Bewegungen Kinematik. Gleichförmige geradlinige Bewegung

Größe: px
Ab Seite anzeigen:

Download "Bewegungen Kinematik. Gleichförmige geradlinige Bewegung"

Transkript

1 Bewegungen Kinematik Kinematik ist die Lehre von der Bewegung von Körpern in Raum und Zeit Ruhezustand: keine Bewegung eines Körpers in Bezug auf seine Umgebung mit der Zeit (bzw. auf ein die Umgebung beschreibendes Koordinatensystem) alle Bewegungen sind Relativbewegungen Grundtypen der Bewegung Translation Rotation Bewegung in eine definierte Richtung Bewegung um ein festes Drehzentrum Gleichförmige geradlinige Bewegung bei dieser Bewegung ist die Geschwindigkeit v constant: v = const s t t 1 t 2 t 3 t 4 t 5 = t 3 -t 2 Weg-Zeit-Diagramm s ~ t Weg, m 2,5 2,0 1,5 1,0 0,5 0 s t Zeit, s v = s t v = ds dt [v] = m s mittlere Geschwindigkeit Momentangeschwindigkeit

2 Gleichmäßig beschleunigte Bewegung hier ist die Beschleunigung a constant: a = const Zeit, s 0 0,5 2 4,5 8 12,5 18 Weg, cm 0,5 1,5 2,5 3,5 4,5 5,5 v, cm/s mittl. Geschwindigkeit, cm/s Weg, cm v t Zeit, s v ~ t a = v t a = dv dt [a] = m s 2 mittlere Beschleunigung Momentanwert der Beschleunigung reier all frei fallende Körper werden zum Erdmittelpunkt hin beschleunigt ein frei fallender Körper bewegt sich gleichmäßig beschleunigt (bei Vernachlässigung von Reibungskräften und Luftwiderstand) g = 9,81 m s -2 allbeschleunigung Weg Zeit Gesetz Berechnung der allzeit für einen Körper aus h = 30 m s = ½ g t 2 t = 2 h / g t = 2,47 s Geschwindigkeit Zeit Gesetz v = g t Berechnung der Geschwindigkeit, mit der der Körper aus 30 m Höhe auf den Erdboden prallt v = 24,2 m/s

3 Diagramme und Gesetze gleichförmig geradlinige Bewegung gleichmäßig beschleunigte Bewegung s Weg-Zeit-Diagramm Geschw.-Zeit-Diagramm Beschl.-Zeit-Diagramm v a t t t Weg-Zeit-Gesetze Geschw.-Zeit-Gesetze Beschl.-Zeit-Gesetze s = v 0 t a 0 s = t 2 2 v = v 0 v = a 0 t a = 0 a = a 0 Gleichförmige Kreisbewegung bei dieser Bewegung ist die Winkelgeschwindigkeit ω constant: ω = const t = t 2 -t 1 M r ϕ t 2 t 1 ϕ ~ t ϕ ω = t mittlere Winkelgeschwindigkeit Der Winkel wird in Bogenmaß gemessen! Bogenlänge b Bogenmaß = Radius r ω = dϕ dt Winkelgeschwindigkeit Gradmaß Bogenmaß 360º 2πr / r = 2π 180º π 90º π / 2 [ ω ] = s -1 bzw. rad s -1 Radiant (rad) ist eine Zählgröße für Winkel (Bogenmaß)

4 Gleichförmige Kreisbewegung Bahn- und Winkelgeschwindigkeit sind einander proportional s v 2 t 2 ω = dϕ/dt Winkelgeschwindigkeit, Kreisfrequenz M r ϕ v 1 t 1 v = ds/dt dϕ = ds/r Bahngeschwindigkeit ω = v r v = ω r Periodendauer (oder Umlaufzeit) T Zeit für das Überstreichen des Winkels 2π requenz (oder Umdrehungszahl) f T = 2 π / ω f = 1 / T f = ω / 2 π ω = 2 π f Gleichförmige Kreisbewegung jede Kreisbewegung ist eine beschleunigte Bewegung v 2 v -v 1 v 1 ω: Winkelgeschwindigkeit, Kreisfrequenz v: Bahngeschwindigkeit M v = v 2 - v 1 v ist bei t 0 zum Kreismittelpunkt gerichtet a r = dv dt Radialbeschleunigung a r = ω 2 r a r = v 2 r der Vektor der Radialbeschleunigung ist stets zum Kreismittelpunkt gerichtet

5 Ungleichförmige Kreisbewegung bei dieser Kreisbewegung ändert sich die Winkelgeschwindigkeit ω const α = ω t ω v α = dω dt Winkelbeschleunigung r [ α ] = s -2 die Winkelgeschwindigkeit ω ist ein axialer Vektor zwei Einstellungen von ω parallel zur Drehachse je nach Drehsinn Harmonische ungedämpfte Schwingung periodische Vergänge können auch als Schwingung beschrieben werden Schwingungsvorgänge sind häufig in lebenden und nichtlebenden Systemen Beispiele: zirkadiane Rhythmen, Muskelkontraktionen im Herz, Puls, Anzahl der Individuen einer Population Uhrpendel, Rotation der Erde um die Sonne, Bewegung eines Motorkolbens Harmonische Schwingung Sinusfunktion x 0 x T Weg-Zeit-Gesetz x = x 0 sin ωt t Geschwindigkeits-Zeit-Gesetz v = ωx 0 cos ωt v 0 = ωx 0 -x 0 T - Periodendauer Beschleunigungs-Zeit-Gesetz a = - ω 2 x 0 sin ωt a 0 = ω 2 x 0 ω = 2π T ω - Kreisfrequenz

6 Kräfte - Newtonsche Axiome sie verknüpfen die Kinematik und Dynamik eines Bewegungsvorganges Trägheitsprinzip Jeder Körper verharrt im Zustand der Ruhe oder der gleichförmigen geradlinigen Bewegung solange keine Kräfte auf ihm einwirken bzw. alle wirkenden Kräfte sich gegenseitig aufheben. Aktionsprinzip Ein frei beweglicher Körper mit der Masse m erfährt durch eine Kraft eine Beschleunigung a, die der wirkenden Kraft proportional ist. = m a Reaktionsprinzip Wirken zwei Körper a und b aufeinander ein und übt a auf b die Kraft ab aus, so wirkt b auf a, so wirkt b auf a mit der entgegengesetzt gleichgroßen Kraft ba = - ab zurück. actio = reactio Schwerkraft sie wirkt auf jeden Körper auf der Erdoberfläche und ist zum Mittelpunkt der Erde gerichtet m k s = m k g Schwerkraft s m k Masse des Körpers g allbeschleunigung [] = kg m s -2 1 kg m s -2 = 1 N g = 9,81 m s -2 Isaac Newton ( ) m k = ρ k V ρ k Dichte des Körpers V Volumen s = ρ k V g

7 Auftrieb der Auftrieb wirkt der Schwerkraft entgegen und hängt von der Masse des vom Körper verdrängten Mediums ab Prinzip von Archimedes Ein in eine lüssigkeit eingetauchter Körper erfährt einen scheinbaren Gewichtsverlust, der gleich dem Gewicht der von Körper verdrängten lüssigkeitsmenge ist. Ein Körper verdrängt eine bestimmte Menge an Medium (Luft, Wasser usw.) der Masse m m A m k, V A = m m g A = ρ m V g Auftrieb ρ m Dichte des Mediums s Auftrieb die Dichten von Körper und Medium bestimmen das (Bewegungs)verhalten des Körpers Werte für die Dichte: A = ρ m V g s = ρ k V g Luft 1,027 kg m -3 Wasser 1000 kg m -3 Eis 917 kg m -3 Holz kg m -3 Eisen 7000 kg m -3 Kupfer 8933 kg m -3 allbetrachtung: 1) ρ k > ρ m s > A Körper sinkt Der Auftrieb im Medium Luft kann in der Regel vernachlässigt werden. 2) ρ k = ρ m s = A Körper schwebt 3) ρ k < ρ m s < A Körper steigt auf

