Numerik und Simulation in der Geoökologie

Größe: px
Ab Seite anzeigen:

Download "Numerik und Simulation in der Geoökologie"

Transkript

1 1/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Numerik und Simulation in der Geoökologie Sylvia Moenickes VL 11 WS 2007/2008

2 2/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Parcours Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen

3 3/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Parcours Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen

4 4/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Jenseits des Hörsaals... wird man i.d.r. konfrontiert mit mehr als einem Prozess, mehr als als einer Dimension, ortsabhängigen und zeitabhängigen Parametern.

5 5/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen... Prozessvielfalt Beispielsweise diffusiver Transport c(x, t) t kombiniert mit exponentiellem Abbau = D 2 c(x, t) x 2 gemeinsam bilanziert als c(x, t) t = r c(x, t) c(x, t) t = D 2 c(x, t) x 2 r c(x, t)

6 6/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen... Mehrdimensionalität Für diffusiv-reaktive Systeme anstelle von findet man c(x, t) t = D 2 c(x, t) x 2 r c(x, t) c(x, t) t = D 2 c(x, t) x 2 + D 2 c(x, t) y 2 + D 2 c(x, t) z 2 r c(x, t) übersetzt in eine Verfahrensvorschrift c ix iy iz j+1 c ix iy iz j h = D c ix +1 iy iz j 2c ix iy iz j +c ix 1 iy iz j k 2 x + D c ix iy +1 iz j 2c ix iy iz j +c ix iy 1 iz j k 2 y + D c ix iy iz +1 j 2c ix iy iz j +c ix iy iz 1 j k 2 z r c ix i y i z j

7 7/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen... Orts- und Zeitabhängigkeit Anstelle von c(x, t) t = D 2 c(x, t) x 2 rc(x, t) für die ortsabhängige Diffusivität und Reaktionsrate c(x, t) t = x t) (D(x) c(x, ) r(x)c(x, t) x übersetzt beispielhaft in eine Verfahrensvorschrift c i j+1 c i j h = D i+ 1 2 c i+1 j c i j c k D i j c i 1 j i 1 2 k k r i c i j

8 8/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen... Orts- und Zeitabhängigkeit Anstelle von c(x, t) t = D 2 c(x, t) x 2 rc(x, t) für die zeitabhängige Diffusivität und Reaktionsrate c(x, t) t = D(t) 2 c(x, t) x 2 r(t)c(x, t) übersetzt beispielhaft in eine Verfahrensvorschrift c i j+1 c i j h = D j c i+1 j 2c i j + c i 1 j k 2 r j c i j

9 9/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Parcours Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen

10 10/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Eine geoökologische Fragestellung Wärmeentwicklung durch mikrobielle Aktivität

11 11/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Eine geoökologische Fragestellung Wärmeentwicklung durch mikrobielle Aktivität Klimaentwicklung durch Wärmetransport im Ozean

12 12/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Eine geoökologische Fragestellung Wärmeentwicklung durch mikrobielle Aktivität Klimaentwicklung durch Wärmetransport im Ozean Energiegewinnung aus der Erde

13 13/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Eine geoökologische Fragestellung Wärmeentwicklung durch mikrobielle Aktivität Klimaentwicklung durch Wärmetransport im Ozean Energiegewinnung aus der Erde Klimaschutz beim Bau

14 14/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen 1D Wärmetransportgleichung im Boden Allgemeine Bilanzgleichung: ψ t = Φ + q ψ: intensive Größe, hier Energiedichte [ J m 3 ] Φ: dessen Fluss, hier Energieflussdichte [ J m 2 s ] q: dessen Quellen, hier die der Energie [ J m 3 s ]

15 15/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen 1D Wärmetransportgleichung im Boden Allgemeine Bilanzgleichung: ψ t = Φ + q ψ: intensive Größe, hier Energiedichte [ J m 3 ] Φ: dessen Fluss, hier Energieflussdichte [ J m 2 s ] q: dessen Quellen, hier die der Energie [ J m 3 s ] Die Energiedichte: allgemein: ψ = cρt

