Bernd Ohmann, Tobias Jaschke, Judith Blomberg Systematisieren und Sichern im Themenfeld Der gute Unterricht & seine Leitideen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Bernd Ohmann, Tobias Jaschke, Judith Blomberg Systematisieren und Sichern im Themenfeld Der gute Unterricht & seine Leitideen"

Transkript

1 Bernd Ohmann, Tobias Jaschke, Judith Blomberg Systematisieren und Sichern im Themenfeld Der gute Unterricht & seine Leitideen Bärbel Barzel, Timo Leuders, Lars Holzäpfel Stephan Hußmann, Susanne Prediger, Judith Blomberg

2 Ausgangssituation Ein Blick ins Klassenzimmer.. Wie soll ich mir das bloß alles merken? Und wie hängt das jetzt alles zusammen? Was genau haben wir jetzt eigentlich gelernt? Ich habe das ganz anders gelöst.

3 Aktiv-konstruierende Erarbeitungsphase super! Und dann? Was genau Verschiedene haben Ergebnisse, wir Lösungen, jetzt Ansätze eigentlich Reflexionsbedarf gelernt? Wie hängen Und wie die hängt verschiedenen Ergebnisse, das jetzt Lösungen alles und Ansätze zusammen? zusammen? Vernetzungsbedarf Ich habe das Welcher Zusammenhang besteht zur regulären ganz anders Mathematik? gelöst. Regularisierungsbedarf Wie können die Erkenntnisse Wie soll ich nachhaltig mir festgehalten das bloß werden Dokumentationsbedarf alles merken? Sammeln Systematisieren Sichern

4 Fortbildungsstruktur Fortbildung in zwei Teilen: Teil I: Gestaltung der Sicherungsphasen Reflexion: Wie laufen Sicherungsphasen ab? Input: Was muss überhaupt gesichert werden? Wie kann ich Sicherungsphasen schülerorientiert gestalten? Praxisphase: Arbeitsauftrag Teil II: Reflexion Erfahrungsaustausch/ Diskussion Der Wissensspeicher in der mathewerkstatt Aufgabenbeispiele Optional: Methodische Möglichkeiten in Sicherungsphasen Optional: Vom Vierschritt: Kontexte und Kernideen / Erkunden / Ordnen / Vertiefen Die weitere Arbeit im Kollegium

5 Ziele Die Ziele im ersten Teil: WARUM muss man bewusst sichern? WAS muss überhaupt gesichert werden? WIE gestaltet man das Sichern im Unterricht? Gute Ideen erfordern Struktur!

6 Warum bewusst sichern? Reicht das?

7 Warum bewusst sichern? Sicherung Um die Ergebnisse zu verallgemeinern und zu sichern, wird an der Tafel ein Merkaufschrieb notiert. Die Schüler schreiben diesen jedoch nicht gleich mit, sondern sollen sich gedanklich ganz dem Inhalt widmen. Zuerst geht es also darum herauszuarbeiten, was die Körper gemeinsam haben und um die Eigenschaften. Es wird der Begriff Prismen eingeführt und als Überschrift notiert, um dann herauszuarbeiten, wie sich die Oberfläche aller Körper allgemein zusammensetzt Grundfläche, Deckfläche und Summe aller Rechteckflächen (= Mantelfläche). O = 2 x G + M O = Oberfläche G = Grundfläche M = Mantelfläche (= Summe aller Rechteckflächen) Im Anschluss daran erhalten die Schüler ein kleines Merkblatt auf dem die wichtigsten Informationen und Ergebnisse stehen. Dieses kleben sie zu Hause in ihr Regelheft ein.

8 Was muss überhaupt gesichert werden? Was muss überhaupt gesichert werden? Aufgabenstellung: Was muss beim Unterrichtsinhalt Addition von Brüchen Ihrer Meinung nach gesichert werden? Schreiben Sie Ihre Ergebnisse auf die Zettel und heften Sie diese an die Tafel. Ordnen Sie gemeinsam die Ergebnisse und versehen Sie diese mit Überschriften.

9 Was muss überhaupt gesichert werden? Was daran? (Facette des Wissens) Was? (Art des Wissens) Konzeptuelles Wissen Explizite Formulierung Konkretisierung & Abgrenzung Konzepte Definitionen Beispiele / Gegenbeispiele Zusammenhänge Prozedurales Wissen Mathematische Verfahren, Algorithmen Handwerkliche Verfahren Satz Beispiele / Gegenbeispiele Anleitung Anleitung Bedingungen der Anwendbarkeit, Spezialfälle Fehlerwissen Umsetzung, Bedingungen Bedeutungen & Vernetzung Vorstellungen / Darstellungen (anschauliche) Begründung / Beweis Vorstellung / Begründung als Verknüpfung zu konzeptuellen Gehalten Konventionelle Festlegung Fachwörter Bezeichnungen Namen der Sätze Konventionelle Regeln Nicht begründbare Festlegungen Nicht begründbare Festlegungen Metakognitives Wissen (z.b. Strategien des Problemlösens; Schritte beim Modellieren,...)

10 Wie gestaltet man das Sichern im Unterricht? Wie kommt das Wissen in den Kopf? Immense Bedeutung der Eigenaktivität für nachhaltige Lernprozesse aktive Aneignungshandlungen???

11 Aneignungshandlungen in Sicherungsprozessen Facette: Explizite Formulierungen Konvergenz Gering Hoch Art der Aneignungshandlung 1. Formulierungen allein finden. 2. Ergänzen / Abwandeln unfertiger Formulierungen. 3. Formulierungen Beispielen zuordnen oder in eine systematische Reihenfolge bringen. 4. Erklären, warum eine fertige Formulierung passend ist. 5. Nachvollziehen fertiger Formulierungen und mit Beispielen konkretisieren. Beteiligung Hoch Gering

12 Aneignungshandlungen in Sicherungsprozessen Geeignete Aneignungshandlungen Facette: Explizite Formulierungen 1. Formulierungen Wie könnte man allein die Anleitung finden. für die Addition von Brüchen allgemein aufschreiben? Mache einen Formulierungsvorschlag. 2. Ergänzen oder / Abwandeln verändere unfertiger Pias Formulierung so, Formulierungen. dass sie stimmt. 3. Formulierungen Emma hat schrittweise Beispielen aufgeschrieben, zuordnen oder wie in sie eine zwei systematische Brüche addieren Reihenfolge würde. Leider bringen. sind die Schritte durcheinander geraten. Bringe sie in die richtige Reihenfolge. 4. Nachvollziehen Erkläre warum die fertiger folgende Formulierungen und richtig mit ist Beispielen und denke konkretisieren. dir ein passendes Beispiel dazu aus: Zwei Brüche kann man addieren, indem man sie erst einmal auf den gleichen Nenner bringt. Dann addiert man die Zähler. Der Nenner bleibt gleich. Um Brüche zu addieren, musst du einfach die Zähler addieren. Der Nenner bleibt gleich. Zum Beispiel =

13 Aneignungshandlungen in Sicherungsprozessen Geeignete Aneignungshandlungen Facette: Explizite Formulierungen Wie könnte man die Anleitung für die Addition von Brüchen allgemein aufschreiben? Mache einen Formulierungsvorschlag. Ergänze oder verändere Pias Formulierung so, dass sie stimmt. Emma hat schrittweise aufgeschrieben, wie sie zwei Brüche addieren würde. Leider sind die Schritte durcheinander geraten. Bringe sie in die richtige Reihenfolge. Erkläre warum die folgende Formulierung richtig ist und denke dir ein passendes Beispiel dazu aus: Zwei Brüche kann man addieren, indem man sie erst einmal auf den gleichen Nenner bringt. Dann addiert man die Zähler. Der Nenner bleibt gleich. Beteiligung hoch gering Konvergenz gering hoch

14 Aneignungshandlungen in Sicherungsprozessen Entwickeln Sie in Kleingruppen Aufgaben, mit denen die anderen Wissensfacetten gesichert werden können und präsentieren Sie diese im Anschluss im Plenum.

15 Aneignungshandlungen in Sicherungsprozessen Gruppe 1: Konkretisierung und Abgrenzung (Addition) Gruppe 2: Gruppe 3: Gruppe 4: Gruppe 5: Bedeutung und Vernetzung (Addition) Konventionelle Festlegung Konkretisierung und Abgrenzung (Subtraktion) Bedeutung und Vernetzung (Subtraktion)

16 Weitere Beispielaufgaben Beispiele für Aufgaben zum nachhaltigen Systematisieren und Sichern

17 Weitere Beispielaufgaben Senkrechte und parallele Linien Genetischer Problemkontext Bedeutungen / Vernetzungen senkrecht parallel Mitteilung konventioneller Namen und Zeichen

18 Weitere Beispielaufgaben Senkrechte und parallele Linien Explizite Definition als Auswahl aus Angebot von Formulierungen Abgrenzung von falschen Aussagen Konkretisierung und Abgrenzung

19 Weitere Beispielaufgaben Senkrechte und parallele Linien Handwerkliches Verfahren

20 Aus einem Schülerheft

21 Aus einem Schülerheft

22 Zusammenfassung

23 Wie geht s weiter? Hausaufgabe: 1. Für einen selbst gewählten schulmathematischen Inhalt eine schülerorientierte Sicherungsphase mit Aufgaben entwickeln (Arbeitsblatt erstellen). 2. Im Anschluss daran die nachfolgenden Fragen beantworten (am besten schriftlich): In welcher Phase der Planung hatte ich die größten Probleme? Welche waren das? Welche Planungsphase fiel mir leicht und warum? Wie viel Zeit habe ich gebraucht, um die Sicherungsphase vorzubereiten? Wie schätze ich die Schüleraktivität in meiner Sicherungsphase ein? Kann ich Unterschiede in meiner Lehrerrolle durch die andere Art und Weise der Gestaltung der Sicherungsphase erkennen? Wenn ja, welche sind das? Gab es Schwierigkeiten, die fachliche Korrektheit sicherzustellen? Hat die Sicherungsphase länger gedauert als sonst? Wie war die Nützlichkeit der ausgegebenen Materialien? Wie lautet mein eigenes Statement zur Praxisphase?

24 Danke für Ihre Aufmerksamkeit!

Standardsituationen im Mathematikunterricht

Standardsituationen im Mathematikunterricht Landesinstitut für Schule - Bremen Hauptseminar 31 - Fachdidaktisches Seminar für Mathematik im Mathematikunterricht Heinz-Jürgen Harder Fachleiter für Mathematik Februar 2013 Vorbemerkung Dieses Skript

Mehr

Systematisieren und Sichern

Systematisieren und Sichern Systematisieren und Sichern Nachhaltiges Lernen durch aktives Ordnen Susanne Prediger / Bärbel Barzel / Timo Leuders / Stephan HuSSmann Erkunden und Üben standen in den letzten Jahren in der Didaktik im

Mehr

Schulinterner Lehrplan Mathematik Klasse 8

Schulinterner Lehrplan Mathematik Klasse 8 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 8 Als Lehrwerk wird das Buch Mathematik real 8, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Modul 5.3: Vom halbschriftlichen zum schriftlichen Rechnen! Teil 1: Aufgezeigt am Beispiel der Addition und Subtraktion

Modul 5.3: Vom halbschriftlichen zum schriftlichen Rechnen! Teil 1: Aufgezeigt am Beispiel der Addition und Subtraktion Haus 5: Fortbildungsmaterial Individuelles und gemeinsames Lernen Modul 5.3: Vom halbschriftlichen zum schriftlichen Rechnen! Teil 1: Aufgezeigt am Beispiel der Addition und Subtraktion September 2010

Mehr

Schulinterner Lehrplan Mathematik Klasse 5

Schulinterner Lehrplan Mathematik Klasse 5 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 5 Als Lehrwerk wird das Buch Mathematik real 5, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Ziele beim Umformen von Gleichungen

Ziele beim Umformen von Gleichungen Ziele beim Umformen von Gleichungen für GeoGebraCAS Letzte Änderung: 29. März 2011 1 Überblick 1.1 Zusammenfassung Beim Lösen von Gleichungen ist besonders darauf zu achten, dass Schüler/innen den Äquivalenzumformungen

Mehr

Inhaltsbezogene Kompetenzen

Inhaltsbezogene Kompetenzen Rationale Zahlen Brüche und Anteile Was man mit einem Bruch alles machen kann Kürzen und Erweitern Die drei Gesichter einer rationalen Zahl Ordnung in die Brüche bringen Dezimalschreibweise bei Größen

Mehr

GES Espenstraße Schulinterner Lehrplan Mathematik Stand Vorbemerkung

GES Espenstraße Schulinterner Lehrplan Mathematik Stand Vorbemerkung Vorbemerkung Die im Folgenden nach Jahrgängen sortierten Inhalte, inhaltsbezogenen Kompetenzen (IK) und prozessbezogenen Kompetenzen (PK) sind für alle im Fach Mathematik unterrichtenden Lehrer verbindlich.

Mehr

LEMAMOP. Lerngelegenheiten für Mathematisches Argumentieren, Modellieren und Problem lösen. Kompetenztraining Mathematisch argumentieren.

LEMAMOP. Lerngelegenheiten für Mathematisches Argumentieren, Modellieren und Problem lösen. Kompetenztraining Mathematisch argumentieren. LEMAMOP Lerngelegenheiten für Mathematisches Argumentieren, Modellieren und Problem lösen Kompetenztraining Mathematisch argumentieren Jahrgang 8 Schülermaterial Klasse Argumente vereinbaren Blatt: 1 Datum:

Mehr

Denke dir mit deiner Gruppe ein Würfelspiel aus, bei dem möglichst viel gerechnet werden muss.

Denke dir mit deiner Gruppe ein Würfelspiel aus, bei dem möglichst viel gerechnet werden muss. Aufgabe 1.5 Idee und Aufgabenentwurf: Vera Laase, Nikolaus-Groß-Schule, Lebach, Klasse 3 (Dezember 2012) Denke dir mit deiner Gruppe ein Würfelspiel aus, bei dem möglichst viel gerechnet werden muss. o

Mehr

Zeitraum prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Bemerkungen

Zeitraum prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Bemerkungen auf Grlage des Kernlehrplans sowie der Vorschläge das Klett-Verlages in Bezug auf das Lehrwerk Lambacher Schweizer Verbalisieren mathematische Sachverhalte, Begriffe, Regeln Verfahren mit eigenen geeigneten

Mehr

Kontexte und Kernprozesse Aspekte eines theoriegeleiteten und praxiserprobten Schulbuchkonzepts

Kontexte und Kernprozesse Aspekte eines theoriegeleiteten und praxiserprobten Schulbuchkonzepts BÄRBEL BARZEL, SUSANNE PREDIGER, TIMO LEUDERS, STEPHAN HUSSMANN, Freiburg / Dortmund Kontexte und Kernprozesse Aspekte eines theoriegeleiteten und praxiserprobten Schulbuchkonzepts Im Rahmen des langfristigen

Mehr

Mathematik - Jahrgangsstufe 5

Mathematik - Jahrgangsstufe 5 Mathematik - Jahrgangsstufe 5 1. Natürliche Zahlen und Größen (Stochastik, Arithmetik/Algebra) Strichlisten, Tabellen und Diagramme Die Stellenwerttafel im Dezimalsystem & Runden Grundrechenarten: Summe,

Mehr

Klassenstufe 5 Planung einer Unterrichtsstunde

Klassenstufe 5 Planung einer Unterrichtsstunde Klassenstufe 5 Planung einer Unterrichtsstunde Vorbereitungsseminar zum fachdidaktischen Blockpraktikum SoSe 2011 Dozentin: Fr. Homberg-Halter Referentin: Sabine Hack 26.4.2011 Gliederung n Phasen einer

Mehr

Argumentieren/Kommunizieren

Argumentieren/Kommunizieren Im Fach Mathematik führen unsere SuS ein Merkheft. In diesem Heft werden alle grundlegenden Rechenregeln und Rechengesetze mit kleinen Beispielen aufgelistet. Die SuS verwenden das Heft zum Wiederholen

Mehr

Jahresarbeitsplan denkstark 1 ( )

Jahresarbeitsplan denkstark 1 ( ) Jahresarbeitsplan denkstark 1 (978-3-507-84815-3) Schulwoche Zeitraum Leitidee Projekte und Inhalt denkstark 1 (978-3-507-84815-3) Kompetenzen Denkstark 1 1-2 2 Wochen Raum und Form Projekt: Kunst und

Mehr

Schulinterner Lehrplan

Schulinterner Lehrplan Fach Mathematik Jahrgangsstufe 6 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Bruchzahlen - Wiederholen: Anteile als Bruch darstellen - Dezimalschreibweise - Dezimalschreibweisen vergleichen

Mehr

SINUS an Grundschule Saarland Offene Aufgaben zur Leitidee Größen und Messen

SINUS an Grundschule Saarland Offene Aufgaben zur Leitidee Größen und Messen Aufgabe 5 Idee und Aufgabenentwurf: Nicole Mai, Mellin-Schule, Sulzbach, Klasse 3 (Januar 2013) Dein Kinderzimmer ist mit Spielsachen überfüllt. Deine Mutter macht dir einen Vorschlag, die Spielsachen,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Körpernetze und Schrägbilder - das räumliche Vorstellungsvermögen trainieren

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Körpernetze und Schrägbilder - das räumliche Vorstellungsvermögen trainieren Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Körpernetze und Schrägbilder - das räumliche Vorstellungsvermögen trainieren Das komplette Material finden Sie hier: Download bei

Mehr

Herleitung von Potenzrechenregeln

Herleitung von Potenzrechenregeln Herleitung von Potenzrechenregeln für GeoGebraCAS Letzte Änderung: 07. März 2010 Überblick 1.1 Zusammenfassung Das Rechnen mit Potenzen (Rechenarten 3. Stufe) mit Exponenten aus der Menge der natürlichen

Mehr

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 4/2010

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 4/2010 Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 4/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenz (Kap. 3.1) Inhaltsbezogene

Mehr

Darstellung rationaler Zahlen durch Stammbrüche

Darstellung rationaler Zahlen durch Stammbrüche Darstellung rationaler Zahlen durch Stammbrüche Charlotte Walter 24 November 204 HUMBOLDT-UNIVERSITÄT ZU BERLIN Mathematisch-Naturwissenschaftlicher Kampus Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW:

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW: Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 16/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenzen (Kap. 3.1)

Mehr

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen.

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen. MAT 07-01 Zuordnungen 14 DS Leitidee: Funktionaler Zusammenhang Thema im Buch: Unterwegs Werte aus Schaubildern ablesen und ihre Bedeutung erklären. entscheiden und begründen, ob es sich um eine nicht

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5 Funktionen 1 Natürliche Zahlen Lesen Informationen aus Text, Bild, Tabelle mit eigenen Worten wiedergeben Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 5

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 5 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 5 Reihen- Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen folge Die Schülerinnen und Schüler

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Lerninhalte 6 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Thema 1: Rationale Zahlen 1 Teilbarkeit 2 Brüche und Anteile 3 ggt und kgv 4 Kürzen und Erweitern 5 Brüche auf der Zahlengeraden 6

Mehr

Mein Mathebild Arbeiten in der mathewerkstatt

Mein Mathebild Arbeiten in der mathewerkstatt Seite MB 1 Mein Mathebild Arbeiten in der mathewerkstatt Seite im Materialblock: Wissensspeicher Seite MB 2 MB 2 Wissensspeicher Dreiecke und Vielecke Flächen 1 Wissensspeicher Dreiecke und Vielecke Wenn

Mehr

NAHRUNGSNETZE IM WALD KLASSE 6

NAHRUNGSNETZE IM WALD KLASSE 6 NAHRUNGSNETZE IM WALD KLASSE 6 Inhalt: Die Schüler stellen die einzelnen Organismen und deren Nahrungsbeziehungen im Wald als Nahrungsnetz dar und erkennen die Zusammenhänge und Bedeutung eines Nahrungsnetzes.

Mehr

Schulinterner Lehrplan Mathematik Klasse 6

Schulinterner Lehrplan Mathematik Klasse 6 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 6 Als Lehrwerk wird das Buch Mathematik real 6, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Inhaltsübersicht Fach: Mathematik FachkollegInnen scj, krö, sja, nah,erf, sik Jahrgang: 5 Schuljahr: 2016/2017 Halbjahr: 1/2

Inhaltsübersicht Fach: Mathematik FachkollegInnen scj, krö, sja, nah,erf, sik Jahrgang: 5 Schuljahr: 2016/2017 Halbjahr: 1/2 Halbjahr/1 Zeit (in Wochen) Inhalte Seite inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler prozessbezogene Kompetenzen Die Schülerinnen und Schüler Berufsorientierung 1 19.- 23.09.2016 Daten Daten

Mehr

Schulinternes Curriculum Mathematik 5 / 6

Schulinternes Curriculum Mathematik 5 / 6 Die dargestellte Reihenfolge der Unterrichtsinhalte ist eine von mehreren sinnvollen Möglichkeiten und daher nicht bindend. Lambacher Schweizer 5 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen

Mehr

Mathematik 4 Primarstufe

Mathematik 4 Primarstufe Mathematik 4 Primarstufe Handlungs-/Themenaspekte Bezüge zum Lehrplan 21 Die Übersicht zeigt die Bezüge zwischen den Themen des Lehrmittels und den Kompetenzen des Lehrplans 21. Es ist jeweils diejenige

Mehr

Unterrichtsverlauf Phase / Zeit Unterrichtsschritte / Verlauf Methoden / Sozialformen / Medien Methodisch-didaktischer Kommentar Begrüßung

Unterrichtsverlauf Phase / Zeit Unterrichtsschritte / Verlauf Methoden / Sozialformen / Medien Methodisch-didaktischer Kommentar Begrüßung Unterrichtsverlauf Phase / Zeit Unterrichtsschritte / Verlauf Methoden / Sozialformen / Medien Methodisch-didaktischer Kommentar Begrüßung Einstiegsphase: Motivation (3 min) Problemerörterung (4 min) Begrüßung

Mehr

Das Gruppenturnier. Ziel: Üben und Anwenden. So geht es. Ludger Brüning und Tobias Saum

Das Gruppenturnier. Ziel: Üben und Anwenden. So geht es. Ludger Brüning und Tobias Saum Das Gruppenturnier Ludger Brüning und Tobias Saum Ziel: Üben und Anwenden Jeder weiß, dass die Schüler bei sportlichen Wettkämpfen, bei denen Teams gegeneinander antreten, oft sehr engagiert sind und sich

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Kernlehrplan G8 Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Begründen verschiedene Arten des Begründens intuitiv nutzen:

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Thema 1: Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Zahlensysteme 4 Rechnen mit natürlichen Zahlen 5 Runden 6 Größen messen und schätzen (Zeit, Länge, Gewicht) 7 Mit Größen rechnen 1. Klassenarbeit

Mehr

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen prozessbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I:

Mehr

Download. Zahlen und Operationen kompetenzorientiert Kl. 4. Halbschriftliche und schriftliche Rechenverfahren. Anna Seitz

Download. Zahlen und Operationen kompetenzorientiert Kl. 4. Halbschriftliche und schriftliche Rechenverfahren. Anna Seitz Download Anna Seitz Zahlen und Operationen kompetenzorientiert Kl. Halbschriftliche und schriftliche Rechenverfahren Downloadauszug aus dem Originaltitel: Praxismaterialien für die erfolgreiche Umsetzung

Mehr

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK 1. Allgemeine mathematische Kompetenzen Primarbereich Allgemeine mathematische Kompetenzen zeigen sich in der lebendigen Auseinandersetzung mit Mathematik und

Mehr

Schulinterner Lehrplan Mathematik G8 Klasse 5

Schulinterner Lehrplan Mathematik G8 Klasse 5 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/7 Jg 5, Stand: 07.12.2008 Schulinterner Lehrplan Mathematik G8 Klasse 5 Verbindliche Inhalte zu Kapitel I Natürliche Zahlen 1 Zählen und 2 Große Zahlen

Mehr

Abschlussbericht der Entwicklungswerkstatt

Abschlussbericht der Entwicklungswerkstatt Abschlussbericht der Entwicklungswerkstatt Titel für die Entwicklungswerkstatt: Englisch auch an der Förderschule Mit welchem Thema, mit welcher Fragestellung haben wir uns auseinandergesetzt? Unser Ziel

Mehr

Daten, Häufigkeiten, Wahrscheinlichkeiten

Daten, Häufigkeiten, Wahrscheinlichkeiten Daten, Häufigkeiten, Wahrscheinlichkeiten Ein neuer Bereich im Lehrplan Mathematik Die acht Bereiche des Faches Mathematik Prozessbezogene Bereiche Problemlösen / kreativ sein Inhaltsbezogene Bereiche

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Die Remus-Insel im Rheinsberger See - die Fläche zwischen zwei Kurven berechnen Das komplette Material finden Sie hier: Download bei

Mehr

Systematisches Probieren

Systematisches Probieren Systematisches Probieren Systematisches Probieren ist eine Strategie, die Schülerinnen und Schülern oft helfen kann, ein Problem zu lösen, wenn kein passender Algorithmus abrufbar ist. Einige Aufgaben,

Mehr

Mathematisches Professionswissen für das Lehramt an Grundschulen. Das ist mein/e erster Versuch. 1.Wiederholung. 2. Wiederholung.

Mathematisches Professionswissen für das Lehramt an Grundschulen. Das ist mein/e erster Versuch. 1.Wiederholung. 2. Wiederholung. Dr. C. Scharlach Dipl.-Math. U. Skambraks Mathematisches Professionswissen für das Lehramt an Grundschulen Klausur 11.08.2016 Name: Vorname: Matrikelnummer: Das ist mein/e erster Versuch. 1.Wiederholung.

Mehr

SINUS an Grundschulen Saarland Offene Aufgaben zur Leitidee Muster und Strukturen / Zahlen und Operationen

SINUS an Grundschulen Saarland Offene Aufgaben zur Leitidee Muster und Strukturen / Zahlen und Operationen Aufgabe 3.3 Idee und Aufgabenentwurf Günther Gerstner, Grundschule Eppelborn, Klassenstufe 3 (November 2012) 1. Lege einen Streifen auf die Hundertertafel und addiere die verdeckten Zahlen. 2. Verschiebe

Mehr

Systematisierungen mit Mindmaps

Systematisierungen mit Mindmaps Systematisierungen mit Mindmaps Neupärtl, A./Bruder, R. TUD 2005 Systematisieren ist für das Lernen von Mathematik von besonderer Bedeutung. In den Unterrichtssituationen der Zielorientierung/Motivierung,

Mehr

3.4 Schriftliches Subtrahieren

3.4 Schriftliches Subtrahieren Mit Geldscheinen rechnen zweiter Teil 1 Arbeitet zu zweit. Mithilfe der Fundamente-Geldscheine lassen sich Beträge darstellen. Denkt euch abwechselnd Geldbeträge (kleiner als 1000) aus und lasst sie vom

Mehr

Bruchrechnen in Kurzform

Bruchrechnen in Kurzform Teil Bruchrechnen in Kurzform Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 0 Zu diesen Beispielen gibt es einen Leistungstest in 09. Ausführliche Texte zur Bruchrechnung findet man in:

Mehr

1. Einheit: Wie passen die Zahlen in dieses Haus? Darum geht es:

1. Einheit: Wie passen die Zahlen in dieses Haus? Darum geht es: 1. Einheit: Wie passen die Zahlen in dieses Haus? Darum geht es: Die Kinder haben bisher einige Aufgabenformate (z.b. Zahlenmauern, Rechendreiecke, Zauberdreiecke) kennen gelernt. Das Aufgabenformat Mal-Plus-Haus

Mehr

1. Aufgaben und Ziele des Mathematikunterrichts in der Grundschule

1. Aufgaben und Ziele des Mathematikunterrichts in der Grundschule 1. Aufgaben und Ziele des Mathematikunterrichts in der Grundschule Aufgaben und Ziele des Mathematikunterrichts Forderungen zu mathematischer Grundbildung (Winter 1995) Erscheinungen der Welt um uns, die

Mehr

Abfolge in 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Abfolge in 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 1. Natürliche Zahlen und Größen 1.1 Große Zahlen Stellentafel 1.2 1.3 Zweiersystem 1.4 Römische Zahlzeichen 1.5 Anordnung der natürlichen Zahlen Zahlenstrahl 1.6 Runden von Zahlen Bilddiagramme 1.7 Länge

Mehr

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 8 8 Kapitel I Reelle Zahlen 1 Von bekannten und neuen Zahlen 2 Wurzeln und Streckenlängen 3 Der geschickte Umgang mit Wurzeln

Mehr

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 5 5 Kapitel I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und

Mehr

Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5

Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5 Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5 3 pro (maximal 45 Minuten) Rechnen mit natürlichen Zahlen; Darstellung natürlicher Zahlen und einfacher Bruchteile; Rechnen mit Größen Maßstabsverhältnisse;

Mehr

Amrei Naujoks und Marei Böttcher

Amrei Naujoks und Marei Böttcher Amrei Naujoks und Marei Böttcher Das Fach Mathematik ist das einzige Fach in der Schule, das stark hierarchisch aufgebaut ist. wer am Anfang etwas verpasst, kann nicht mehr folgen. In der Grundschule

Mehr

Lektion 2: Kompetenzaufbau - Beispielaufgaben

Lektion 2: Kompetenzaufbau - Beispielaufgaben Lektion 2: Kompetenzaufbau - Beispielaufgaben Problemlösen Die Schülerinnen und Schüler greifen beim Suchen nach Aufgaben auf ihr Vorwissen zurück (bekannte Zerlegungen) und finden die Lösungen. Die Schülerinnen

Mehr

Auf die Einteilung kommt es an! Fördermaterial zum Bruchbegriff und zum Bruchrechnen

Auf die Einteilung kommt es an! Fördermaterial zum Bruchbegriff und zum Bruchrechnen I Zahlen und Größen Beitrag 47 Fördermaterial zum Bruchrechnen 1 von 32 Auf die Einteilung kommt es an! Fördermaterial zum Bruchbegriff und zum Bruchrechnen Von Roland Bullinger, Gaildorf Illustriert von

Mehr

In Lernteams zum Erfolg! Eine Lerntheke zur Körperberechnung

In Lernteams zum Erfolg! Eine Lerntheke zur Körperberechnung III Form und Raum Beitrag 29 Lerntheke zur Körperberechnung 1 von 42 In Lernteams zum Erfolg! Eine Lerntheke zur Körperberechnung Ein Beitrag von Jessica Retzmann, Astheim Mit Illustrationen von Julia

Mehr

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 1.1 Runden und Schätzen - Große Zahlen 1.2 Zahlen in Bildern Kapitel 2 Größen 2.1 Längen - Was sind 2.2 Zeit Größen? 2.3 Gewichte Kreuz und quer

Mehr

Sachkompetenz Zahlen. Zahlen lesen und schreiben. zählen, Zahlen ordnen. Zahlen erfassen. Zahlen als Operatoren verwenden

Sachkompetenz Zahlen. Zahlen lesen und schreiben. zählen, Zahlen ordnen. Zahlen erfassen. Zahlen als Operatoren verwenden Zahlen Zahlen lesen und schreiben Zahlen und Zahlwörter lesen und schreiben Zahlen und Zahlwörter bis 20 lesen und schreiben Zahlen bis 100 lesen und schreiben große Zahlen lesen und schreiben die Bedeutung

Mehr

Den Lernprozess phasengerecht moderieren

Den Lernprozess phasengerecht moderieren Studienseminar Koblenz Teildienststelle Altenkirchen Pflichtmodul 17 ( II): Den Lernprozess phasengerecht moderieren 7.11.2011 Im Lernkontext ankommen: Lexikonartikel: Moderieren im Unterricht? Vorstellungen

Mehr

1. Unterrichtseinheit zum Thema Schwimmen und Sinken: Das Schwimmen und Sinken von Vollkörpern untersuchen

1. Unterrichtseinheit zum Thema Schwimmen und Sinken: Das Schwimmen und Sinken von Vollkörpern untersuchen Unterrichtsentwurf 1. Unterrichtseinheit zum Thema Schwimmen und Sinken: Das Schwimmen und Sinken von Vollkörpern untersuchen 2. Doppelstunde: Warum schwimmt das eine Messer und das andere Messer nicht?

Mehr

Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung?

Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung? 8 Grundsätzliches zu Beweisen Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung? ˆ Mathematik besteht nicht (nur) aus dem Anwenden auswendig gelernter Schemata. Stattdessen

Mehr

Brüche und Bruchrechnung

Brüche und Bruchrechnung Brüche und Bruchrechnung Annäherungen an ein schwieriges Thema Matthias Römer UdS & LPM 2 Wir sind uns einig: 1 3 > 1 4 3 Unsere Erfahrungen und die Erfahrungen der Schülerinnen und Schüler mit Brüchen:

Mehr

Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche mathematischen Kompetenzen werden auf welchen Schulbuchseiten trainiert?

Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche mathematischen Kompetenzen werden auf welchen Schulbuchseiten trainiert? Bildungsstandards im ZAHLEN-ZUG 2 1 Bildungsstandards im ZAHLEN-ZUG 2 Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche mathematischen Kompetenzen werden auf welchen Schulbuchseiten

Mehr

Bildungsstandards in FUNKELSTEINE Mathematik 4

Bildungsstandards in FUNKELSTEINE Mathematik 4 Bildungsstandards in FUNKELSTEINE Mathematik 4 1 Bildungsstandards in FUNKELSTEINE Mathematik 4 Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche mathematischen Kompetenzen werden

Mehr

Illustrierende Aufgaben zum LehrplanPLUS

Illustrierende Aufgaben zum LehrplanPLUS Gedichte reimen sich, Informationen erklären, Geschichten erzählen Textarten unterscheiden Jahrgangsstufen 3/4 Fach Benötigtes Material Deutsch über Leseerfahrungen verfügen Lesebuch oder eigene Zusammenstellung

Mehr

Lernumgebungen und substanzielle Aufgaben im Mathematikunterricht (Workshop)

Lernumgebungen und substanzielle Aufgaben im Mathematikunterricht (Workshop) Idee des Workshops Lernumgebungen und substanzielle Aufgaben im Mathematikunterricht (Workshop) Mathematik-Tagung Hamburg, 7. Mai 2010, Workshop Vorname Name Autor/-in ueli.hirt@phbern.ch Einen ergänzenden

Mehr

Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche Kompetenzen werden auf welchen Schulbuchseiten trainiert?

Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche Kompetenzen werden auf welchen Schulbuchseiten trainiert? Bildungsstandards im ZAHLEN-ZUG 3 1 Bildungsstandards im ZAHLEN-ZUG 3 Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche en werden auf welchen Schulbuchseiten trainiert? 1. Allgemeines

Mehr

4. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1964/1965 Aufgaben und Lösungen . Mathematik Olympiade Saison 196/1965 Aufgaben und Lösungen 1 OJM. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und grammatikalisch

Mehr

Schriftliche Planung zum 4. Unterrichtsbesuch im Fach Mathematik Studienseminar Paderborn II Renate Thies

Schriftliche Planung zum 4. Unterrichtsbesuch im Fach Mathematik Studienseminar Paderborn II Renate Thies Schriftliche Planung zum 4. Unterrichtsbesuch im Fach Mathematik Studienseminar Paderborn II Renate Thies Klasse 5 Thema der Unterrichtsreihe: Körper: Da geht was rein! Rauminhalt (und Oberfläche) von

Mehr

Ungleichungen mit Brüchen

Ungleichungen mit Brüchen Ungleichungen mit Brüchen W. Kippels 24. November 2013 Inhaltsverzeichnis 1 Allgemeines zum Lösen von Ungleichungen 3 2 Aufgaben 6 2.1 Aufgabe 1................................... 6 2.2 Aufgabe 2...................................

Mehr

Schulinterner Lehrplan Mathematik G8 Klasse 8

Schulinterner Lehrplan Mathematik G8 Klasse 8 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/7 Jg 8, Stand: 1.11.2011 Schulinterner Lehrplan Mathematik G8 Klasse 8 Verbindliche Inhalte: Ergänzungen aus Kl. 7:Stochastik Wahrscheinlichkeit im ein-und

Mehr

Arbeitsblatt rund ums

Arbeitsblatt rund ums Arbeitsblatt rund ums Abbildung 1: Anton Ameise beim Vorwärtsarbeiten Für die Bearbeitung dieses Arbeitsblatts hast Du eine Woche Zeit! 1. Suche Dir eines der folgenden Projekte aus und überlege Dir interessante

Mehr

Klasse 5/6: Anbindungsmöglichkeiten MSG Mathematik

Klasse 5/6: Anbindungsmöglichkeiten MSG Mathematik Klasse 5/6: Anbindungsmöglichkeiten MSG Mathematik Raum und Zeit Räume und Zeitabläufe bewusst wahrnehmen und individuell gestalten. Natur und Umwelt als Aktionsund Entdeckungsspielraum Angebote des Kultur-

Mehr

MATHEMATIK Grundkurs 11m3 2010

MATHEMATIK Grundkurs 11m3 2010 MATHEMATIK Grundkurs 11m3 2010 Städtisches Gymnasium Leichlingen Zusammenfassende Informationen zum Unterricht ab 29. Oktober 2010 Für jede Doppelstunde ein Kapitel 2 Kapitel 1 Doppelstunde 29.10.2010

Mehr

Bildungsstandards in FUNKELSTEINE Mathematik 1 1

Bildungsstandards in FUNKELSTEINE Mathematik 1 1 Bildungsstandards in FUNKELSTEINE Mathematik 1 1 Bildungsstandards in FUNKELSTEINE Mathematik 1 Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche mathematischen Kompetenzen werden

Mehr

Terme und Formeln Grundoperationen

Terme und Formeln Grundoperationen Terme und Formeln Grundoperationen Die Vollständige Anleitung zur Algebra vom Mathematiker Leonhard Euler (*1707 in Basel, 1783 in Petersburg) prägte den Unterricht und die Lehrmittel für lange Zeit. Euler

Mehr

Mathematik 6. Thema, Inhalt, Leitidee und allgemeine mathematische Kompetenzen. inhaltsbezogene Kompetenzen. Die SuS. 1.

Mathematik 6. Thema, Inhalt, Leitidee und allgemeine mathematische Kompetenzen. inhaltsbezogene Kompetenzen. Die SuS. 1. Mathematik 6 Zeit Ca. 1. Teilbarkeitslehre Arithmetik/Algebra prozessbezogene Argumentieren/Kommunizieren Die SuS 16 h ca. 10 h 1.1 Teilbarkeit und Primzahlen 1.2 Größter gemeinsamer Teiler und kleinstes

Mehr

Stoffverteilungsplan Mathematik Klasse 5 RS,

Stoffverteilungsplan Mathematik Klasse 5 RS, Stoffverteilungsplan Mathematik Klasse 5 RS, 04.12.2006 Inhalte Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Methoden 1 Die natürlichen Zahlen Unsere neue Klasse 1 Strichlisten und Diagramme

Mehr

geeigneten Fachbegriffen erläutern Kommunizieren

geeigneten Fachbegriffen erläutern Kommunizieren Kapitel I Rationale Zahlen Arithmetik / Algebra Einfache Bruchteile auf verschiedene Weise darstellen: Lesen: Informationen aus Text, Bild, 1 Brüche und Anteile handelnd, zeichnerisch an wiedergeben 2

Mehr

Mathematik 1 Primarstufe

Mathematik 1 Primarstufe Mathematik 1 Primarstufe Handlungs-/Themenaspekte Bezüge zum Lehrplan 21 Die Übersicht zeigt die Bezüge zwischen den Themen des Lehrmittels und den Kompetenzen des Lehrplans 21. Es ist jeweils diejenige

Mehr

Addition und Subtraktion natürlicher Zahlen

Addition und Subtraktion natürlicher Zahlen 0 Minuten Addition und Subtraktion natürlicher Zahlen Kurztest : Addieren und Subtrahieren 1 Bei der linken Rechenmauer wird nach oben addiert, bei der rechten Rechenmauer nach oben subtrahiert. a) b)

Mehr

BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK

BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK Allgemeine mathematische Kompetenzen (AK) 1. Kompetenzbereich Modellieren (AK 1) 1.1 Eine Sachsituation in ein mathematisches Modell (Terme und Gleichungen) übertragen,

Mehr

Mit Tangram Flächen vergleichen ein entdeckender Zugang. Christian van Randenborgh, Bielefeld. Wie du ein Tangram selbst herstellst (Hausaufgabe)

Mit Tangram Flächen vergleichen ein entdeckender Zugang. Christian van Randenborgh, Bielefeld. Wie du ein Tangram selbst herstellst (Hausaufgabe) S 1 Mit Tangram Flächen vergleichen ein entdeckender Zugang Christian van Randenborgh, Bielefeld M 1 Wie du ein Tangram selbst herstellst (Hausaufgabe) So geht s Bastelanleitung Male jede Fläche in einer

Mehr

KGS Curriculum Mathematik Hauptschule Klasse 5. Inhalte Inhaltsbereiche gemäß Kerncurriculum Eigene Bemerkungen Kapitel 1 Zahlen und Daten

KGS Curriculum Mathematik Hauptschule Klasse 5. Inhalte Inhaltsbereiche gemäß Kerncurriculum Eigene Bemerkungen Kapitel 1 Zahlen und Daten Cornelsen: Schlüssel zur Mathematik Klasse 5 Differenzierende Ausgabe Niedersachsen ISBN: 978-3-06-006720-6 KGS Curriculum Mathematik Hauptschule Klasse 5 Inhalte Inhaltsbereiche gemäß Kerncurriculum Eigene

Mehr

SCHULINTERNES CURRICULUM MATHEMATIK JUNI 2016 ( G 8 ) Seite 1 von 7

SCHULINTERNES CURRICULUM MATHEMATIK JUNI 2016 ( G 8 ) Seite 1 von 7 Seite 1 von 7 Kapitel I: Rationale Zahlen - Einfache Bruchteile auf verschiedene Weise darstellen: handelnd, zeichnerisch an verschiedene Objekten, durch Zahlensymbole und als Punkt auf der Zahlengerade;

Mehr

Rechenbausteine. Training. Herausgegeben von Stephan Hußmann Susanne Prediger Bärbel Barzel Timo Leuders

Rechenbausteine. Training. Herausgegeben von Stephan Hußmann Susanne Prediger Bärbel Barzel Timo Leuders Rechenbausteine Training Herausgegeben von Stephan Hußmann Susanne Prediger Bärbel Barzel Timo Leuders 2 A B C D E F G H I J K L M N O Inhaltsverzeichnis THEMA 1 Zahlen und Rechnungen lesen und darstellen

Mehr

Stoffverteilungsplan Mathematik 5 für den G9-Zweig

Stoffverteilungsplan Mathematik 5 für den G9-Zweig Stoffverteilungsplan Mathematik 5 für den G9-Zweig prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lehrbuch Argumentieren / Darstellungen (Text, Bild, Tabelle) mit eigenen Worten Begriffe, Regeln

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Thema I: Lineare und lineare Gleichungen 1. Lineare 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte 1. Klassenarbeit Thema II: Reelle 1. Von bekannten und neuen 2. Wurzeln

Mehr

Primitiv? Primzahlen und Primfaktoren schätzen lernen. Dr. Heinrich Schneider, Wien. M 1 Grundlegende Zahlenmengen wiederhole dein Wissen!

Primitiv? Primzahlen und Primfaktoren schätzen lernen. Dr. Heinrich Schneider, Wien. M 1 Grundlegende Zahlenmengen wiederhole dein Wissen! S 1 Primitiv? Primzahlen und Primfaktoren schätzen lernen Dr. Heinrich Schneider, Wien M 1 Grundlegende Zahlenmengen wiederhole dein Wissen! Die natürlichen Zahlen n 1, 2, 3, 4, 5, heißen natürliche Zahlen.

Mehr

DOWNLOAD. Lernzirkel Addition und Subtraktion von Brüchen. Lernzirkel Bruchrechnung. Albrecht Schiekofer. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Lernzirkel Addition und Subtraktion von Brüchen. Lernzirkel Bruchrechnung. Albrecht Schiekofer. Downloadauszug aus dem Originaltitel: DOWNLOAD Albrecht Schiekofer Lernzirkel Addition und Subtraktion von Brüchen Albrecht Schiekofer Lernzirkel Bruchrechnung./. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus dem Originaltitel: Lernzirkel:

Mehr

Neue Wege Klasse 8. Schulcurriculum EGW. Zeiteinteilung/ Kommentar 1.4 Ungleichungen weglassen 1.5 Gleichungen mit Parametern weglassen

Neue Wege Klasse 8. Schulcurriculum EGW. Zeiteinteilung/ Kommentar 1.4 Ungleichungen weglassen 1.5 Gleichungen mit Parametern weglassen Neue Wege Klasse 8 Schulcurriculum EGW Inhalt Neue Wege 8 prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Kapitel 1 Die Sprache der Algebra Terme und Gleichungen 1.1 Rechnen mit Termen Summen und

Mehr

Mathematik-Arbeitsblatt Klasse: Aufgabe 1 (5Z e) H2:I1:K Setze < oder > ein! a) c) e)

Mathematik-Arbeitsblatt Klasse: Aufgabe 1 (5Z e) H2:I1:K Setze < oder > ein! a) c) e) Mathematik-Arbeitsblatt Klasse: 29.10.2015 Aufgabe 1 (5Z1.11-004-e) H2:I1:K1 0 1 2 Setze < oder > ein! a) 397 3397 c) 456 655 e) 2345 2435 1 b) 67 890 67 980 d) 632 432 f) 10 001 1001 Aufgabe 2 (5Z1.11-013-m)

Mehr

Zaubern im Mathematikunterricht

Zaubern im Mathematikunterricht Zaubern im Mathematikunterricht 0011 0010 1010 1101 0001 0100 1011 Die Mathematik als Fachgebiet ist so ernst, dass man keine Gelegenheit versäumen sollte, dieses Fachgebiet unterhaltsamer zu gestalten.

Mehr

Kommentiertes Beispiel für eine Unterrichtseinheit nach dem Unterrichtsprinzip Berufssprache Deutsch

Kommentiertes Beispiel für eine Unterrichtseinheit nach dem Unterrichtsprinzip Berufssprache Deutsch Kommentiertes Beispiel für eine Unterrichtseinheit nach dem Unterrichtsprinzip Berufssprache Deutsch Grundlegende Informationen zur Unterrichtseinheit: Beruf: Schuljahr: Lernfeld: Thema: Richtig trinken

Mehr

Unterrichtsidee: Ausbildungsreife

Unterrichtsidee: Ausbildungsreife Ziele: Die Schüler/innen lernen Anforderungen des Berufslebens kennen Die Klasse setzt sich mit der Bedeutung der Anforderungen auseinander Lesekompetenz und Textverständnis der Schüler/innen werden geschult

Mehr

Schulinterner Lehrplan

Schulinterner Lehrplan Fach Mathematik Jahrgangsstufe 5 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Natürliche Zahlen und Größen - große Zahlen - Stellentafel - Zahlenstrahl - Runden - Geld, Länge, Gewicht,Zeit

Mehr