8 Reibung zwischen estkörpern Haft-, Gleit- oder Rollreibung müssen überwunden werden, damit sich der Körper bewegt bzw. seine Bewegungszustand aufrecht erhalten wird Haftreibung zwischen nicht bewegten Körpern R,H = µ H N Haftreibung s N senkrecht auf die Unterlage wirkende Komponente der Schwerkraft s R,H N µ H Haftreibungskoeffizient hängt ab von Material und Oberflächenbeschaffenheit von Körper und Unterlage < R,H = R,H Körper haftet Körper beginnt zu gleiten Gleitreibung, Rollreibung zur Aufrechterhaltung des Gleitens bzw. Rollens muss auch eine Reibung überwunden werden R,G = µ G N Gleitreibung R,R = µ R N Rollreibung µ H > µ G >> µ R µ G, µ R Gleit- bzw. Rollreibungskoeffizient Reibung in lüssigkeiten in lüssigkeiten hemmt die Reibung zwischen lüssigkeitsschichten die Bewegung eines Körpers R A Körper bewegt sich relativ zum Medium - das Medium hemmt die Bewegung Reibungskraft R lüssigkeit s Die Reibungskraft ist immer der Bewegung entgegen gerichtet! Reibung erfolgt zwischen den einzelnen lüssigkeitsschichten Innere Reibung s > A Körper sinkt v Eine dünne lüssigkeitsschicht haftet am Körper und bewegt sich wie der Körper. analoge Aussagen gelten für die Reibung in Gasen

9 Reibung in lüssigkeiten die Viskosität von lüssigkeiten beeinflusst das Reibungsverhalten s = ρ k V g R A A R = ρ m V g ~ v Reibungskoeffizient nach Stokes für kugelförmige Körper mit dem Radius r k s R = 6 π ηr k v η - Viskosität (Zähigkeit, innere Reibung) Ns [η] = = Pa s m 2 Reibungskraft Werte für die Viskosität: s > A Körper sinkt Wasser, 0ºC: Wasser, 20ºC: Wasser, 80ºC: Blut: Blutplasma 1,792x10-3 Pas 1,002x10-3 Pas 0,355x10-3 Pas 3-4x10-3 Pas 1,6-2,2x10-3 Pas Rizinusöl, 20ºC: 990x10-3 Pas Sedimentation hier stellt sich nach einer kurzen Anfangsphase ein Kräftegleichgewicht ein R A s A R = ρ k V g = ρ m V g = 6 π ηr k v V = 4 π r 3 k 3 s - A - R = 0 lüssigkeit lüssigkeit Bestimmung der Viskosität von lüssigkeiten s η = 2 r k 2 9 v (ρ k - ρ m ) g s > A Körper sinkt Weitere Anwendungen Blutsenkung (Zellaggregate sedimentieren schneller als Einzelzellen) Trennung unterschiedlich großer Partikel Bestimmung von v aber auch lotation (wenn ρ k < ρ m )

10 Kräfte bei Kreisbewegungen die über die Radialbeschleunigung verknüpfte Zentripetalkraft zwingt den Körper auf eine Kreisbahn a r v a r = ω 2 r P = m ω 2 r Zentripetalkraft M P m Die Zentripetalkraft zwingt den Körper auf eine Kreisbahn. Beispiele: Gravitation (Bewegung von Himmelskörpern) Elektrostatische Anziehung (Bohr sche Atommodell) Elastische Kräfte (Körper an einem Seil) Gravitationskraft Coulombsche Kraft (anziehend) Elastische Kraft Kräfte bei Kreisbewegungen die Zentrifugalkraft ist der Zentripetalkraft entgegen gerichtet P = m ω 2 r a r v M P m Z Z = - P Zentrifugalkraft liehkraft Die Zentrifugalkraft ist eine Trägheitskraft. Am Körper der Masse m greift eine Kraft Z an, die sich der aufgezwungenen Kreisbewegung widersetzt.

11 Zentrifugation mittels Zentrifugation werden zelluläre und subzelluläre Proben getrennt Winkelbecherrotoren M r Schwenkbecherrotoren Z = m k ω 2 r R A = m M ω 2 r R = 6 π ηr k v Z A r Z = A + R (für ρ k > ρ M ) v = const Zentrifugation die Sedimentationskonstante charakterisiert Makromolekülen bei Sedimentation v (für ρ k > ρ M ) Beispiele S k in S Mol.-gew. in Da Insulin 1, Berechnung von v Z v = S S = = A + R 2 r k 2 9 η v ω 2 r r ( ρ k - ρ M ) ω 2 r Z A R Sedimentationskonstante = m k ω 2 r = m M ω 2 r = 6 πηr k v m = ρ V 4 V = π r 3 k 3 Svedberg [ S ] = s 1 S = s Myoglobin 2, Hämoglobin 4, ibrinogen 7, Ribosom Tabakmosaikvirus (Protein) die Sedimentationskonstante hängt nur von Eigenschaften des Teilchens und Mediums ab sie widerspiegelt die Größe eines Biomoleküls

12 Kräftegleichgewichte Schweben bzw. Schwimmen Sedimentation A A s R A S = A + R s s = A s Bewegungen auf einer Kreisbahn Zentrifugation P = Z R P Z Z A Z = A + R Arbeit bei Kraftwirkung wird an einem Körper Arbeit verrichtet α s Spezielle ormen der Arbeit Hubarbeit W = mgh h W = s cosα Arbeit m [ W ] = Nm 1 Nm = 1 J Joule Beschleunigungsarbeit m allgemeiner W = ds W = 1 2 mv 2 v = 0 v Arbeit ist eine skalare Größe

13 Energie und Leistung Energie und Leistung sind skalare Größen Energie - ähigkeit eines Körpers Arbeit zu verrichten Potenzielle Energie Energie der Lage in zeitlich konstanten Kraftfeldern Beispiel: angehobener Körper Kinetische Energie Energie der Bewegung Leistung W P = t [ P ] = W verrichtete Arbeit Watt 1 W = 1 J s -1 = 1 Nms -1 Energieerhaltungssatz der Mechanik das ist ein Sonderfall des allgemeinen Energieerhaltungssatzes In einem abgeschlossenen System bleibt die Gesamtenergie, das heißt die Summe aus potenzieller und kinetischer Energie, konstant. E pot + E kin = const Spezialfall des allgemeinen Energieerhaltungssatz In jedem abgeschlossenen System bleibt die Gesamtenergie konstant. Energie kann weder erzeugt noch vernichtet werden; sie kann nur von einer orm in eine andere umgewandelt werden. Andere Energieformen: Wärmeenergie, elektrische Energie, chemische Energieformen, Bindungsenergie, Strahlungsenergie usw.

14 p = m v Impuls auch der Impuls ist eine Erhaltungsgröße Impuls Impulserhaltungssatz In einem abgeschlossenen System (es wirken keine äußeren Kräfte) bleibt der Impuls erhalten. [ p ] = kg m s -1 Aktionsprinzip = m a a = = = (m v) t p t v t Beispiel 1: Rückstoß vor dem Start m v = 0 p = 0 v R v G unmittelbar nach dem Start m R m G Beispiel 2: Entarretierung einer eder zuvor danach p = 0 p = m R v R + m G v G t - Kraftstoß m 1 m 2 v 1 = 0 v 2 = 0 p = 0 v 1 v 2 m 1 m 2 p = 0 p = m 1 v 1 + m 2 v 2 Elastischer und inelastischer Stoß in beiden ällen gelten Impuls- und Energieerhaltungssatz gleichzeitig Elastischer Stoß Teilchen werden nicht bleibend verformt Energieerhaltungssatz der Mechanik gilt Beispiel: Zentraler Stoß zweier Billardkugeln zuvor danach ( ) v 1 v 2 Inelastischer Stoß Plastische Verformungen an den stoßenden Körpern Es gilt der allgemeine Energieerhaltungssatz, aber nicht der Energiesatz der Mechanik Beispiel: rontalzusammenstoß zweier Kraftfahrzeuge zuvor v 1 v 2 danach v m 1 m 2 m 1 m 2 m 1 m 2 m 1 + m 2 m 1 v 1 = m 1 v 1 + m 2 v m 2 1v 1 = 1 2 m 1v m 2v 2 2 v 1 = 0 v 2 = v 1 (m 1 = m 2 ) m 1 v 1 m 2 v 2 = (m 1 + m 2 )v

15 Drehmoment ist eine der Kraft analoge Größe bei Rotationsbewegungen Drehachse (senkrecht zur Tafelebene) α M = r sinα Drehmoment r α α [ M ] = Nm M = r mit = sinα und sinα = sinα r M = r mit r = r sinα und sinα = sinα Gleichgewicht M = r x Σ i = 0 i und Σ M i = 0 i das Drehmoment ist ein axialer Vektor durch ein Drehmoment ändert der Körper seine Winkelgeschwindigkeit ω, er erfährt somit eine Winkelbeschleunigung α d. h. es tritt keine Translations- und Rotationsbeschleunigung auf Kräftegleichgewichte Drehmomentengleichgewichte Trägheitsmoment, Rotationsbewegungen durch ein Drehmoment wird die Winkelgeschwindigkeit eines Körpers geändert Drehachse (senkrecht zur Tafelebene) Aktionsprinzip für Rotationsbewegungen r m M = θ α M = r = m a = m v t = m r ω t v = ω r Kinetische Energie für Rotationsbewegungen E kin = 1 2 θω 2 M = m r 2 α θ = m r 2 Trägheitsmoment [ θ ] = kg m 2

16 Drehimpuls für den Drehimpuls gilt ebenfalls ein Erhaltungssatz Drehimpulserhaltungssatz L = θω [ L ] = kg m 2 s -1 Drehimpuls Wirken auf ein System keine äußeren Drehmomente, so bleibt der Gesamtdrehimpuls des Systems konstant Beispiel: Pirouette L ω v r Drehimpuls und Winkelgeschwindigkeit sind axiale Vektoren θ 1 ω 1 = θ 2 ω 2 θ 1 > θ 2 ω 1 < ω 2 Zusammenfassung Translation Rotation Weg Geschwindigkeit s v Winkel Winkelgeschwindigkeit ϕ ω Beschleunigung a Winkelbeschleunigung α Radialbeschleunigung a r Masse m Trägheitsmoment θ Kraft Drehmoment M = m a M = θ α 1 1 Kin. Energie Kin. Energie 2 mv2 2 θω2 Impuls p Drehimpuls L

17 Elastische Eigenschaften, Deformation fester Körper Körper können unter Kraftwirkung auch deformiert werden Wirkungen von Kräften Beschleunigung von Körpern, Ortsveränderung Veränderung der Körperform, Deformation Elastische Deformation Der Körper nimmt nach Wegfall der wirkenden Kraft seine ursprüngliche orm wieder an in der Regel bei kleinen Kräften Plastische Deformation ormveränderung bleibt dauerhaft bestehen Kräfte überschreiten bestimmte Schwellenwerte Materialbruch bei stärkeren Belastungen eder als elastisches Element mit einer elastischen eder können Kräfte gemessen werden Elastische Kraft auch ederkraft genannt Rückstellkraft einer eder bei Dehnung (actio = reactio) el = D s gilt für kleine Kräfte el elastische Kraft, ederkraft D - ederkonstante [ D ] = N / m s el Beispiele: ederwaage, Gummiseil Spannarbeit m s W = 1 2 Ds2 el s

18 Dehnung Körper werden durch Zugkräfte gedehnt A l Kraft greift senkrecht an der Stirnfläche des Stabes an Zugkraft l l Der Stab wird durch die Kraft um die Strecke l gedehnt ε = l l σ = A σ ε ε - Dehnung σ - Zugspannung Hookesches Gesetz Hookesches Gesetz es gilt nur bei Proportionalität von Zugspannung und Dehnung σ =Eε σ Spannungs-Dehnungs-Diagramm E - Elastizitätsmodul [ E ] = N / m 2 = Pa Pascal der Elastizitätsmodul ist eine materialspezifische Größe und beschreibt eine elastische Eigenschaft von Materialien Beispiele für E Kupfer 1, Pa Knochen Pa Kautschuk 10 6 Pa ε

19 Querkontraktion Zugkräfte verändern auch die Querabmessung von Körpern l l a/2 l l Verringerung der Querabmessung (Durchmesser, Kantenlänge) ε Q a ε Q = a - Querkontraktion ε Q = - µε µ - Poissonsche Zahl µ: ,5 Knochen: 0 Kupfer: 0,35 Kautschuk: 0,5 materialspezifische Größe Dehnung und Stauchung Stauchung ist das Gegenstück zur Dehnung Dehnung a/2 l l Verlängerung Querkontraktion Volumenzunahme Stauchung l a/2 Verkürzung Querdilatation Volumenabnahme l

20 Allseitige Kompression hier wird der Körper allseitig gleichmäßig belastet σ = A Druckspannung Volumenverminderung eines Körpers bei erhöhtem Druck orm bleibt dabei erhalten σ = K V V V V = 3 (1-2 µ) ε K = E 3(1-2µ) K - Kompressionsmodul [ K ] = Pa relative Volumenänderung entspricht Stauchung in allen drei Raumrichtungen materialspezifische Größe Scherung bei dieser elastischen Verformung wird der Körper seitlich versetzt A Kraft greift tangential zur Auflagefläche an Schubkraft Scherwinkel β τ = A Schubspannung τ = G β G Schermodul [ G ] = Pa materialspezifische Größe Scherung und Dehnung treten meist gleichzeitig auf G = E 2(1 + µ)

21 Arten der elastischen Verformung Dehnung Biegung Verdrillung (Torsion) Stauchung Scherung Allseitige Kompression Materialspezifische Größen Elastizitätsmodul E Poissonsche Zahl µ Kompressionsmodul K Schermodul G Plastisches Verhalten hier wird der Körper irreversibel deformiert σ Spannungs-Dehnungs-Diagramm ließgrenze Elastizitätsgrenze Bruchgrenze Proportionalitätsgrenze Kurvenverlauf nach Überdehnung bei Überschreiten der Elastizitätsgrenze wird der Körper irreversibel deformiert plastische Deformation bei Überschreiten der ließgrenze beginnt das Material bei starker Verkleinerung des Querschnitts zu fließen Materialbruch an der Bruchgrenze ε pl bei vollständiger Entlastung bleibt dauernde Dehnung zurück bei erneuter Belastung σ(ε) auf der gestrichelten Kurve ε plastische Materialien weisen einen breiten Bereich der plastischen Deformation auf (sie sind verformbar, z. B. Metalle) spröde Materialien haben einen sehr engen Bereich der plastischen Deformation (z. B. Glas, Porzellan)

22 Zeitverhalten bei Deformationen Materialien zeigen bei Belastung ein unterschiedliches Zeitverhalten Elastisches Verhalten Visköses Verhalten Viskoelastisches Verhalten l t l t l t t t t ormänderung folgt unmittelbar der Kraftänderung Beispiel: Schraubenfeder allmähliche ormänderung veränderte orm bleibt erhalten Kolben in zäher lüssigkeit zeitverzögerte Antwort auf Kraftwirkung Parallelität von eder und Kolben Bedeutung des viskoelastischen Verhaltens wichtige Elemente des Bewegungsapparates reagieren zeitverzögert l Kraftstoß zeitverzögerte Einstellung neuer Zustände Relaxationserscheinungen t Abpufferung von Kraftstößen bei heftigen Bewegungen (Sprünge, Würfe u.a.) Umorientierung und Ausrichtung polymerer Makromoleküle Wassereinlagerung Viskoelastische Elemente Gelenkknorpel Sehnen Bänder

23 Druck der Druck ist eine wichtige Eigenschaft in lüssigkeiten und Gasen In Gasen und lüssigkeiten sind die einzelnen Teilchen in ständiger Bewegung Druck offenbart sich an Gefäßwänden oder Hindernissen Trommelfeuer v v = m, v = m dv dt v - v p = A p - Druck A - Querschnittsfläche v = bleibt [ p ] = N / m 2 = Pa (Pascal) Luftdruck die umgebende Luft übt einen definierten Druck aus p 0 = 101,3 kpa = 1 atm = 1,013 bar = 760 Torr = 760 mmhg der Luftdruck nimmt mit zunehmender Höhe ab p p 0 p = p 0 e -(ρ 0 / p 0 ) gh p 0 /2 Barometrische Höhenformel p 0 - Druck bei h = 0 ρ 0 - Dichte bei h = 0 g - 9,81 m / s 2 e - 2,718 0 h 1/2 h Meeresspiegel ~ 5500 m

24 Schweredruck er tritt in lüssigkeiten auf und hängt von der Höhe der lüssigkeitssäule ab h Druck in lüssigkeit hängt von Höhe der darüber liegenden lüssigkeitssäule ab p = ρ g h Schweredruck Der Schweredruck hängt nicht von der Gefäßform ab ρ - Dichte g - allbeschleunigung h - Höhe der lüssigkeitssäule Der Schweredruck ist eine Druckkomponente, die zusätzlich zum äußeren Druck wirkt A Stempeldruck er tritt in lüssigkeiten und Gasen auf, die sich in einem geschlossenen Gefäß befinden lüssigkeit strömt aus p = A Stempeldruck Druckkomponente, die zusätzlich zum äußeren Druck wirkt (analog Schweredruck) Schweredruck und Stempeldruck können gleichzeitig auftreten Beispiele: Kolben, Spritzen, Pumpen, Herz

25 Blutkreislauf das Herz erzeugt einen Stempeldruck und pumpt Blut in den Körper- und Lungenkreislauf Herzminutenvolumen 4 5 l/min Volumen an Blut pro Herzschlag rund 70 ml Anzahl der Herzschläge pro Zeit min -1 linke Herzkammer Oberarm Systole 120 mmhg (16 kpa) 120 mmhg (16 kpa) Diastole ~ 0 mmhg 80 mmhg (10.7 kpa) Strömende lüssigkeiten, Grundbegriffe Druckdifferenz und Stromstärke sind wichtige Kenngrößen in der Hämodynamik l Ursache für eine Strömung: Druckdifferenz längst einer Strecke p 1 V p 2 p Druckgradient p 1 > p 2 p = p 1 -p 2 l I = V t [ I ] = m 3 s hydrodynamische Stromstärke Maß für die Menge, die strömt I ~ p I = R H 1 R H p - Strömungswiderstand Grundgesetz der Hämodynamik (in Analogie zum Ohmschen Gesetz in der Elektrik)

26 Kontinuitätsgleichung diese Gleichung resultiert aus der Inkompressibilität von lüssigkeiten A l v 1 v 2 x p 1 V p 2 A 1 A 2 I = V t x I = A t v lüssigkeiten sind inkompressibel I 1 = I 2 I = A v A 1 v 1 = A 2 v 2 Kontinuitätgleichung v - mittlere Strömungsgeschwindigkeit Strömungsarten eine laminare Strömung ist energetisch günstiger Strömung in Schichten Stromlinien verlaufen parallel, sie überschneiden sich nicht v = 0 am Rand v max in der Mitte parabolische Verteilung der Geschwindigkeit infolge der inneren Reibung laminare Strömung Bildung von Wirbeln Stromlinien nicht parallel, sie überschneiden sich Bei Zunahme der Strömungsgeschwindigkeit schlägt ein laminarer luss in eine turbulente Strömung um. Blutgefäße: in der Regel laminare Strömung energetisch ungünstiger turbulente Strömung bei Turbulenzen: hohe v an Gefäßwänden Gefahr einer Endothelschädigung

27 Strömungswiderstand bei laminarem luss der Gefäßradius bestimmt wesentlich die Stromstärke l p 1 p 2 I ~ p I = p R H Regulation der Durchblutung I ~ r 4 kleine Änderungen des Gefäßtonus führen zu großen Änderungen der Stromstärke I = π r4 8 η l p Hagen-Poiseuillesches Gesetz Newton sche lüssigkeit η = const I R H = 8 η l π r 4 Strömungswiderstand p Parallel- und Reihenschaltung von Gefäßen analoge Betrachtungen gelten für elektrische Ströme Verzweigung von Gefäßen I = I 1 + I 2 I I 1 p 1 R H1 in jedem Verzweigungspunkt ist die Summe der einlaufenden Ströme gleich der Summe der abfließenden Ströme I 2 l p 2 p 1 = p 2 R H2 in parallelen Strömungszweigen herrscht dasselbe Druckgefälle Hintereinanderschalten von Gefäßen 1 R H, ges = 1 R H1 + 1 R H2 I 1 R H1 I 2 RH2 I = I 1 = I 2 R H, ges = R H1 + R H2 p 1 p 2 p 1 = I R H1 p 2 = I R H2

28 Statischer Druck der statische Druck vermindert sich in bewegten Medien Ruhendes Medium Druck als Trommelfeuer Komponentenzerlegung des Geschwindigkeit v p = / A Der senkrecht auf eine läche wirkende Druck heißt statischer Druck Bewegtes Medium v flacherer Aufprall der Teilchen auf Wand in bewegten Medien die wirkende Kraft und somit der statische Druck p werden kleiner je größer v, desto kleiner p Gleichung von Bernoulli diese Gleichung folgt aus dem Energieerhaltungssatz V v 1 v 1 < v 2 V Annahmen: v 2 kein Druckabfall zwischen 1 und 2 reibungsfreie Strömung (µ = 0) starres Gefäß A 2 ideale lüssigkeit A 1 ideale Strömung v 1 < v 2 p 1 > p 2 W pot + W kin m p 1 V + v 2 1 = 2 m p 2 V + v / :V an der engeren Stelle wird der kleinere Druck gemessen ρ p 1 + v 2 ρ 1 = p 2 + v ρ p + v 2 = const 2 ρ v 2 2 p - hydrostatische Druck (wirkt senkrecht auf die Gefäßwand) - Staudruck, dynamische Druck

29 Phänomene an Mediengrenzen zahlreiche Interaktionen zwischen Molekülen finden in biologischen Systemen an Mediengrenzen statt Mediengrenzen: fest / fest fest / flüssig fest / gasförmig flüssig / gasförmig flüssig / flüssig (nicht mischbare lüssigkeiten) estkörper: lüssigkeit: Gas: definiertes Volumen, definierte orm definiertes Volumen, orm passt sich an füllt einen zur Verfügung stehenden Raum aus Mediengrenzen sind gleichzeitig Kontaktflächen orm von Mediengrenzen (und damit die Ausbildung von Strukturen) wird durch Wechselwirkungen der beteiligten Moleküle bestimmt Energieminimum Wechselwirkungskräfte benachbarte Moleküle interagieren miteinander Medium 1 Kohäsionskräfte Kräfte zwischen Molekülen eines Mediums Medium 2 Adhäsionskräfte Kräfte zwischen Molekülen unterschiedlicher Medien allbetrachtung koh > adh kleine Kontaktfläche, Tropfenbildung nicht benetzende lüssigkeiten koh < adh große Kontaktfläche, benetzende lüssigkeiten

30 Oberflächenspannung diese Größe verknüpft Änderungen der Energie und Oberfläche miteinander σ ist eine spezifische Größe Oberfläche A nimmt ab bei gleichbleibendem Volumen Energie wird frei W =σ A Beispiele: Luft / Medium Wasser 72, N/m Blutplasma N/m Quecksilber N/m Olivenöl N/m W - A - σ freigesetzte bzw. benötigte Energie Änderung der Oberfläche - Oberflächenspannung Oberflächenspannung eines der Medien ist Luft Grenzflächenspannung zwei beliebige Medien [ σ ] = J / m 2 = N / m Abreißen einer lüssigkeitslamelle, Drahtbügel l l x x x W = x W = σ 2 l x = 2 σ l Mit der Drahtbügelmethode kann die Oberflächenspannung von lüssigkeiten bestimmt werden

31 Abreißen einer lüssigkeitslamelle, Metallring σ = W A W = max h Metallring Kraft im Moment des Abreißens lüssigkeitsfilm d A = 2 π d h h σ = max 2 π d Auch mit einem Metallring kann die Oberflächenspannung von lüssigkeiten bestimmt werden Druck an gekrümmten Oberflächen im Inneren von Tropfen und Vesikeln herrscht ein höherer Druck als in der Umgebung r Wassertropfen oder Luftblase in Wasser p 0 p0 + p p = 2 σ r p - Kohäsionsdruck Beispiel: σ = N/m r = 10-3 m p = 144 Pa r = 10-6 m p = 144 kpa r i r a r i ~ r a r p = 4 σ r Lamelle, Seifenblase Membranvesikel

32 Oberflächenspannung und Tropfengröße auch die Größe von Tropfen hängt von der Oberflächenspannung ab Bestimmung von σ über die Tropfengröße Tropfenzähler r i r a W = s x A = 2π r a x W = σ A s = 2π r a σ s σ Tropfengewicht und Oberflächenspannung sind proportional x Vergleich mit Eichflüssigkeit (Wasser) σ 1 = σ 0 ρ 1 n 0 ρ 0 n 1 ρ - Dichten n - Tropfenzahl für ein gegebenes V s s Stalagmometer Normaltropfenzähler Effekte an Kapillaren lüssigkeiten in enge Kapillaren zeigen ausgeprägte Oberflächeneffekte Benetzende lüssigkeit Aszension möglichst große gemeinsame Oberfläche zwischen lüssigkeit und Kapillare je enger die Kapillare, desto ausgeprägter der Effekt Beispiele feuchtes Mauerwerk schlechte Isolation Aufstieg von Wasser in Pflanzen Depression Nichtbenetzende lüssigkeit möglichst kleine gemeinsame Oberfläche zwischen lüssigkeit und Kapillare

33 Effekte an Kapillaren die kapillare Steighöhe ist eine unktion der Oberflächenspannung σ 2r r k Aszension s h ϕ Randwinkel kapillare Steighöhe s = ρ l πr 2 h g p s = ρ l h g p= 2σ r k = 2σ r cos ϕ bei vollständig benetzender lüssigkeit (cos ϕ = 1) p s = p σ h = 2σ cos ϕ r ρ l g h = 2σ r ρ l g Oberflächenaktive Stoffe solche Stoffe akkumulieren an der Grenzfläche Wasser/Luft vermindern z.t. drastisch σ (Wasser/Luft) lagern sich bevorzugt an der Grenzfläche an amphiphile Moleküle hydrophil hydrophob Luft Wasser ettsäuren Seifen Tenside Phospholipide Cholesterol Beispiel: Palmitinsäure - O C O die Strukturbildung in biologischen Systemen wird durch amphiphile Stoffe gewährleistet

34 Ausgewählte Wirkungen oberflächenaktiver Stoffe Verminderung der Oberflächenspannung in den Lungenalveolen durch Surfaktantien Bronchiole Grenzfläche Wasser / Luft σ = 72,9 x 10-3 N/m Luft Alveole Surfaktantien (spezielle Phospholipide) bedecken die Innenseite der Alveolen Gewebe (Wasser) σ etwa 1/10 von σ Wasser beim Atmen ändert sich die Oberfläche der Alveolen ständig elastische Verformung des Lungengewebe Wechselspiel zwischen Oberflächenenergie und elastischer Energie Surfaktantien minimieren den Energieaufwand bei der Atmung

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

mentor Abiturhilfe: Physik Oberstufe Weidl

mentor Abiturhilfe: Physik Oberstufe Weidl mentor Abiturhilfen mentor Abiturhilfe: Physik Oberstufe Mechanik von Erhard Weidl 1. Auflage mentor Abiturhilfe: Physik Oberstufe Weidl schnell und portofrei erhältlich bei beck-shop.de DIE ACHBUCHHANDLUNG

Mehr

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet:

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: uf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ******

Mehr

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung.

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung. Energieerhaltung Energieerhaltung für rollende Kugel W ges = W pot + W kin + W rot h Trägheitsmoment: θ = r 2 dd θ Ist abhängig von Form des Körpers 75 Kräfte Gesamtkraft F : Vektorsumme der Einzelkräfte

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

9.Vorlesung EP WS2008/9

9.Vorlesung EP WS2008/9 9.Vorlesung EP WS2008/9 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

Physikalische Formelsammlung

Physikalische Formelsammlung Physikalische Formelsammlung Gleichförmige Bahnbewegung und Kreisbewegung Bewegungsgleichung für die gleichförmige lineare Bewegung: Winkelgeschwindigkeit bei der gleichmäßigen Kreisbewegung: Zusammenhang

Mehr

Einführung in die. Biomechanik. Zusammenfassung WS 2004/2005. Prof. R. Blickhan 1 überarbeitet von A. Seyfarth 2. www.uni-jena.

Einführung in die. Biomechanik. Zusammenfassung WS 2004/2005. Prof. R. Blickhan 1 überarbeitet von A. Seyfarth 2. www.uni-jena. Einführung in die Biomechanik Zusammenfassung WS 00/00 Prof. R. Blickhan überarbeitet von A. Seyfarth www.uni-jena.de/~beb www.lauflabor.de Inhalt. Kinematik (Translation und Rotation). Dynamik (Translation

Mehr

Grundlagen der Mechanik

Grundlagen der Mechanik Ausgabe 2007-09 Grundlagen der Mechanik (Erläuterungen) Die Mechanik ist das Teilgebiet der Physik, in welchem physikalische Eigenschaften der Körper, Bewegungszustände der Körper und Kräfte beschrieben

Mehr

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler Mechanik: befasst sich mit der Bewegung von Körpern und der Einwirkung von Kräften. Wir unterscheiden: Kinematik: beschreibt die Bewegung von Körpern, Dynamik: befasst sich mit Kräften und deren Wirkung

Mehr

Grundlagen der Kinematik und Dynamik

Grundlagen der Kinematik und Dynamik INSTITUT FÜR UNFALLCHIRURGISCHE FORSCHUNG UND BIOMECHANIK Grundlagen der Biomechanik des Bewegungsapparates Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon Ulmer Zentrum für Wissenschaftliches

Mehr

Zusammenfassung der Vorlesung

Zusammenfassung der Vorlesung Zusammenfassung der Vorlesung Physik für Ingenieure (Maschinenbau) WS 2013/2014 (Ruhr-Universität Bochum) 05. Februar 2014 1 / 40 Klausurinformationen Hauptklausur Datum: 24.03.2014 Zeit: 14:00 s.t. -

Mehr

Physik A VL8 (25.10.2012)

Physik A VL8 (25.10.2012) Physik A VL8 (5.10.01) Arbeit, nergie und Leistung Arbeit und nergie nergiebilanzen Leistung Reibung Arbeit und nergie umgangssprachlich: man muss arbeiten, um etwas hochzuheben: physikalisch im alle der

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut.

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut. 5.3 Oberflächenspannung mewae/aktscr/kap5_3_oberflsp/kap5_3_s4.tex 20031214 Anziehende Molekularkräfte (ànm) zwischen Molekülen des gleichen Stoffes: Kohäsionskräfte,...verschiedene Stoffe: Adhäsionskräfte

Mehr

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

6. Welche der folgenden Anordnungen von vier gleich großen ohmschen Widerständen besitzt den kleinsten Gesamtwiderstand?

6. Welche der folgenden Anordnungen von vier gleich großen ohmschen Widerständen besitzt den kleinsten Gesamtwiderstand? 1 1. Welche der folgenden Formulierungen entspricht dem ersten Newton schen Axiom (Trägheitsprinzip)? Ein Körper verharrt in Ruhe oder bewegt sich mit konstanter gleichförmiger Geschwindigkeit, wenn die

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

Mathematische Hilfsmittel

Mathematische Hilfsmittel Mathematische Hilfsmittel Koordinatensystem kartesisch Kugelkoordinaten Zylinderkoordinaten Koordinaten (x, y, z) (r, ϑ, ϕ) (r, ϕ, z) Volumenelement dv dxdydz r sin ϑdrdϑdϕ r dr dzdϕ Additionstheoreme:

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

107 Oberflächenspannung (Bügel- und Steighöhenmethode)

107 Oberflächenspannung (Bügel- und Steighöhenmethode) 107 Oberflächenspannung (Bügel- und Steighöhenmethode) 1. Aufgaben 1.1 Bestimmen Sie die Oberflächenspannung von Wasser und von Spülmittellösungen unterschiedlicher Konzentrationen mit der Abreißmethode!

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

Experimentalphysik I: Lösung Übungsklausur

Experimentalphysik I: Lösung Übungsklausur Experimentalphysik I: Lösung Übungsklausur 3. Januar 1 1 (5 Punkte) Eine Punktmasse, welche sich zum Zeitpunkt t = am Koordinatenursprung befindet, bewegt sich mit der Geschwindigkeit v = α cos t δ βt

Mehr

3. Mechanik deformierbarer Körper Gasdruck: Gesetz von Boyle-Mariotte

3. Mechanik deformierbarer Körper Gasdruck: Gesetz von Boyle-Mariotte Gasdruck: Gesetz von Boyle-Mariotte Bei konstanter Teilchenzahl und Temperatur ist das Produkt aus Druck p und Volumen V konstant VL 13/1 30.10.2012 Brustkorb Lungenaktion 3. Mechanik deformierbarer Körper

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Vorlesung 1 Klassische Mechanik des Massenpunktes und Bezugssysteme Steen Maurus, Diana Beyerlein, Markus Perner 5.03.2012 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpuntes

Mehr

Physik für Mediziner und Zahmediziner

Physik für Mediziner und Zahmediziner Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf

Mehr

Arbeitsblatt Arbeit und Energie

Arbeitsblatt Arbeit und Energie Arbeitsblatt Arbeit und Energie Arbeit: Wird unter der Wirkung einer Kraft ein Körper verschoben, so leistet die Kraft die Arbeit verrichtete Arbeit Kraft Komponente der Kraft in Wegrichtung; tangentiale

Mehr

14. Strömende Flüssigkeiten und Gase

14. Strömende Flüssigkeiten und Gase 14. Strömende Flüssigkeiten und Gase 14.1. orbemerkungen Es gibt viele Analogien zwischen Flüssigkeiten und Gasen (wegen der freien erschiebbarkeit der Teilchen); Hauptunterschied liegt in der Kompressibilität

Mehr

E1 Mechanik Lösungen zu Übungsblatt 3

E1 Mechanik Lösungen zu Übungsblatt 3 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik en zu Übungsblatt 3 WS 014 / 015 Prof. Dr. Hermann Gaub Aufgabe 1 Sonnensystem Abstände innerhalb des Sonnensystems werden häufig

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten

Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten An dieser Stelle müssen wir dringend eine neue physikalische Größe kennenlernen: den Druck. SI Einheit : Druck = Kraft Fläche p = F A 1 Pascal

Mehr

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 6. Übung (KW 03/04) Aufzugskabine )

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 6. Übung (KW 03/04) Aufzugskabine ) 6. Übung (KW 03/04) Aufgabe (M 9. Aufzugskabine ) In einem Aufzug hängt ein Wägestück der Masse m an einem Federkraftmesser. Dieser zeigt die Kraft F an. Auf welche Beschleunigung a z (z-koordinate nach

Mehr

Grimsehl Lehrbuch der Physik

Grimsehl Lehrbuch der Physik Grimsehl Lehrbuch der Physik BAND 1 Mechanik Akustik Wärmelehre 27., unveränderte Auflage mit 655 Abbildungen BEGRÜNDET VON PROF. E. GRIMSEHL WEITERGEFÜHRT VON PROF. DR. W. SCHALLREUTER NEU BEARBEITET

Mehr

Formelsammlung Physik

Formelsammlung Physik Formelsammlung Physik http://www.fersch.de Klemens Fersch 20. August 2015 Inhaltsverzeichnis 1 Mechanik 3 1.1 Grundlagen Mechanik.............................. 3 1.1.1 Gewichtskraft...............................

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

6 Mechanik deformierbarer Körper

6 Mechanik deformierbarer Körper 6-1 6 Mechanik deformierbarer Körper 6.1 Deformierbarer fester Körper Rechtsstehende Abbildung (Bild 2-85 HMS) zeigt das Spannungs-Dehnungs-Diagramm eines Federstahls, wobei die relative Dehnung ε l ε

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Kern-Hülle-Modell. Modellvorstellung. zum elektrischen Strom. Die Ladung. Die elektrische Stromstärke. Die elektrische Spannung

Kern-Hülle-Modell. Modellvorstellung. zum elektrischen Strom. Die Ladung. Die elektrische Stromstärke. Die elektrische Spannung Kern-Hülle-Modell Ein Atom ist in der Regel elektrisch neutral: das heißt, es besitzt gleich viele Elektronen in der Hülle wie positive Ladungen im Kern Modellvorstellung zum elektrischen Strom - Strom

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Physik Formelsammlung

Physik Formelsammlung Physik Formelsammlung et-juergen Seite 1 Inhaltsverzeichnis 1 Kinematik...6 1.1 Translation...6 1.1.1 Formelzeichen...6 1.1. Gleichförmige Bewegung...6 1.1.3 Gleichmäßig beschleunigte Bewegung...6 1.1.4

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme

Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Stichpunkte zur Vorbereitung auf das Praktikum Theresia Kraft Molekular und Zellphysiologie November 2012 Kraft.Theresia@mh hannover.de

Mehr

Warum braucht ein Flugzeug eine Start- und Landebahn? Wolfgang Oehme, Jens Gabke, Axel Märcker Fakultät für Physik und Geowissenschaften

Warum braucht ein Flugzeug eine Start- und Landebahn? Wolfgang Oehme, Jens Gabke, Axel Märcker Fakultät für Physik und Geowissenschaften Warum braucht ein Flugzeug eine Start- und Landebahn? Wolfgang Oehme, Jens Gabke, Axel Märcker Fakultät für Physik und Geowissenschaften Wettstreit zwischen Gewicht und Auftrieb U-Boot Wasser in den Tanks

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner M1 Viskose Strömung durch Kapillaren Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Die Oberflächenspannung

Die Oberflächenspannung Die Oberflächenspannung Theoretische Grundlagen Kohäsionskraft Die Kohäsionskraft, ist diejenige Kraft, die zwischen den Molekülen der Flüssigkeit auftritt. Jedes Molekül übt auf die Umliegenden ein Kraft

Mehr

Oberflächenspannung I

Oberflächenspannung I Oberflächenspannung I In einer Flüssigkeit wirkt auf ein Molekül von allen Seiten die gleiche Wechselwirkungskraft mit anderen Molekülen. Diese Symmetrie ist an der Oberfläche verletzt. Ein Molekül hat

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik

Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Die grundlegenden Gesetze der Physik sind Verallgemeinerungen (manchmal auch Extrapolationen) von hinreichend häufigen und zuverlässigen

Mehr

Einführung in die Physik I. Mechanik deformierbarer Körper 1. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Mechanik deformierbarer Körper 1. O. von der Lühe und U. Landgraf Einführung in die Physik I Mechanik deformierbarer Körer O. von der Lühe und U. Landgraf Deformationen Deformationen, die das olumen ändern Dehnung Stauchung Deformationen, die das olumen nicht ändern

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Metallring Flüssigkeitslamelle Flüssigkeit (Wasser +/-Pril)

Metallring Flüssigkeitslamelle Flüssigkeit (Wasser +/-Pril) Name: PartnerIn in Crime: Datum : Versuch: Oberflächenspannung und innere Reibung 1105B Einleitung: Oberflächenspannung wird durch zwischenmolekulare Kräfte kurzer Reichweite hervorgerufen (Kohäsionskräfte).

Mehr

Deutsche Schule Tokyo Yokohama

Deutsche Schule Tokyo Yokohama Deutsche Schule Tokyo Yokohama Schulcurriculum KC-Fächer Sekundarstufe I Klassen 7-10 Physik Stand: 21. Januar 2014 eingereicht zur Genehmigung Der schulinterne Lehrplan orientiert sich am Thüringer Lehrplan

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

Der atmosphärische Luftdruck

Der atmosphärische Luftdruck Gasdruck Der Druck in einem eingeschlossenen Gas entsteht durch Stöße der Gasteilchen (Moleküle) untereinander und gegen die Gefäßwände. In einem Gefäß ist der Gasdruck an allen Stellen gleich groß und

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

Tropfenkonturanalyse

Tropfenkonturanalyse Phasen und Grenzflächen Tropfenkonturanalyse Abstract Mit Hilfe der Tropfenkonturanalyse kann die Oberflächenspannung einer Flüssigkeit ermittelt werden. Wird die Oberflächenspannung von Tensidlösungen

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von

Mehr

Physik für Elektroingenieure - Formeln und Konstanten

Physik für Elektroingenieure - Formeln und Konstanten Physik für Elektroingenieure - Formeln und Konstanten Martin Zellner 18. Juli 2011 Einleitende Worte Diese Formelsammlung enthält alle Formeln und Konstanten die im Verlaufe des Semesters in den Übungsblättern

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

4 Dynamik der Rotation

4 Dynamik der Rotation 4 Dynamik der Rotation Fragen und Probleme: Was versteht man unter einem, wovon hängt es ab? Was bewirkt ein auf einen Körper einwirkendes? Welche Bedeutung hat das Massenträgheitsmoment eines Körpers?

Mehr

2.3 Arbeit und Energie

2.3 Arbeit und Energie - 43-2.3 Arbeit und Energie 2.3.1 Motivation und Definition Prinzipiell kann man mit den Newton'schen Axiomen die Bewegung von Massenpunkten wie auch Systemen von Massenpunkten beschreiben. In vielen Fällen

Mehr

Auslenkung: Änderung der Position eines Objekts (etwa eines Pendels) bei einer Schwingungsbewegung

Auslenkung: Änderung der Position eines Objekts (etwa eines Pendels) bei einer Schwingungsbewegung Glossar A Hier sind die wichtigsten physikalischen Begriffe aus diesem Buch zusammengefasst. Adiabatisch: ohne Wärme aus der Umgebung aufzunehmen oder in die Umgebung abzugeben Ampere: MKS-Einheit des

Mehr

Hydrostatik II - Grenzflächenerscheinungen

Hydrostatik II - Grenzflächenerscheinungen Physik A VL16 (15.11.2012) Hydrostatik II - Grenzflächenerscheinungen Kohäsion und Adhäsion Die Oberflächenspannung Benetzung und Kapillarwirkung 1 Kohäsion und Adhäsion Grenzflächenerscheinungen Moleküle

Mehr

PHYSIK. HYDROMECHANIK Statik, Dynamik, Kinematik der Flüssigkeiten ANGEWANDTE HYDROMECHANIK. HYDRAULIK Rohrleitung, Gerinne Eindimensionale Strömung

PHYSIK. HYDROMECHANIK Statik, Dynamik, Kinematik der Flüssigkeiten ANGEWANDTE HYDROMECHANIK. HYDRAULIK Rohrleitung, Gerinne Eindimensionale Strömung PHYSIK HYDROMECHANIK Statik, Dynamik, Kinematik der Flüssigkeiten HYDROSTATIK Ruhende Flüssigkeit HYDRODYNAMIK Dreidimensionale Flüssigkeitsbewegung ANGEWANDTE HYDROMECHANIK Hydrostatische Systeme HYDRAULIK

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Praktikumsbericht: Stoßgesetze 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Die Zykloide 4 2. Das Trägheitsmoment

Mehr

Themen und Inhalte des Physikunterrichtes für die Jahrgangsstufe 11 an beruflichen Gymnasium von Erhard Werner

Themen und Inhalte des Physikunterrichtes für die Jahrgangsstufe 11 an beruflichen Gymnasium von Erhard Werner Themen und Inhalte des Physikunterrichtes für die Jahrgangsstufe 11 an beruflichen Gymnasium von Erhard Werner Jahrgangsstufe 11: Mechanik Grundlagen wissenschaftspropädeutischen Arbeitens und naturwissenschaftlicher

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Fachlehrplan Physik - Berufsmaturität Natur, Landschaft und Lebensmittel

Fachlehrplan Physik - Berufsmaturität Natur, Landschaft und Lebensmittel Fachlehrplan Physik - Berufsmaturität Natur, Landschaft und Lebensmittel 1. Allgemeine Bildungsziele Der naturwissenschaftliche Unterricht beinhaltet Biologie, Chemie und Physik und hat zum Ziel, die Neugier

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Intermezzo: Das griechische Alphabet

Intermezzo: Das griechische Alphabet Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ

Mehr

Inhaltsverzeichnis. Inhalt. Vorbemerkung... 9. 1 Einleitung

Inhaltsverzeichnis. Inhalt. Vorbemerkung... 9. 1 Einleitung Inhalt Inhaltsverzeichnis Vorbemerkung... 9 1 Einleitung 1.1 Gegenstand der Physik... 11 1.2 Teilgebiete der Physik... 14 1.3 Maßsysteme, Einheiten und physikalische Größen... 15 1.3.1 Grober Überblick

Mehr

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau. Formen Sie die Größengleichung P = in eine Zahlenwertgleichung t /kj P /= α um und bestimmen Sie die Zahl α! t /h. Drücken Sie die Einheit V durch

Mehr

3. Mechanik deformierbarer Körper

3. Mechanik deformierbarer Körper 3. Mechanik deformierbarer Körper 3.1 Aggregatzustände 3.2 Festkörper Struktur der Festkörper Verformung von Festkörpern 3.3 Druck Schweredruck Auftrieb 3.4 Grenzflächen Oberflächenspannung, Kohäsion,

Mehr

It is important to realize that in physik today, we have no knowledge of what energie is.

It is important to realize that in physik today, we have no knowledge of what energie is. 9. Energie It is important to realize that in physik today, we have no knowledge of what energie is. Richard Feynmann, amerikanischer Physiker und Nobelpreisträger 1965. Energieformen: Mechanische Energie:

Mehr

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm Zahlenbeispiele mittlere freie Weglänge: Λ = 1 / (σ n B ) mittlere Zeit zwischen Stößen τ = Λ / < v > Gas: Stickstoff Druck: 1 bar = 10 5 Pa Dichte n = 3 10 19 cm -3 σ = 45 10-16 cm 2 σ ½ 7 10-8 cm = 7

Mehr

Grundlagen der Mechanik

Grundlagen der Mechanik Ausgabe 2007-09 Grundlagen der Mechanik (Formeln und Gesetze) Die Mechanik ist das Teilgebiet der Physik, in welchem physikalische Eigenschaften der Körper, Bewegungszustände der Körper und Kräfte beschrieben

Mehr

Bestimmung von Federkonstanten

Bestimmung von Federkonstanten D. Samm 2014 1 Bestimmung von Federkonstanten 1 Der Versuch im Überblick Ohne Zweifel! Stürzt man sich - festgezurrt wie bei einem Bungee-Sprung - in die Tiefe (Abb. 1), sind Kenntnisse über die Längenänderung

Mehr

Klassenstufe 7. Überblick,Physik im Alltag. 1. Einführung in die Physik. 2.Optik 2.1. Ausbreitung des Lichtes

Klassenstufe 7. Überblick,Physik im Alltag. 1. Einführung in die Physik. 2.Optik 2.1. Ausbreitung des Lichtes Schulinterner Lehrplan der DS Las Palmas im Fach Physik Klassenstufe 7 Lerninhalte 1. Einführung in die Physik Überblick,Physik im Alltag 2.Optik 2.1. Ausbreitung des Lichtes Eigenschaften des Lichtes,Lichtquellen,Beleuchtete

Mehr

Newton: Joule: Watt: Pascal: Coulomb: Volt: Ohm: Farad: Tesla: Henry: Hertz: Dioptrie:

Newton: Joule: Watt: Pascal: Coulomb: Volt: Ohm: Farad: Tesla: Henry: Hertz: Dioptrie: Formelsammlung zur Klausur Physik für Studierende der Biologie, Biochemie, Chemie, Geologischen Wissenschaften, Informatik, Mathematik und Pharmazie, Wintersemester 2009/0 bgeleitete Einheiten mit eigenem

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Prüfungsfragenkatalog für Physik für Pharmazeuten (Prof. A. Kungl)

Prüfungsfragenkatalog für Physik für Pharmazeuten (Prof. A. Kungl) Prüfungsfragenkatalog für Physik für Pharmazeuten (Prof. A. Kungl) Stand: Dezember 2015 Termin: 09.12.2015 bei allen Formeln müssen die Parameter erklärt werden, sonst kann die Antwort nicht beurteilt

Mehr

Arbeit, Energie und Impuls I (Energieumwandlungen)

Arbeit, Energie und Impuls I (Energieumwandlungen) Übungsaufgaben Mechanik Kursstufe Arbeit, Energie und Impuls I (Energieumwandlungen) 36 Aufgaben mit ausführlichen Lösungen (35 Seiten Datei: Arbeit-Energei-Impuls Lsg) Eckhard Gaede Arbeit-Energie-Impuls_.doc

Mehr

EHW Seite. Bei einem Spritzeinsatz zur Schädlingsbekämpfung fliegt ein Flugzeug bei Windstille in 20 s über ein 500 m langes Feld.

EHW Seite. Bei einem Spritzeinsatz zur Schädlingsbekämpfung fliegt ein Flugzeug bei Windstille in 20 s über ein 500 m langes Feld. EHW Seite Bei einem Spritzeinsatz zur Schädlingsbekämpfung fliegt ein Flugzeug bei Windstille in 20 s über ein 500 m langes Feld. Welche Geschwindigkeit besitzt das Flugzeug? Wie lange benötigt es, wenn

Mehr

Grundlagen der Biomechanik. Ewa Haldemann

Grundlagen der Biomechanik. Ewa Haldemann Grundlagen der Biomechanik Ewa Haldemann Was ist Biomechanik 1 Unter Biomechanik versteht man die Mechanik des menschlichen Körpers beim Sporttreiben. 2 Was ist Biomechanik 2 Bewegungen entstehen durch

Mehr

3.4. Oberflächenspannung und Kapillarität

3.4. Oberflächenspannung und Kapillarität 3.4. Oberflächenspannung und Kapillarität Aus dem Experiment: Flüssigkeitsfaden, Moleküle der Flüssigkeit zeigen Zusammenhalt. Eigenschaften kondensierter Materie: Zwischen den Molekülen herrschen starke

Mehr

Licht breitet sich immer geradlinig aus. Nur wenn das Licht in unser Auge fällt, können wir es wahrnehmen.

Licht breitet sich immer geradlinig aus. Nur wenn das Licht in unser Auge fällt, können wir es wahrnehmen. 1. Optik Licht breitet sich immer geradlinig aus. Nur wenn das Licht in unser Auge fällt, können wir es wahrnehmen. Eine Mondfinsternis entsteht, wenn der Mond in den Schatten der Erde gerät: Eine Sonnenfinsternis

Mehr

Vorlesung Physik für Pharmazeuten PPh - 09 b

Vorlesung Physik für Pharmazeuten PPh - 09 b Vorlesung Physik für Pharmazeuten PPh - 09 b Elektrizitätslehre (II) 29.01.2007 IONENLEITUNG 2 Elektrolytische Leitfähigkeit Kationen und Anionen tragen zum Gesamtstrom bei. Die Ionenleitfähigkeit ist

Mehr

Physik SOL-Projekt Juni 2011. Der Druck: Teil 3

Physik SOL-Projekt Juni 2011. Der Druck: Teil 3 Der Druck: Teil 3 3 Der Auftrieb Ein Stein geht unter, wenn man ihn ins Wasser wirft. Ein Eisenkugel auch. Ein Schiff ist auch aus Eisen, voll gepackt mit tonnenschweren Containern, geht aber nicht unter.

Mehr

Druck: Kraft pro Fläche

Druck: Kraft pro Fläche Druck Druck: Kraft pro Fläche F A P = F A P: Druck F: Kraft A: Fläche Kolbendruck Einheit: [P] = 1 N m 2 = 1Pa = 10 5 bar 1 bar Atmosphärendruck - Der Druck im Kolben ist an allen Stellen mit derselben

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

Protokoll zum Versuch: Zugversuch

Protokoll zum Versuch: Zugversuch Protokoll zum Versuch: Zugversuch Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 18.01.2007 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 3 Versuch 2 3.1

Mehr