16 16/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen 1D Wärmetransportgleichung im Boden Allgemeine Bilanzgleichung: ψ t = Φ + q ψ: intensive Größe, hier Energiedichte [ J m 3 ] Φ: dessen Fluss, hier Energieflussdichte [ J m 2 s ] q: dessen Quellen, hier die der Energie [ J m 3 s ] Die Energiedichte: allgemein: ψ = cρt hier: = (c B ρ B (1 n) + c W ρ W θ + c L ρ L (n θ)) T }{{} cv

17 17/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen 1D Wärmetransportgleichung im Boden Flüsse: Advektion: Φ adv = vψ Diffusion: Φ diff = λ T

18 18/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen 1D Wärmetransportgleichung im Boden Flüsse: Advektion: Φ adv = vψ hier: Φ adv = v (c W ρ W θ) T }{{} c vw Diffusion: Φ diff = λ T hier: Φ diff = ((1 n)λ B + θλ W + (n θ)λ L ) T }{{} λ

19 19/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen 1D Wärmetransportgleichung im Boden Flüsse: Advektion: Φ adv = vψ hier: Φ adv = v (c W ρ W θ) T }{{} c vw Diffusion: Φ diff = λ T hier: Φ diff = ((1 n)λ B + θλ W + (n θ)λ L ) T }{{} λ Quellen: q kann abhängig sein von t, x oder ψ... abhängig von mikrobieller Aktivität in Raum und Zeit... Sonneneinstrahlung auch Reaktionen bei Stoffbilanzen

20 20/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen 1D Wärmetransportgleichung im Boden Transportgleichung insgesamt: Falls q = 0: c v T t = (λ T vc vw T )

21 21/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen 1D Wärmetransportgleichung im Boden Transportgleichung insgesamt: Falls q = 0: c v T t = (λ T vc vw T ) Mit λ c v = D und vc vw c v = u und all dies ortsunabhängig: T t = D T u T

22 22/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen 1D Wärmetransportgleichung im Boden Zur vollständigen Beschreibung fehlen noch Anfangs- und Randbedingungen, z.b.: oberer Rand Dirichlet als sinusförmiger Temperaturverlauf unterer Rand Dirichlet als konstante Temperatur Anfangsbedingung als linearer Verlauf zwischen den Randvorgaben für t = 0 Darauf wenden wir nun an die...

23 23/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Parcours Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen

24 24/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Grundgedanke der Methode Einteilung des Gebietes in Zellen ( finite Volumina ) Bilanzierung zellenweise Integration der Bilanzgleichung as is, dabei Approximation der intensiven Größe an Stützstellen in den Zellmitten Approximation der zugehörigen Flüsse auf den Zellrändern Nun im einzelnen...

25 25/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Bildverzeichnis geothermal.marin.org

Numerik und Simulation in der Geoökologie

Numerik und Simulation in der Geoökologie 1/49 Rekapitulation Das Euler-Verfahren für ODE-IVP Eigenschaften von Einschrittverfahren Numerik und Simulation in der Geoökologie Sylvia Moenickes VL 2 WS 2007/2008 2/49 Rekapitulation Das Euler-Verfahren

Mehr

Transport Einführung

Transport Einführung Transport Einführung home/lehre/vl-mhs-1/inhalt/folien/vorlesung/8_transport/deckblatt.tex Seite 1 von 24. p.1/24 1. Einführung 2. Transportgleichung 3. Analytische Lösung Inhaltsverzeichnis 4. Diskretisierung

Mehr

Analytische Lösungen der Transportgleichung Transportmodellierung

Analytische Lösungen der Transportgleichung Transportmodellierung Analytische Lösungen der Transportgleichung 1D-Transportgleichung Wenn ein gelöster Stoff sich sowohl advektiv, als auch diffusiv in einer Flüssigkeit bewegt, dann gilt folgende Gleichung ( nc) t + x x

Mehr

Unstetige Galerkin-Verfahren und die lineare Transportgleichung. Tobias G. Pfeiffer Freie Universität Berlin

Unstetige Galerkin-Verfahren und die lineare Transportgleichung. Tobias G. Pfeiffer Freie Universität Berlin Unstetige Galerkin-Verfahren und die lineare Transportgleichung Tobias G. Pfeiffer Freie Universität Berlin Seminar DG-Verfahren, 26. Mai 2009 , Voraussetzungen & Ziele Voraussetzungen Kenntnisse in Numerik

Mehr

I) 1-dimensionale Modelle (= mit einer Systemvariablen)

I) 1-dimensionale Modelle (= mit einer Systemvariablen) System = Menge von Objekten, zwischen denen Relationen bestehen statisches Modell kann keine zeitl. Veränderung beschreiben dynamisches Modell beschreibt zeitabhängige Antwort auf eine äussere Veränderung

Mehr

Hyperbolische Erhaltungsgleichungen und die Wellengleichung

Hyperbolische Erhaltungsgleichungen und die Wellengleichung Hyperbolische Erhaltungsgleichungen und die Wellengleichung Stefanie Günther Universität Trier 11.November 2010 Stefanie Günther (Universität Trier) Seminar Numerik 1/29 11.November 2010 1 / 29 Inhaltsverzeichnis

Mehr

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1 Fachbereich Mathematik Universität Stuttgart Prof. Dr. C. Rohde Höhere Mathematik I III Diplomvorprüfung 3. 3. 8. Klausur für Studierende der Fachrichtungen phys Bitte unbedingt beachten: In dieser Klausur

Mehr

Kontinuierliche Systeme und diskrete Systeme

Kontinuierliche Systeme und diskrete Systeme Kontinuierliche Systeme und diskrete Systeme home/lehre/vl-mhs-1/inhalt/folien/vorlesung/1_disk_kont_sys/deckblatt.tex Seite 1 von 24. p.1/24 Inhaltsverzeichnis Grundbegriffe ingenieurwissenschaftlicher

Mehr

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften MÜNSTER Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften Christoph Fricke, Natascha von Aspern, Carla Tameling 12.06.2012

Mehr

1. Übung Modellierung von Hydrosystemen: Einleitung 1

1. Übung Modellierung von Hydrosystemen: Einleitung 1 1. Übung Modellierung von Hydrosystemen: Einleitung 1 Informationen und Werkzeuge, die für eine numerische Simulation benötigt werden: Konzeptionelles Modell: Geometrie des Gebiets, Längenabmessungen,

Mehr

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Numerik Parameterschätzprobleme INHALT 1. 1D Wärmeleitungsgleichung 1.1 Finite-Differenzen-Diskretisierung

Mehr

Stofftransport. Frieder Hafner- Dietrich Sames Hans-Dieter Voigt. Mathematische Methoden

Stofftransport. Frieder Hafner- Dietrich Sames Hans-Dieter Voigt. Mathematische Methoden Frieder Hafner- Dietrich Sames Hans-Dieter Voigt Wärmeund Stofftransport Mathematische Methoden Mit 280 Abbildungen Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo HongKong Barcelona Budapest

Mehr

Hydroinformatik II: Grundlagen der Kontinuumsmechanik V3

Hydroinformatik II: Grundlagen der Kontinuumsmechanik V3 Hydroinformatik II: Grundlagen der Kontinuumsmechanik V3 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 21. April / 05. Mai 2017 1/18

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

Randwertbedingungen und Ghost Cells

Randwertbedingungen und Ghost Cells Randwertbedingungen und Ghost Cells Olaf Kern Universität Trier 16.Dezember 2010 Olaf Kern (Universität Trier) Seminar Numerik 1/23 16.Dezember 2010 1 / 23 Inhaltsverzeichnis 1 Einführung 2 Periodische

Mehr

Teil XIII. Simulation mit PDEs: Wärmeleitungsgleichung

Teil XIII. Simulation mit PDEs: Wärmeleitungsgleichung Teil XIII Simulation mit PDEs: Wärmeleitungsgleichung IN8008, Wintersemester 2011/2012 284 ODE vs. PDE Differentialgleichungen bei der Molekulardynamik: nur eine unabhängige Variable: Zeit gewöhnliche

Mehr

Einführung FEM 1D - Beispiel

Einführung FEM 1D - Beispiel p. 1/28 Einführung FEM 1D - Beispiel /home/lehre/vl-mhs-1/folien/vorlesung/4_fem_intro/deckblatt.tex Seite 1 von 28 p. 2/28 Inhaltsverzeichnis 1D Beispiel - Finite Elemente Methode 1. 1D Aufbau Geometrie

Mehr

Differenzialgleichungen

Differenzialgleichungen Mathematik I für Biologen, Geowissenschaftler und Geoökologen 2. Februar 2015 : Luftdruck Definition e: Populationsdynamik Satz von Picard und Lindelöf Folgerungen/Bemerkungen...von DGLn höherer Ordnung

Mehr

1D-Transportgleichung

1D-Transportgleichung Analytische Lösungen der Transportgleichung 1-Transportgleichung Wenn ein gelöster Stoff sich sowohl advektiv, als auch diffusiv in einer Flüssigkeit bewegt, dann gilt folgende Gleichung ( nc t + x x &

Mehr

Finite Elemente I Konvergenzaussagen

Finite Elemente I Konvergenzaussagen Finite Elemente I 195 5 onvergenzaussagen 5 onvergenzaussagen TU Bergakademie Freiberg, SoS 2006 Finite Elemente I 196 5.1 Interpolation in Sobolev-Räumen Wesentlicher Baustein der FE-onvergenzanalyse

Mehr

Charakteristiken linearer hyperbolischer Differentialgleichungen

Charakteristiken linearer hyperbolischer Differentialgleichungen hyerbolischer Differentialgleichungen Referent: Universität Trier Fachbereich IV: Mathematik WS 21/211, 11.11.21 Seminar Numerik Erhaltungsgleichungen und Finite-Volumen-Verfahren Dozenten: Dr. Stehan

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund 15. Übungsblatt zur Höheren Mathematik III P/ET/AI/IT/IKT/MP WS 1/13 Aufgabe 1 Bestimmen Sie eine auf der Menge M := {x, y R x + y

Mehr

Vorlesung 2. -Sorption und Abbau-

Vorlesung 2. -Sorption und Abbau- Vorlesung 2 -Sorption und Abbau- Prof. Dr. Sabine Attinger Katharina Ross Bilanzgleichung in 1D Der Fluss der transportierten Masse über die Gesamtfläche eines Kontrollvolumens ist gleich der Nettoänderung

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) Systemanalyse 1 Teil 1 1.

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 4. Teil Finite-Volumen-Methode

Mehr

Heat Flow. Daniel Raß. 12. Juli

Heat Flow. Daniel Raß. 12. Juli d-rass@web.de 12. Juli 2007 Übersicht Einleitung Zuerst einige theoretische Grundlagen zur Diskretisierung der Wärmeleitungsgleichung und der Poissongleichung. Ausgangsgleichung Ausgehend von Masse-, Impuls-

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 3.9.5, min Aufgabe (8 Punkte) Gegeben ist der Körper K : {(x, y, z) R 3 x + 4y, z 3}. Berechnen Sie der Ausfluss von g : R 3 R 3 durch den Rand K mit g(x, y, z) (x

Mehr

Partielle Differentialgleichungen. Hofer Joachim/Panis Clemens

Partielle Differentialgleichungen. Hofer Joachim/Panis Clemens 9.11.2010 Contents 1 Allgemein 2 1.1 Definition................................................. 2 1.2 Klassifikation............................................... 2 1.3 Lösbarkeit.................................................

Mehr

Aufgabe 1 (Klassifizierung von Systemen)

Aufgabe 1 (Klassifizierung von Systemen) Prof. L. Guzzella Prof. R. D Andrea 151-0591-00 Regelungstechnik I (HS 07) Musterlösung Übung 3 Systemklassifizierung, Systeme 1. Ordnung im Zeitbereich, Stabilitätsanalyse moritz.oetiker@imrt.mavt.ethz.ch,

Mehr

Praktikum. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik WS 2007

Praktikum. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik WS 2007 Praktikum Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik WS 2007 Block 1 jeder Anfang ist eindimensional Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches

Mehr

Numerik gewöhnlicher Differentialgleichungen (MA2304) Modulprüfung F. Bornemann, C. Ludwig 14. August 2017

Numerik gewöhnlicher Differentialgleichungen (MA2304) Modulprüfung F. Bornemann, C. Ludwig 14. August 2017 Numerik gewöhnlicher Differentialgleichungen (MA234) Modulprüfung F. Bornemann, C. Ludwig 4. August 27 Aufgabe ( min) (a) Implementiere in Julia mit den Eingaben a, b, f und n die summatorische Trapez-Regel

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Vorlesung 2. -Sorption und Abbau-

Vorlesung 2. -Sorption und Abbau- Vorlesung 2 -Sorption und Abbau- Prof. Dr. Sabine Attinger Katharina Ross Bilanzgleichung in 1D Der Fluss der transportierten Masse über die Gesamtfläche eines Kontrollvolumens ist gleich der Nettoänderung

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Iterative Algorithmen für die FSI Probleme II

Iterative Algorithmen für die FSI Probleme II Iterative Algorithmen für die FSI Probleme II Rebecca Hammel 12. Juli 2011 1 / 22 Inhaltsverzeichnis 1 2 3 2 / 22 Zur Wiederholung: Wir definieren unser Fluid-Gebiet Ω(t) durch Ω(t) = {(x 1, x 2 ) R 2

Mehr

Goethe-Center for Scientific Computing (G-CSC) Goethe-Universität Frankfurt am Main. Neurobioinformatik

Goethe-Center for Scientific Computing (G-CSC) Goethe-Universität Frankfurt am Main. Neurobioinformatik Goethe-Center for Scientific Computing (G-CSC) Goethe-Universität Frankfurt am Main Neurobioinformatik (Übung NBI, WS 2018/19) M. Huymayer, J. Wang, Dr. A. Nägel, Dr. M. Hoffer Aufgabenblatt 9 Abgabe Montag,

Mehr

Numerik und Simulation in der Geoökologie

Numerik und Simulation in der Geoökologie 1/43 Reapitulation Instationärer Transport Bac to reality Numeri und Simulation in der Geoöologie Sylvia Moenices VL 8 WS 2007/2008 2/43 Reapitulation Instationärer Transport Bac to reality Parcours Reapitulation

Mehr

Prüfungsklausur Mathematik II für Bauingenieure am

Prüfungsklausur Mathematik II für Bauingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Bauingenieure am 9.7.8 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 4 5 6 7 8 9 gesamt erreichbare P. 6 6 7 (5) (+5)

Mehr

Dipl.-Ing. Christoph Erath 10. November FVM-BEM Kopplung. Was gewinnen wir, wenn wir zwei numerische Methoden miteinander koppeln?

Dipl.-Ing. Christoph Erath 10. November FVM-BEM Kopplung. Was gewinnen wir, wenn wir zwei numerische Methoden miteinander koppeln? Dipl.-Ing. Christoph Erath 10. November 2007 FVM-BEM Kopplung Was gewinnen wir, wenn wir zwei numerische Methoden miteinander koppeln? Seite 2 FVM-BEM Kopplung 10. November 2007 Dipl.-Ing. Christoph Erath

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Integration (Fortsetzung) 2. Existenz von Integralen auf Quadern und allgemeineren Mengen 3. Satz von Fubini 4. Berechnung von Integralen 5. Volumina 6. Normalgebiete

Mehr

Numerik gewöhnlicher Differentialgleichungen

Numerik gewöhnlicher Differentialgleichungen Numerik gewöhnlicher Differentialgleichungen 4.4 Anfangsrandwertprobleme Die Diskretisierung von zeitabhängigen partiellen Differentialgleichungen mit der Linienmethode führt auf Systeme gewöhnlicher Dgl

Mehr

Einige grundlegende partielle Differentialgleichungen

Einige grundlegende partielle Differentialgleichungen Einige grundlegende partielle Differentialgleichungen H. Abels 17. Oktober 2010 H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober 2010 1 / 14 Transportgleichung Eine der einfachsten Differentialgleichungen

Mehr

Differenzialgleichungen

Differenzialgleichungen Mathematik I für Biologen, Geowissenschaftler und Geoökologen 30. Januar 2008 (System von) Differenzialgleichung(en) Schwingungsgleichung Newtonsche Mechanik Populationsdynamik...DGLn höherer Ordnung auf

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik 4 für Physiker (Analysis 3)

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik 4 für Physiker (Analysis 3) ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Modellierung elastischer Materialien Variationsformulierung Galerkin-Approximation FreeFem++ Ausblick: Lineare Thermoelastiz. Lineare Elastizität

Modellierung elastischer Materialien Variationsformulierung Galerkin-Approximation FreeFem++ Ausblick: Lineare Thermoelastiz. Lineare Elastizität Lineare Elastizität Dominik Woznica Universität des Saarlandes 05.02.2016 Gliederung 1 Modellierung elastischer Materialien 2 Variationsformulierung 3 Galerkin-Approximation 4 FreeFem++ 5 Ausblick: Lineare

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439, Strömungsmechanik, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de

Mehr

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik

Mehr

Elastizität und Bruchmechanik

Elastizität und Bruchmechanik Technische Universität Berlin 1 Institut für Mechanik 6. Juni 2008 Kräftegleichgewicht Spannungstensor Satz von Gauss Vertauschung Massenmittelpunktsbeschleunigung Zusammenfassung erstes Bewegungsgesetz

Mehr

Technische Numerik Numerische Integration

Technische Numerik Numerische Integration W I S S E N T E C H N I K L E I D E N S C H A F T Technische Numerik Numerische Integration Peter Gangl Institut für Numerische Mathematik, Technische Universität Graz c Alle Rechte vorbehalten. Nachdruck

Mehr

1 Distributionen und der Satz von Frobenius

1 Distributionen und der Satz von Frobenius 1 Distributionen und der Satz von Frobenius 1.1 Vorbemerkungen Definition 1.1. Sei M eine d-dimensionale Mannigfaltigkeit, sei (U, ϕ) ein Koordinatensystem auf M mit Koordinatenfunktionen x 1,..., x d.

Mehr

- Numerik in der Physik - Simulationen, DGL und Co. Max Menzel

- Numerik in der Physik - Simulationen, DGL und Co. Max Menzel - Numerik in der Physik - Simulationen, DGL und Co. Max Menzel 4.1.2011 1 Übersicht Differenzialgleichungen? Was ist das? Wo gibt es das? Lösen von Differenzialgleichungen Analytisch Numerisch Anwendungen

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 3. Teil Finite-Volumen-Methode

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Arbeitsblatt 19 Die Pausenaufgabe Aufgabe 19.1. Sei K ein Körper und sei K[X] der Polynomring über K. Wie lautet

Mehr

II. Elliptische Probleme

II. Elliptische Probleme II. Elliptische Probleme II.1 Finite Differenzen: Grundidee II.2 Konvergenzaussagen II.3 Allgemeine Randbedingungen II.4 Gekrümmte Ränder Kapitel II (0) 1 Dirichlet Randwerte mit finiten Differenzen Einfachster

Mehr

Instationäre Wärmeleitung (Ergänzung zur 7. Vorlesung vom )

Instationäre Wärmeleitung (Ergänzung zur 7. Vorlesung vom ) Technische Universität Dresden Seite 1 Instationäre Wärmeleitung (Ergänzung zur 7. Vorlesung vom 5.05.09) Beachte: In der Vorlesung wurden z. T. andere Symbole verwendet. Vorlesung Ergänzungsskript Bezeichnung

Mehr

I. Einführung in die PDGL

I. Einführung in die PDGL I. Einführung in die PDGL I. Modellierungsbeispiele I.2 Wohlgestelltheit I.3 Klassifizierung I.4 Lösungskonzepte Kapitel I () Vorgehen bei der groben Einteilung von PDGL: ) System von PDGL (ja/nein) 2)

Mehr

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt rot F ds = F d r. S C Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares

Mehr

Übungsblatt 3 Musterlösung

Übungsblatt 3 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA4 - SS6 Übungsblatt Musterlösung Sei M,N N und f C M+N+ (B) eine komplexe Funktion, B eine kompakte Menge. Die Padé Approximation PN M (f)(x) ist die rationale

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 3 26. 2. 214 Lösungshinweise zur Klausur für Studierende der Fachrichtungen kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i)

Mehr

Numerische Kopplung eines 3D-Strömungssimulators an einen 1D-Hydrauliksimulator zur Auslegung von motorischen Einspritzsystemen

Numerische Kopplung eines 3D-Strömungssimulators an einen 1D-Hydrauliksimulator zur Auslegung von motorischen Einspritzsystemen Numerische Kopplung eines 3D-Strömungssimulators an einen 1D-Hydrauliksimulator zur Auslegung von motorischen Einspritzsystemen FV/FLP und FV/FLI Vortrag zur Diplomarbeit von cand. math. Ralf Deiterding

Mehr

Übungsblatt 6 Musterlösung

Übungsblatt 6 Musterlösung MSE SS7 Übungsblatt 6 Musterlösung Lösung Methode der Charakteristiken) a) Hier ist c = x, d =. Also sind die Gleichungen für die Charakteristiken durch ẋt) = xt), żt) =, mit Anfangsbedingungen x) = x,

Mehr

Teil XIII. Simulation von Partiellen Differentialgleichungen (PDE): Wärmeleitungsgleichung

Teil XIII. Simulation von Partiellen Differentialgleichungen (PDE): Wärmeleitungsgleichung Teil XIII Simulation von Partiellen Differentialgleichungen (PDE): Wärmeleitungsgleichung IN8008, Wintersemester 2014/2015 325 ODE vs. PDE Differentialgleichungen bei der Molekulardynamik: nur eine unabhängige

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Kapitel 6. Suffiziente Statistiken. 6.1 Vorbetrachtungen

Kapitel 6. Suffiziente Statistiken. 6.1 Vorbetrachtungen Kapitel 6 Suffiziente Statistiken In diesem Kapitel untersuchen wir einen weiteren statistischen Begriff, der eng mit Likelihoodfunktionen zusammenhängt und mit der Frage nach eventuell möglicher Datenreduktion

Mehr

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel Aufgabe Gegeben sei das Gebiet G : { (x, y, z) R 3 x 2 + y 2 + z 2 < } und die Funktion Berechnen Sie das Integral v(x, y, z) ( z)x 2 + ( + z)y 2 + z. G n ds, wobei n der nach außen zeigende Normalenvektor

Mehr

Dynamische Strukturbildung in Zellen. Teilungsprozess der Bakteriezelle E.coli. Referent:Janosch Deeg 23.Mai 2006

Dynamische Strukturbildung in Zellen. Teilungsprozess der Bakteriezelle E.coli. Referent:Janosch Deeg 23.Mai 2006 Teilungsprozess der Bakteriezelle E.coli. Referent: 23.Mai 2006 Gliederung Zellbiologie 1 Einleitung Zellbiologie 2 MinCDE-System 3 Zellteilung Zellbiologie Kontrollsystem periodisch ablaufende biochemische

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 57 Die ransformationsformel für Integrale Wir kommen zur ransformationsformel für Integrale, wofür wir noch eine Bezeichnung

Mehr

Die Zylinderfunktionen

Die Zylinderfunktionen Die Zylinderfunktionen Betrachten Schwingungen einer Pauke. Auslenkung v = v(t, x, y) des Trommelfells ist Lösung der Wellengleichung 2 v t = v := 2 v 2 x + 2 v 2 y 2 als Produkt aus zeitabhängiger und

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 11/12 Böse, Penn-Karras, Schneider

Technische Universität Berlin Fakultät II Institut für Mathematik WS 11/12 Böse, Penn-Karras, Schneider Technische Universität Berlin Fakultät II Institut für Mathematik WS / Böse, Penn-Karras, Schneider 5.4. Rechenteil April Klausur Analysis II für Ingenieure Musterlösung. Aufgabe 3 Punkte Wir haben g(x,

Mehr

Übungen zu Theoretische Physik II

Übungen zu Theoretische Physik II Physikalisches Institut Übungsblatt 8 Universität Bonn 08.2.206 Theoretische Physik WS 6/7 Übungen zu Theoretische Physik II Prof. Dr. Hartmut Monien, Christoph Liyanage, Manuel Krauß Abgabe: spätestens

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Dörte Hansen Seminar 8 1 d Alembertsches Prinzip und Lagrangegleichungen 1. Art Teil II 2 Das d Alembertsche Prinzip für N-Teilchensysteme

Mehr

Wärmeleitungsgleichung mit anderen Randbedingungen (nicht Dirichlet), symmetrische Differentialoperatoren

Wärmeleitungsgleichung mit anderen Randbedingungen (nicht Dirichlet), symmetrische Differentialoperatoren Fachbereich Mathematik der Universität Hamburg SoSe 2 Dr. Hanna Peywand Kiani Wärmeleitungsgleichung mit anderen Randbedingungen nicht Dirichlet, symmetrische Differentialoperatoren 8.7.2 Die ins Netz

Mehr

14 Numerik hyperbolischer Differentialgleichungen

14 Numerik hyperbolischer Differentialgleichungen Numerik II 256 14 Numerik hyperbolischer Differentialgleichungen Während parabolische PDG Diffusionsvorgänge modellieren stellen hyperbolische PDG Modelle für Wellenphänomene dar. Wichtigste Anwendungsgebiete

Mehr

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017 Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 01/017 Peter Philip, Sabine Bögli. Januar 017 1. 10 Punkte) a) Betrachten Sie R mit der Maximumsnorm. Berechnen Sie die

Mehr

Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1

Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1 Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1 Andrea Schneider 05.02.2013 Literatur: J.D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

T2 Quantenmechanik Lösungen 3

T2 Quantenmechanik Lösungen 3 T2 Quantenmechanik Lösungen LMU München, WS 1/18.1. Wellenfunktion und Wahrscheinlichkeit Prof. D. Lüst / Dr. A. Schmidt-May version: 2. 11. Es seien x 1, x 2, N drei reelle Konstanten und x 2 > x 1 >.

Mehr

Hauptseminar: Moderne Simulationsmethoden

Hauptseminar: Moderne Simulationsmethoden Hauptseminar: Moderne Simulationsmethoden Finite Elemente Methode von Galerkin Tanja Heich Fachbereich 08 Johannes Gutenberg-Universität Mainz 02. November 2017 Hauptseminar Moderne Simulationsmethoden

Mehr

Theorie A (WS2005/06) Musterlösung Übungsblatt

Theorie A (WS2005/06) Musterlösung Übungsblatt Theorie A (WS2005/06) Musterlösung Übungsblatt 3 0.02.06. Stammfunktionen: dx sin(x) = cos(x), dx x = 2(x) 3/2, 2. Partielle Integration: dxu(x) v (x) = u(x) v(x) dx cos(x) = sin(x), dxx n = n + x(n+)

Mehr

Aufgabe 1: Doppelpendel a) [2 Pkte.] Zwangsbedingungen: Massenpunkte auf Kreisen, also A 1 : x y 2 1 l 2 = 0,

Aufgabe 1: Doppelpendel a) [2 Pkte.] Zwangsbedingungen: Massenpunkte auf Kreisen, also A 1 : x y 2 1 l 2 = 0, Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 : PD. Dr. M. Eschrig Ü: Dr. habil. W. Lang Lösungen der Nachklausur vom 28. Oktober 2009 Aufgabe : Doppelpendel

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 4 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum. Übungsblatt Aufgabe 37

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

Ein Blick über den Tellerrand... mit FreeFem++

Ein Blick über den Tellerrand... mit FreeFem++ Ein Blick über den Tellerrand... mit FreeFem++ Eine Einführung und etwas Theorie Steffen Weißer Universität des Saarlandes 30. Oktober 2015 Gliederung 1 Zum Seminar 2 Was ist eine PDE? 3 Etwas Funktionalanalysis

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Q y. dx dy dz. qdv. Bilanzgleichung des Wärmestroms

Q y. dx dy dz. qdv. Bilanzgleichung des Wärmestroms T( x, y, z, τ ) dv = dx dy dz Q z + dz Q y + dy Q * qdv x Q x + dx Q x+ dx Q x( x + dx, y, z, τ ) Q Q ( x, y + dy, z, τ ) y+ dy y Q Q ( x, y, z + dz, τ ) z+ dz z Q Q y Q z Bilanzgleichung des Wärmestroms

Mehr

Die Maxwell Gleichungen

Die Maxwell Gleichungen Die Maxwell Gleichungen Die Maxwellschen Gleichungen beschreiben Beziehungen zwischen dem elektrischen Feld E = E( x;t), der magnetischen Flussdichte B = B( x;t), der elektrischen Stromstärke J = J( x;t),

Mehr

Partielle Differentialgleichungen in der Bildverarbeitung. oder

Partielle Differentialgleichungen in der Bildverarbeitung. oder Partielle Differentialgleichungen in der Bildverarbeitung Februar 2003 Dirk Lorenz oder PDEs in der Bildverarbeitung 1 Partielle Differentialgleichungen zum Anfassen und Streicheln PDEs in der Bildverarbeitung

Mehr

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten! Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik III Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik I Wiederholung Mathematik für Bauingenieure Wiederholungsaufgaben: Mathematik I Aufgabe : Für die Aussagenverbindung T = (A B) ( A) gebe man

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr