Frühjahr 2009 Lösungsvorschläge Hamburg 4. März 2009 [Version 1. April 2009] M Mittelstufe Aufgabe M.1 (3 P.). In ein konvexes 2009-Eck werden sämtliche Diagonalen eingezeichnet. (Diagonalen

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist

Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist Abitur Mathematik Bayern 201 Abitur Mathematik: Bayern 201 Aufgabe a 1. SCHRITT: VORÜBERLEGUNG Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist der Ursprung). Dabei ist PC = PB + BC

Mehr

2.2C. Das allgemeine Dreieck

2.2C. Das allgemeine Dreieck .C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben

55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben 55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) Der fünfstelligen Zahl F = 3ab1 sind die Zehner- und die Tausenderstelle abhanden gekommen Alles, was man von a, b {0, 1,, 9} weiß, sind die beiden folgenden unabhängigen Bedingungen:

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Abiturprüfung Mathematik 8 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II. Die Punkte A(//), B(//), C(//), F(//), G(//) und H(//) sind die Ecken eines dreiseitigen

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6) (Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

10. Fragenkatalog. Pangea-Mathematikwettbewerb. Klasse VORRUNDE

10. Fragenkatalog. Pangea-Mathematikwettbewerb. Klasse VORRUNDE 10. Klasse VORRUNDE Pangea-Mathematikwettbewerb Fragenkatalog www.pangea-wettbewerb.de 2013 Pangea Ablaufvorschrift Antwortbogen Trage bitte Name, Nachname, Klasse und die Lehrer-ID (gibt Dir Deine Lehrkraft)

Mehr

9. Vorarlberger Mathematik Miniolympiade

9. Vorarlberger Mathematik Miniolympiade 9. Vorarlberger Mathematik Miniolympiade (5.5.011) Hinweise: * Gib auf jedem Blatt deinen Namen und deine Schule an! * Löse jede Aufgabe auf einem eigenen Blatt! (Blattnummer von 1 bis 8) * Führe Begründungen,

Mehr

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN 3. RUNDE LÖSUNGEN 1. a) L { 1; 0; 1} b) L {... ; 1; 0; 1; 2} c) L {2; 3; 4}, denn: x 4 0 oder falls x 4 > 0 dann x + 3 5 oder falls x 4 < 0 dann x + 3

Mehr

MW-E Mathematikwettbewerb der Einführungsphase

MW-E Mathematikwettbewerb der Einführungsphase MW-E Mathematikwettbewerb der Einführungsphase. Februar 0 MW-E Mathematikwettbewerb der Einführungsphase Hinweis: Von jeder Schülerin bzw. jedem Schüler werden fünf Aufgaben gewertet. Werden mehr als fünf

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Das gleichseitige Dreieck ABC mit AB = 8 cm ist Grundfläche einer Pyramide ABCS. Die Spitze S liegt senkrecht über dem Mittelpunkt M der Seite [AC]. Die Höhe [MS] ist 6 cm lang. 1.1 Zeichne ein Schrägbild

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Flächeneinheiten und Flächeninhalt

Flächeneinheiten und Flächeninhalt Flächeneinheiten und Flächeninhalt Was ist eine Fläche? Aussagen, Zeichnungen, Erklärungen MERKE: Eine Fläche ist ein Gebiet, das von allen Seiten umschlossen wird. Beispiele für Flächen sind: Ein Garten,

Mehr

Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I

Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I Robert Geretschläger Graz, Österreich, 2010 Hinweis: Die Blätter 1, 2, 3 und 4 sind für Schüler und Schülerinnen

Mehr

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240. I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich

Mehr

Aufgabe E 1 (8 Punkte)

Aufgabe E 1 (8 Punkte) Aufgabe E (8 Punkte) Auf einem Billardtisch (bei dem die Koordinatenachsen x = 0 und y = 0 als Banden dienen) liegen zwei Kugeln P( ) und Q(3 ) Die Kugel P soll so angestoßen werden, dass sie nach Reflexion

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 : Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden

Mehr

Aufgaben Geometrie Lager

Aufgaben Geometrie Lager Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig

Mehr

2.2A. Das allgemeine Dreieck

2.2A. Das allgemeine Dreieck .A. Das allgemeine Dreieck Koordinatentransformation eines Dreiecks Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = (

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

30. Satz des Apollonius I

30. Satz des Apollonius I 30. Satz des Apollonius I Das Teilverhältnis T V (ABC) von drei Punkten ABC einer Geraden ist folgendermaßen definiert: Für den Betrag des Teilverhältnisses gilt (ABC) = AC : BC. Für das Vorzeichen des

Mehr

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11.

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11. Seite 1 von 7 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des mittleren Schulabschlusses 008 (5. Juni 008 von 8.0 bis 11.00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren

Mehr

1.2 Rechnen mit Termen II

1.2 Rechnen mit Termen II 1.2 Rechnen mit Termen II Inhaltsverzeichnis 1 Ziele 2 2 Potenzen, bei denen der Exponent negativ oder 0 ist 2 3 Potenzregeln 3 4 Terme mit Wurzelausdrücken 4 5 Wurzelgesetze 4 6 Distributivgesetz 5 7

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr