Zinsrechnung A: Die Zinsen

Größe: px
Ab Seite anzeigen:

Download "Zinsrechnung A: Die Zinsen"

Transkript

1 Zinsrechnung A: Die Zinsen EvB Mathematik Köberich Berechne bei den nachfolgenden Aufgaben jeweils die Zinsen! Z X X X X X x K i 15 Tage 2 Monate 100 Tage 7 Monate ¼ Jahr 5½ Monate p 3% 5% 4,5% 6% 1½% 4% Z X X X X X X K i 3 Monate 48 Tage ¾ Jahr 8 Monate 24 Tage 80 Tage p 6,5% 4% 5% 5¼ % 3% 3,5% Z X X X X X X K i ½ Jahr 3½ Monate 210 Tage ¼ Jahr ⅓ Jahr 8 Monate p 6% 7,5% 4% 2% 5% 4,5% Z X X X X X X K i 175 Tage 5 Monate ¼ Jahr 8 Monate 80 Tage ½ Jahr p 6% 3% 4,5% 5% 9% 4% 5. Herr Kaufmann überzieht sein Konto für 15 Tage um Die Bank gibt ihm dieses Geld als Kredit und berechnet ihm dafür 12% Zinsen (Überziehungszinsen). Wie viel Zinsen muss Herr Kaufmann bezahlen? 6. Berechne die Überziehungszinsen bei einem Zinssatz von 12% a) 900 für 20 Tage b) 2000 für 24 Tage c) 2400 für 14 Tage 7. Heiner hatte im vergangenen Jahr auf seinem Sparbuch folgende Beträge: Monate lang, dann Monate lang, danach Monate lang und dann noch einmal Monate lang. Er erhielt 3% Zinsen. Wie viel Zinsen erhielt Heiner am Jahresende? 8. Caroline leiht sich bei einer Bank 4500 für 3 Monate. Die Bank verlangt dafür von ihr 9% Zinsen. Wie viel Geld muss Caroline nach 3 Monaten zurückzahlen? 9. Felix gewinnt bei der SKL-Show sagenhafte 5 Millionen Euro. Zunächst legt er seinen neu erworbenen Reichtum für einen Monat bei einer Bank an. Er erhält dafür 3% Zinsen. Welches Auto könnte Felix sich nach diesem Monat von den Zinsen kaufen?

2 Zinsrechnung B: Das Kapital EvB Mathematik Köberich Berechne bei den nachfolgenden Aufgaben jeweils das Kapital! Z K X X X X X X i 17 Tage 96 Tage 9 Monate 90 Tage 105 Tage 56 Tage p 9% 4% 4% 12% 6% 10% Z 52, ,50 69,12 K X X X X X X i 210 Tage 4 Monate ½ Jahr 9 Monate 3 Monate 2 Monate p 5% 4,5% 3% 4% 5% 6% Z , ,05 K X X X X X X i 4 Monate ¾ Jahr 100 Tage 8 Monate 20 Tage 72 Tage p 6% 3% 5% 2,5% 6% 4,5% Für welches Kapital erhält man: a) bei 7,5% in 6 Tagen 5 Zinsen b) bei 5% in 270 Tagen 2 Zinsen c) bei 4% in 72 Tagen 16 Zinsen d) bei 3% in 90 Tagen 15 Zinsen 5. Herr Haber legt einen Lottogewinn zu 6,5% an. Er bekommt monatlich 975 Zinsen. Wie viel hat Herr Haber angelegt? 6. Ein Profifußballer hat mit dem Fußballspielen aufgehört. Er hat sein erspartes Geld zu 5% angelegt. Von den Zinsen in Höhe von 3200 monatlich lebt er. Wie viel hat der Fußballprofi angelegt? 7. Von einem Guthaben, das mit 5% verzinst wird, werden nach 9 Monaten 187,50 Zinsen ausgezahlt. Wie hoch ist das Guthaben? 8. Manche Menschen bewahren ihr Geld lieber zu Hause auf als es einer Bank anzuvertrauen. Wie viel hat jemand gespart, wenn ihm täglich 3 Zinsen entgehen, die ihm eine Bank bei einem Zinssatz von 6% zahlen würde? 9. Für das Überziehen seines Girokontos bezahlt Matthias 15% Zinsen. Um wie viel Euro hat er sein Konto überzogen, wenn er monatlich 60 Zinsen zahlen muss?

3 Zinsrechnung C: Der Zinssatz EvB Mathematik Köberich Berechne bei den nachfolgenden Aufgaben jeweils den Zinssatz! Z 37, K i 3 Monate 5 Monate ¼ Jahr 2 Monate ¼ Jahr 5 Monate p X X X X X X Z 6,20 24,50 0, ,12 53,60 K i 1 Monat ½ Jahr 45 Tage 210 Tage 72 Tage 120 Tage p X X X X X X Z 22,75 9,45 3,40 44,20 3,92 40,95 K i 210 Tage 135 Tage 32 Tage 156 Tage 140 Tage 7 Monate p X X X X X X Z 3, ,32 51,75 21,90 122,50 K i 54 Tage 8 Monate 4 Monate 3 Monate 45 Tage 7 Monate p X X X X X X 5. Dieter hat 1240 auf seinem Konto. Nach 5 Monaten hebt er das Geld ab und erhält mit den Zinsen 1271 ausgezahlt. Berechne den Zinssatz! 6. Monika hat ein Guthaben von 800. Wie hoch ist der Zinssatz, wenn Monika nach einem halben Jahr 22 Zinsen erhält? 7. Regina hat ihr Sparkonto in Höhe von 1080 aufgelöst, um mit Stefan und Andrea in die Ferien fahren zu können. Das Guthaben wurde 9 Monate verzinst und brachte 48,60 Zinsen. Wie hoch war der Zinssatz? bringen in einem halben Jahr 105 Zinsen. Zu welchem Zinssatz wurde das Geld angelegt? 9. Herr Sundermann sucht dringend Er verspricht, nach sechs Monaten zurückzuzahlen. Berechne die Höhe des Zinssatzes! 10. Herr Meinrad hat sein Konto um 2400 überzogen. Dafür werden ihm für 15 Tage 12,50 Überziehungszinsen berechnet. Wie hoch ist der Zinssatz? 1 Eine Rechnung über 936 ist fällig. Herr Beer bezahlt sie aber erst 2 Monate später. Dafür muss er 17,16 Verzugszinsen zahlen. Wie hoch ist der Zinssatz für die Verzugszinsen?

4 EvB Mathematik Köberich Zinsrechnung D: Die Zeit Berechne bei den nachfolgenden Aufgaben jeweils die Zeit! Z K i X X X X X X p 12% 6% 3,5% 10% 2,1% 6% Z K i X X X X X X p 3,5% 1,8% 4,5% 5,4% 7,2% 4,8% Z K i X X X X X X p 5,2% 7,5% 6,4% 9,6% 12,5% 4,8% Z ,60 48 K i X X X X X X p 4% 4% 5% 4,5% 4,5% 6,25% 5. Wie viele Tage waren die Darlehen jeweils ausgeliehen? a) 4500 bei 11% und einer Rückzahlung von 4610 b) 5000 bei 8,5% und einer Rückzahlung von 5041,32 c) 3000 bei 10,5% und einer Rückzahlung von 3061,25 d) 6700 bei 9% und einer Rückzahlung von 6917,75 e) 8000 bei 9,75% und einer Rückzahlung von 8195 f) bei 10,2% und einer Rückzahlung von 10099,17 g) 7600 bei 6% und einer Rückzahlung von sind mit 8,5% verzinst. Nach welcher Zeit erhält man 1062,50 Zinsen? 7. Sigrid hat 800 auf ihrem Sparbuch. Der Zinssatz beträgt 6%. Wie lange muss sie warten, bis sie 36 Zinsen bekommt? 8. Herr Wohlfarth leiht sich bei einer Bank Das Geld wird mit 6% verzinst. Wie lange hatte Herr Wohlfarth das Geld ausgeliehen, wenn er 200 Zinsen zahlen musste? 9. Frau Bühler nimmt zum Kauf eines Autos einen Kredit über 4500 auf, der mit 6,5% verzinst wird. Mit Zinsen zahlt sie 4597,50 zurück. Wie viele Tage war das Geld ausgeliehen?

5 EvB Mathematik Köberich Zinsrechnung A (Lösungen) Berechne bei den nachfolgenden Aufgaben jeweils die Zinsen! Z K i 15 Tage 2 Monate 100 Tage 7 Monate ¼ Jahr 5½ Monate p 3% 5% 4,5% 6% 1½% 4% Z 14,63 3,41 28,13 50,40 2,50 56 K i 3 Monate 48 Tage ¾ Jahr 8 Monate 24 Tage 80 Tage p 6,5% 4% 5% 5¼ % 3% 3,5% Z 21 17, K i ½ Jahr 3½ Monate 210 Tage ¼ Jahr ⅓ Jahr 8 Monate p 6% 7,5% 4% 2% 5% 4,5% Z 93, , K i 175 Tage 5 Monate ¼ Jahr 8 Monate 80 Tage ½ Jahr p 6% 3% 4,5% 5% 9% 4% 5. Herr Kaufmann überzieht sein Konto für 15 Tage um Die Bank gibt ihm dieses Geld als Kredit und berechnet ihm dafür 12% Zinsen (Überziehungszinsen). Wie viel Zinsen muss Herr Kaufmann bezahlen? Berechne die Überziehungszinsen bei einem Zinssatz von 12% a) 900 für 20 Tage b) 2000 für 24 Tage c) 2400 für 14 Tage ,20 7. Heiner hatte im vergangenen Jahr auf seinem Sparbuch folgende Beträge: Monate lang, dann Monate lang, danach Monate lang und dann noch einmal Monate lang. Er erhielt 3% Zinsen. Wie viel Zinsen erhielt Heiner am Jahresende? , ,50 = 43,75 8. Caroline leiht sich bei einer Bank 4500 für 3 Monate. Die Bank verlangt dafür von ihr 9% Zinsen. Wie viel Geld muss Caroline nach 3 Monaten zurückzahlen? 4601,25 9. Felix gewinnt bei der SKL-Show sagenhafte 5 Millionen Euro. Zunächst legt er seinen neu erworbenen Reichtum für einen Monat bei einer Bank an. Er erhält dafür 3% Zinsen. Welches Auto könnte Felix sich nach diesem Monat von den Zinsen kaufen? einen Kleinwagen Smart VW Fox oder ähnliches

6 Zinsrechnung B (Lösungen) Berechne bei den nachfolgenden Aufgaben jeweils das Kapital! EvB Mathematik Köberich Z K , i 17 Tage 96 Tage 9 Monate 90 Tage 105 Tage 56 Tage p 9% 4% 4% 12% 6% 10% Z 52, ,50 69,12 K , i 210 Tage 4 Monate ½ Jahr 9 Monate 3 Monate 2 Monate p 5% 4,5% 3% 4% 5% 6% Z , ,05 K , i 4 Monate ¾ Jahr 100 Tage 8 Monate 20 Tage 72 Tage p 6% 3% 5% 2,5% 6% 4,5% Für welches Kapital erhält man: a) bei 7,5% in 6 Tagen 5 Zinsen b) bei 5% in 270 Tagen 2 Zinsen c) bei 4% in 72 Tagen 16 Zinsen d) bei 3% in 90 Tagen 15 Zinsen a) 4000 b) 53,33 c) 2000 d) Herr Haber legt einen Lottogewinn zu 6,5% an. Er bekommt monatlich 975 Zinsen. Wie viel hat Herr Haber angelegt? Ein Profifußballer hat mit dem Fußballspielen aufgehört. Er hat sein erspartes Geld zu 5% angelegt. Von den Zinsen in Höhe von 3200 monatlich lebt er. Wie viel hat der Fußballprofi angelegt? Von einem Guthaben, das mit 5% verzinst wird, werden nach 9 Monaten 187,50 Zinsen ausgezahlt. Wie hoch ist das Guthaben? Manche Menschen bewahren ihr Geld lieber zu Hause auf als es einer Bank anzuvertrauen. Wie viel hat jemand gespart, wenn ihm täglich 3 Zinsen entgehen, die ihm eine Bank bei einem Zinssatz von 6% zahlen würde? Für das Überziehen seines Girokontos bezahlt Matthias 15% Zinsen. Um wie viel Euro hat er sein Konto überzogen, wenn er monatlich 60 Zinsen zahlen muss? 4800

7 EvB Mathematik Köberich Zinsrechnung C (Lösungen) Berechne bei den nachfolgenden Aufgaben jeweils den Zinssatz! Z 37, K i 3 Monate 5 Monate ¼ Jahr 2 Monate ¼ Jahr 5 Monate p 3 % 6 % 7 % 8 % 2 % 3 % Z 6,20 24,50 0, ,12 53,60 K i 1 Monat ½ Jahr 45 Tage 210 Tage 72 Tage 120 Tage p 8 % 7 % 10 % 5,4 % 4,6 % 8 % Z 22,75 9,45 3,40 44,20 3,92 40,95 K i 210 Tage 135 Tage 32 Tage 156 Tage 140 Tage 7 Monate p 4 % 2,25 % 5 % 3,33 4 % 4,5 % Z 3, ,32 51,75 21,90 122,50 K i 54 Tage 8 Monate 4 Monate 3 Monate 45 Tage 7 Monate p 3 % 5 % 12 % 6 % 4 % 4,2 % 5. Dieter hat 1240 auf seinem Konto. Nach 5 Monaten hebt er das Geld ab und erhält mit den Zinsen 1271 ausgezahlt. Berechne den Zinssatz! 6 % 6. Monika hat ein Guthaben von 800. Wie hoch ist der Zinssatz, wenn Monika nach einem halben Jahr 22 Zinsen erhält? 5,5 % 7. Regina hat ihr Sparkonto in Höhe von 1080 aufgelöst, um mit Stefan und Andrea in die Ferien fahren zu können. Das Guthaben wurde 9 Monate verzinst und brachte 48,60 Zinsen. Wie hoch war der Zinssatz? 6 % bringen in 1/2 Jahr 105 Zinsen. Zu welchem Zinssatz wurde das Geld angelegt? 6 % 9. Herr Sundermann sucht dringend Er verspricht, nach sechs Monaten zurückzuzahlen. Berechne die Höhe des Zinssatzes! 20% 10. Herr Meinrad hat sein Konto um 2400 überzogen. Dafür werden ihm für 15 Tage 12,50 Überziehungszinsen berechnet. