2. Freie Schwingungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2. Freie Schwingungen"

Transkript

1 2. Freie Schwingungen Bei freien Schwingungen greifen keine zeitlich veränderlichen äußeren Kräfte am schwingenden System an. Das System wird nach einer anfänglichen Störung sich selbst überlassen. Die Störung kann in einer Anfangsauslenkung oder einer Anfangsgeschwindigkeit bestehen. Prof. Dr. Wandinger 4. Schwingungen TM 4.2-1

2 2. Freie Schwingungen Die einfachsten schwingungsfähigen Systeme sind lineare Systeme: Die Rückstellkräfte sind proportional zur Auslenkung. Die Dämpfungskräfte sind proportional zur Geschwindigkeit. Bei linearen Systemen gilt das Superpositionsprinzip: Jede lineare Überlagerung von Schwingungen ist ebenfalls eine Schwingung. Prof. Dr. Wandinger 4. Schwingungen TM 4.2-2

3 Grundmodell: 2. Freie Schwingungen Das Grundmodell eines einfachen linearen schwingungsfähigen Systems besteht aus einer Masse, einer Feder und einem Dämpfer. Feder Dämpfer Masse x Prof. Dr. Wandinger 4. Schwingungen TM 4.2-3

4 2. Freie Schwingungen Bewegungsgleichung: Schwerpunktsatz: F F F D m a= F F F D Mit F F =c x F D =d ẋ a= ẍ m x Federsteifigkeit c: N /m Dämpfungskonstante d: folgt: m ẍ d ẋ c x=0 N m/s = kg s Prof. Dr. Wandinger 4. Schwingungen TM 4.2-4

5 2. Freie Schwingungen 2.1 Freie ungedämpfte Schwingungen 2.2 Freie gedämpfte Schwingungen Prof. Dr. Wandinger 4. Schwingungen TM 4.2-5

6 2.1 Freie ungedämpfte Schwingungen Lösung der Bewegungsgleichung für das Grundmodell: Für freie ungedämpfte Schwingungen lautet die Bewegungsgleichung: m ẍ c x=0 Division durch die Masse m führt auf die Standardform der Schwingungsgleichung: ẍ c m x=0 Die Lösung dieser Gleichung ist eine harmonische Schwingung mit der Kreisfrequenz = c m Prof. Dr. Wandinger 4. Schwingungen TM 4.2-6

7 2.1 Freie ungedämpfte Schwingungen Die allgemeine Lösung lautet: Die Amplitude x a und die Phase φ werden aus den Anfangsbedingungen bestimmt: x 0 =x 0 = x a sin v 0 =ẋ 0 = x a cos Beispiele: x t =x a sin t tan = x 0 v 0, x a = x 0 0, v 0 =0 : x a = x 0, cot =0 = 2 = x 0 =0, v 0 0 : x v 0 a, tan =0 =0 x v Prof. Dr. Wandinger 4. Schwingungen TM 4.2-7

8 2.1 Freie ungedämpfte Schwingungen Beispiel: Kragbalken mit Einzelmasse L E, I m F w Um die Masse um die Strecke w zu verschieben, ist die Kraft F=3 EI L w 3 erforderlich (vgl. Festigkeitslehre). Für die Federkonstante c gilt also: c= F w =3 EI L 3 Prof. Dr. Wandinger 4. Schwingungen TM 4.2-8

9 2.1 Freie ungedämpfte Schwingungen Damit folgt für die Kreisfrequenz: = c m = 3 EI m L 3 Der Balken schwingt mit der Frequenz f = EI m L 3 und der Periode T = 1 f =2 m L3 3 EI Prof. Dr. Wandinger 4. Schwingungen TM 4.2-9

10 2.1 Freie ungedämpfte Schwingungen Beispiel: Rollschwinger Eine zylindrische Walze mit Masse m und Massenträgheitsmoment J S bezüglich m, J S des Schwerpunktes wird durch eine im Schwerpunkt r befestigte Feder der Steifigkeit c gehalten. c S x φ Die Walze kann auf einer horizontalen Ebene rollen. Prof. Dr. Wandinger 4. Schwingungen TM

11 2.1 Freie ungedämpfte Schwingungen Walze freigeschnitten: m, J S x r S c x mg φ H N Rollbedingung: x=r ẍ=r Momentensatz bezüglich Schwerpunkt S: J S =r H Schwerpunktsatz: m ẍ= c x H H = c r m r Schwingungsgleichung: J S mr 2 c r 2 =0 Prof. Dr. Wandinger 4. Schwingungen TM

12 2.1 Freie ungedämpfte Schwingungen Standardform der Schwingungsgleichung: Daraus kann abgelesen werden: = c r2 J S m r 2 =0 c r 2 f = 1 J S m r 2 2 c r 2 J S m r 2 Prof. Dr. Wandinger 4. Schwingungen TM

13 2.1 Freie ungedämpfte Schwingungen Beispiel: Pendel mit Feder A h m, J S A S B h B Der Körper mit Masse m und Massenträgheitsmoment J A ist im Punkt A gelenkig aufgehängt. Im Punkt B ist eine lineare Feder mit der Federkonstanten c befestigt. Gesucht ist die Frequenz für Schwingungen mit kleiner Amplitude. c Prof. Dr. Wandinger 4. Schwingungen TM

14 2.1 Freie ungedämpfte Schwingungen Für kleine Winkel gilt: x S =h S sin h S x B =h B sin h B Kräfte am ausgelenkten Körper: A A G S h S x S S h B F F B x B φ B G=m g F F =c x B =c h B Prof. Dr. Wandinger 4. Schwingungen TM

15 2.1 Freie ungedämpfte Schwingungen Momentensatz bezüglich A: Mit cos und den Beziehungen für x S und die Kräfte folgt: J A c h 2 B h S m g =0 Standardform der Schwingungsgleichung: h 2 S m g c h B =0 J A Daraus kann abgelesen werden: J A = h B cos F F x S G = h 2 s m g c h B f = 1 h 2 s m g c h B J A 2 J A Prof. Dr. Wandinger 4. Schwingungen TM

16 2.1 Freie ungedämpfte Schwingungen Statische Vorlast: c(x s + x) x s G x x s + x G Prof. Dr. Wandinger 4. Schwingungen TM

17 2.1 Freie ungedämpfte Schwingungen Statische Ruhelage: c x s =G Schwerpunktsatz: m ẍ=g c x s x m ẍ c x=0 Eine Schwingung erfolgt immer um die statische Ruhelage. Vorspannkraft und statische Last sind im Gleichgewicht. Bei linearen Systemen muss die statische Last nicht berücksichtigt werden, wenn die Auslenkung von der statischen Ruhelage aus gemessen wird. Prof. Dr. Wandinger 4. Schwingungen TM

18 2.1 Freie ungedämpfte Schwingungen Die Frequenz kann aus der statischen Auslenkung berechnet werden: Gewichtskraft: G=m g Statische Ruhelage: c x s =m g c m = g x s Frequenz: f = 1 2 g x s Prof. Dr. Wandinger 4. Schwingungen TM

19 Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte: Lagerreibung Luftwiderstand innere Reibung des Werkstoffs Prof. Dr. Wandinger 4. Schwingungen TM

20 Dämpfungskräfte sind stets der Bewegungsrichtung entgegengesetzt. Die genaue Beschreibung aller dämpfenden Einflüsse ist aufwändig. Das einfachste Dämpfungsmodell ist das Modell einer geschwindigkeitsproportionalen Dämpfung: Dämpferkonstante d: F D =d v=d ẋ Einheit Kraft/Geschwindigkeit: 1Ns/m = 1kg/s Prof. Dr. Wandinger 4. Schwingungen TM

21 Lösung der Bewegungsgleichung: Aus m ẍ d ẋ c x=0 folgt nach Division durch m die Standardform ẍ 2 ẋ 2 x=0 Dabei wurde die Abklingkonstante = d 2m eingeführt. kg Die Dimension der Abklingkonstante ist. s kg = 1 s Prof. Dr. Wandinger 4. Schwingungen TM

22 Einsetzen des Lösungsansatzes x t = A e t, ẋ t = A e t, ẍ t = 2 A e t führt auf Ae t =0. Nichttriviale Lösungen mit A 0 existieren nur, wenn die charakteristische Gleichung =0 erfüllt ist. Prof. Dr. Wandinger 4. Schwingungen TM

23 Die charakteristische Gleichung hat die beiden Lösungen 1/2 = ± 2 2 = ± Mit dem Lehrschen Dämpfungsmaß folgt: D= 1/2 = ± D 2 1 Prof. Dr. Wandinger 4. Schwingungen TM

24 Dämpfungsfälle: Starke Dämpfung: D > 1: 2 reelle Lösungen Kritische Dämpfung: D = 1: 1 reelle Lösung Schwache Dämpfung: D < 1: 2 komplexe Lösungen Prof. Dr. Wandinger 4. Schwingungen TM

25 Starke Dämpfung: Es gibt 2 reelle Lösungen 1/2 = ± mit = D 2 1= 2 2. Die allgemeine Lösung der Schwingungsgleichung ist x t = A 1 e 1t A 2 e 2t =e t A 1 e t A 2 e t Das ist eine exponentiell abklingende Funktion. Für die Geschwindigkeit folgt: ẋ t = e t A 1 e t A 2 e t e t A 1 e t A 2 e t Prof. Dr. Wandinger 4. Schwingungen TM

26 Die Konstanten A 1 und A 2 können aus den Anfangsbedingungen bestimmt werden: Verschiebung: x 0 =x 0 = A 1 A 2 Geschwindigkeit: v 0=ẋ 0 = A 1 A 2 A 1 A 2 A 1 A 2 = x 0 A 1 A 2 = v 0 = A 1 A A 1 = x 0 v 0 A 1 = x 0 v 0 2 A 2 = x 0 v 0 A 2 = x 0 v 0 2 Prof. Dr. Wandinger 4. Schwingungen TM

27 v 0 > 0 v 0 = 0 x(t) -δx 0 < v 0 < 0 v 0 < -δx 0 t Prof. Dr. Wandinger 4. Schwingungen TM

28 Kritische Dämpfung: Es gibt nur eine reelle Lösung 1 = 2 = Die allgemeine Lösung lautet: x t = A 1 A 2 t e t Die Konstanten A 1 und A 2 können wieder aus den Anfangsbedingungen bestimmt werden. Dieser Fall wird auch als aperiodischer Grenzfall bezeichnet. Prof. Dr. Wandinger 4. Schwingungen TM

29 x(t) Der Ausschlag geht schneller gegen Null als bei starker Dämpfung. Technische Anwendung findet der Grenzfall z.b. bei der Auslegung von Messgeräten. t Prof. Dr. Wandinger 4. Schwingungen TM

30 Schwache Dämpfung: Es gibt 2 komplexe Lösungen 1/2 = ±i d mit d = 1 D 2. Die allgemeine Lösung lautet x t = A 1 e 1t A 2 e 2t =e t A 1 e i t d A 2 e i d t mit zwei komplexen Konstanten A 1 =a 1 i b 1, A 2 =a 2 i b 2 Prof. Dr. Wandinger 4. Schwingungen TM

31 Mit den Eulerschen Formeln folgt: e ix =cos x i sin x, e ix =cos x i sin x x t =e t [ a 1 i b 1 cos d t i sin d t a 2 i b 2 cos d t i sin d t ] =e t [ a 1 a 2 cos d t b 1 b 2 sin d t i b 1 b 2 cos d t a 1 a 2 sin d t ] Die Lösung ist reell für a 1 =a 2 = C 1 2, b 1= b 2 = C 2 2 Prof. Dr. Wandinger 4. Schwingungen TM

32 Damit lautet die allgemeine Lösung: x t =e t C 1 cos d t C 2 sin d t Für die Geschwindigkeit folgt: ẋ t = e t C 1 cos d t C 2 sin d t e t d C 1 sin d t C 2 cos d t =e t [ d C 2 C 1 cos d t d C 1 C 2 sin d t ] Die Konstanten können aus den Anfangsbedingungen bestimmt werden: x 0 =x 0 =C 1 C 1 =x 0 v 0 =ẋ 0 = d C 2 C 1 C 2 = v 0 x 0 d Prof. Dr. Wandinger 4. Schwingungen TM

33 Ergebnis: x t =e t[ x 0cos d t v 0 x 0 d sin d t ] Wie im ungedämpften Fall lässt sich die Lösung auch in der Form x t =C e t sin d t schreiben. Dabei gilt: C= x 2 0 v 0 x 0 d 2, tan = d x 0 v 0 x 0 x 0 =C sin, v 0 x 0 d =C cos Prof. Dr. Wandinger 4. Schwingungen TM

34 T d d T d =2 x(t) t Prof. Dr. Wandinger 4. Schwingungen TM

35 Es liegt eine exponentiell abklingende Schwingung vor. Die Frequenz f d der gedämpften Schwingung ist kleiner als die Frequenz f der ungedämpften Schwingung: f d f = d = 1 D² Bei vielen praktischen Anwendungen ist D < 5%. Für D = 5% gilt: f d f = 1 0,05²=0,9987 Die Abweichung von der ungedämpften Frequenz beträgt also etwa 0,1%. Prof. Dr. Wandinger 4. Schwingungen TM

36 Logarithmisches Dekrement: Für das Verhältnis von 2 Ausschlägen im Abstand einer Periode T d gilt: x t x t T d = C e t sin d t C e t T d sin d t T d =e T d Das logarithmische Dekrement ist definiert durch =ln x t x t T d = T d= 2 d =2 Für sehr schwache Dämpfung (D < 10%) gilt die Näherung D 1 D 2 1 D D Prof. Dr. Wandinger 4. Schwingungen TM

37 Beispiel: Einachsiger Anhänger L F L D Das Berechnungsmodell des Anhängers besteht aus einem starren Körper mit Masse m und Massenträgheitsmoment J S um den Schwerpunkt. A L S S d m, J S c Das Fahrwerk wird durch eine Feder und einen Dämpfer beschrieben. Prof. Dr. Wandinger 4. Schwingungen TM

38 Gesucht: Anhänger freigeschnitten: Frequenz f der ungedämpften Schwingung Wert der Dämpferkonstanten d, damit eine Anfangsauslenkung φ 0 nach zwei vollen Schwingungen auf φ 0 /50 S abklingt Die Auslenkungen können als klein angenommen werden. A φ F D F F Prof. Dr. Wandinger 4. Schwingungen TM

39 Momentensatz bezüglich A: Kräfte: Schwingungsgleichung: Standardform: F F =c L F sin c L F F D =d L D cos d L D Frequenz der ungedämpften Schwingung: f = 2 = 1 2 c L F 2 2 J S m L S J S m L S2 = L F F F L D F D J S m L S2 d L D2 c L F 2 =0 d L 2 D J S m L c L 2 F 2 S J S m L =0 2 S Prof. Dr. Wandinger 4. Schwingungen TM

40 Ausschlag nach 2 vollen Schwingungen: 2T d =C e 2 T d sin 2 d T d =C e 2 T d sin 4 =e 2 T d 0 = 0 /50 e 2 T d =50 2 T d =ln 50 Mit T d =2 D folgt: 1 D 2 ln 50 =4 D ln D 2 =16 2 D 2 1 D 2 ln 2 50 = 16 2 ln 2 50 D 2 D=0,2972 Prof. Dr. Wandinger 4. Schwingungen TM

41 Mit D= / folgt: 2 D=2 = d L 2 D J S m L S 2 d = 2 D L D 2 J S m L 2 S Ergebnis: d= 2 D L D 2 2 c L F J S m L S2 = 0, L D 2 c L F J S m L S2 Prof. Dr. Wandinger 4. Schwingungen TM

2. Freie gedämpfte Schwingungen

2. Freie gedämpfte Schwingungen 2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 16 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 2016 Prof. Dr.-Ing.

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1 2.1 inematik 2.2 Momentensatz 2.3 Arbeit und Energie 2. reisbewegung Prof. Dr. Wandinger 3. inematik und inetik TM 3.2-1 2.1 inematik Bahngeschwindigkeit und Winkelgeschwindigkeit: Für den auf einer reisbahn

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

Formelzusammenstellung

Formelzusammenstellung Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

A02 Schwingung Resonanz Dämpfung

A02 Schwingung Resonanz Dämpfung A Schwingung Resonanz Dämpfung (A) x t t A Schwingung Resonanz Dämpfung Ziele In diesem Versuch untersuchen Sie Schwingungsphänomene und deren Gesetzmäßigkeiten mit einem Drehschwingsystem ein Beispiel

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

Resonanzverhalten eines Masse-Feder Systems (M10)

Resonanzverhalten eines Masse-Feder Systems (M10) Resonanzverhalten eines Masse-Feder Systems M0) Ziel des Versuches In diesem Versuch werden freie, freie gedämpfte und erzwungene Schwingungen an einem Masse-Feder System untersucht Die Resonanzkurven

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS

TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 4., aktualisierte Auflage thomas GÖRNE TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 18 1 Schall und Schwingungen 1.1 Mechanische

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907 Anhang A1 Schwingungen Am Beispiel eines Drehschwingers werden im Folgenden die allgemeinen Eigenschaften schwingfähiger Systeme zusammengestellt und diskutiert. A1.1 Freie Schwingung ohne Dämpfung Idealisierter

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

Dieter Suter - 223 - Physik B3, SS03

Dieter Suter - 223 - Physik B3, SS03 Dieter Suter - 223 - Physik B3, SS03 4.4 Gedämpfte Schwingung 4.4.1 Dämpfung und Reibung Wie bei jeder Bewegung gibt es bei Schwingungen auch dissipative Effekte, d.h. es wird Schwingungsenergie in Wärmeenergie

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2

Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2 19 9. Harmonische Schwingungen (Sinusschwingungen) Der Punkt P rotiert gleichförmig in der Grundebene um den Ursprung O mit der Winkelgeschwindigkeit in positivem Drehsinn. Zur Zeit t = 0 schliesst uuur

Mehr

Physik 1+2 Frühjahr 2008 Prof. G.Dissertori Klausur. Aufgabe 1: Dimensionsanalyse (10 Punkte) a) Es gilt:

Physik 1+2 Frühjahr 2008 Prof. G.Dissertori Klausur. Aufgabe 1: Dimensionsanalyse (10 Punkte) a) Es gilt: Physik 1+2 Frühjahr 2008 Prof. G.Dissertori Klausur Lösungen Aufgabe 1: Dimensionsanalyse (10 Punkte) a) Es gilt: Elektronendichte [n] = cm 3, Massendichte [ρ] = g/cm 3, Avogadrozahl [N A ] = mol 1, molare

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

Robert-Bosch-Gymnasium

Robert-Bosch-Gymnasium Seite - 1 - Gedämpfte, Resonanz am Drehpendel 1. Theoretische und technische Grundlagen Ein flaches Kupferspeichenrad ist in der Mitte leicht drehbar gelagert; die Gleichgewichtslage wird dabei durch zwei

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

Physikalisches Grundpraktikum. Mechanische Schwingungen

Physikalisches Grundpraktikum. Mechanische Schwingungen Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum WWW-Adresse Grundpraktikum Physik: Hhttp://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen der Praktikumsleiter:

Mehr

Schwingungen. Lena Flecken. Ausarbeitung zum Vortrag im Seminar Modellierungen (Wintersemester 2008/09, Leitung PD Dr.

Schwingungen. Lena Flecken. Ausarbeitung zum Vortrag im Seminar Modellierungen (Wintersemester 2008/09, Leitung PD Dr. Schwingungen Lena Flecken Ausarbeitung zum Vortrag im Seminar Modellierungen (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Eine Schwingung (auch Oszillation) bezeichnet den Verlauf

Mehr

Gekoppeltes Pendel. Abbildung 1: Erdbebenwellen ko nnen große Scha den anrichten. Man unterscheidet longitudinale und transversale Erdbebenwellen.

Gekoppeltes Pendel. Abbildung 1: Erdbebenwellen ko nnen große Scha den anrichten. Man unterscheidet longitudinale und transversale Erdbebenwellen. c Doris Samm 008 1 Gekoppeltes Pendel 1 Der Versuch im U berblick Wasserwellen bereiten Ihnen Vergnu gen, Erdbebenwellen eher nicht, Schallwellen ko nnen manchmal nur Flederma use ho ren (Abb. 1, Abb.

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009 9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 009 Aufgabe 9.1: Doppelfeder Eine Kugel wird im Schwerefeld der Erde zwischen zwei Federn mit

Mehr

Mechanische Schwingungen Aufgaben 1

Mechanische Schwingungen Aufgaben 1 Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

Praktikum Physik. Protokoll zum Versuch 3: Drehschwingungen. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch 3: Drehschwingungen. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch 3: Drehschwingungen Durchgeführt am 27.10.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte)

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 013/014 Prof. Dr. J. Schmalian Blatt 8 Dr. P. P. Orth Abgabe 0.1.013 1. Komplexe Zahlen (5 + 5 + 5 + 5 + 5

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 8/7/ Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 1/2/14 Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 .1 Stundenverlaufsplan Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 Hypothesenbildung Von welchen Größen hängt die Periode eines

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Aufgaben 17 Schwingungen Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen,

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Resonanz und Dämpfung

Resonanz und Dämpfung Resonanz und ämpfung Wenn eine Masse m an einem Federpendel (Federkonstante ) frei ohne ämpfung schwingt, genügt die Elongation s = s ( t ) der ifferentialgleichung m # s ( t ) + # s( t ) = 0. ies ist

Mehr

Weitere Beispiele zu harmonischen Schwingungen

Weitere Beispiele zu harmonischen Schwingungen Weitere Beispiele zu harmonischen Schwingungen 1. Schwingung eines Wagens zwischen zwei horizontal gespannten, gleichartigen Federn Beide Federn besitzen die Federhärte D * und werden nur auf Zug belastet;

Mehr

Klausur 3 Kurs 11Ph1e Physik

Klausur 3 Kurs 11Ph1e Physik 2011-03-16 Klausur 3 Kurs 11Ph1e Physik Lösung 1 An einem Masse-Feder-Pendel und an einem Fadenpendel hängt jeweils eine magnetisierbare Masse. urch einen mit jeweils konstanter (aber möglicherweise unterschiedlicher)

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

Pohlsches Pendel / Kreisel

Pohlsches Pendel / Kreisel Pohlsches Pendel / Kreisel Mit Hilfe des Pohlschen Pendels, eines schwingenden Systems mit einem Freiheitsgrad, sollen freie und erzwungene Schwingungen mit und ohne Dämpfung untersucht werden. Insbesondere

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Fachrichtung Physik Physikalisches Grundpraktikum Versuch: ES Erstellt: M. Kauer B. Scholz Aktualisiert: am 28. 06. 2016 Erzwungene Schwingungen Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Beispiel: Erzwungene gedämpfte Schwingungen

Beispiel: Erzwungene gedämpfte Schwingungen Lineare Dgln. mit konstanten Koeffizienten Zur Startseite TM-Mathe Gewöhnliche Dgln. (Grundlagen) Differenzialgleichungen 1. Ordnung Lineare Dgln. mit konstanten Koeffizienten Lineare Differenzialgleichungen

Mehr

120 Gekoppelte Pendel

120 Gekoppelte Pendel 120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Allgemeine zeitabhängige Lasten 2.2 Periodische Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

4.6 Schwingungen mit mehreren Freiheitsgraden

4.6 Schwingungen mit mehreren Freiheitsgraden Dieter Suter - 36 - Physik B3 4.6 Schwingungen mit mehreren Freiheitsgraden 4.6. Das Doppelpendel Wir betrachten nun nicht mehr einzelne, unabhängige harmonische Oszillatoren, sondern mehrere, die aneinander

Mehr

Physikalisches Anfaengerpraktikum. Pohlsches Rad

Physikalisches Anfaengerpraktikum. Pohlsches Rad Physikalisches Anfaengerpraktikum Pohlsches Rad Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Mittwoch, 6. März 25 email: Marcel.Engelhardt@mytum.de Weisgerber@mytum.de ()Einführung

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Versuch e - Lineares Pendel

Versuch e - Lineares Pendel UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Grundlagenpraktikum A für Bachelor of Nanoscience Versuch e - Lineares Pendel 23. überarbeitete Auflage 2011 Dr. Stephan

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Erzwungene mechanische Schwingungen. Sebastian Finkel Sebastian Wilken

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Erzwungene mechanische Schwingungen. Sebastian Finkel Sebastian Wilken PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK Erzwungene mechanische Schwingungen Sebastian Finkel Sebastian Wilken Versuchsdurchführung:. Januar 006 0. Inhalt. Einleitung. Theoretischer Teil.. Ungedämpfter harmonischer

Mehr

Lenken wir die Kugel aus und lassen sie los, dann führt sie eine sich ständig wiederholende Hin und Herbewegung aus.

Lenken wir die Kugel aus und lassen sie los, dann führt sie eine sich ständig wiederholende Hin und Herbewegung aus. Versuch Beschreibung von Schwingungen Wir beobachten die Bewegung eines Fadenpendels Lenken wir die Kugel aus und lassen sie los, dann führt sie eine sich ständig wiederholende Hin und Herbewegung aus.

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunktes TM 3

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Massenpunkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung ist die Bahn vorgegeben:

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Physikalisches Grundpraktikum V10 - Koppelschwingungen

Physikalisches Grundpraktikum V10 - Koppelschwingungen Aufgabenstellung: 1. Untersuchen Sie den Einfluss des Kopplungsgrades zweier gekoppelter physikalischer Pendel auf die Schwingungsdauern ihrer Fundamentalschwingungen. 2. Charakterisieren Sie die Schwebungsschwingung

Mehr

Klausur Schwingungstechnik 20. September Name Vorname Matr. - Nr. Punkte

Klausur Schwingungstechnik 20. September Name Vorname Matr. - Nr. Punkte 1 Aufgaben FB Maschinenbau Institut für Mechanik FG Maschinendynamik Prof. Dr.-Ing. H. Irretier Dipl.-Ing. A. Stein Klausur Schwingungstechnik 0. September 011 Name Vorname Matr. - Nr. Punkte =50 Aufgabe

Mehr

Praktikum Mikro- und Nanosysteme (Mikrosystemtechnik) Versuch MST7 Dämpfung

Praktikum Mikro- und Nanosysteme (Mikrosystemtechnik) Versuch MST7 Dämpfung Praktikum Mikro- und Nanosysteme (Mikrosystemtechnik) I. Versuchsvorbereitung Aufgabe 1 Geg.: 2,5, sinusförmige Anregung Versuch MST7 Dämpfung a) Amplituden- und Phasenkennlinien - Schwingfall ( ): Der

Mehr

S4 Erzwungene Schwingung Protokoll

S4 Erzwungene Schwingung Protokoll Christian Müller Jan Philipp Dietrich S4 Erzwungene Schwingung Protokoll I. Freie Schwingung a) Erläuterung b) Bestimmung der Eigenkreisfrequenz c) Bestimmung des Dämpfungsmaß β II. Erzwungene Schwingung

Mehr

Schwingungen und Resonanzphänomene

Schwingungen und Resonanzphänomene Schwingungen und Resonanzphänomene oder...... warum Männer am liebsten in der Badewanne und Frauen lieber auf der Toilette singen. Prof. Dr. Christian Schröder Fachbereich Elektrotechnik und Informationstechnik

Mehr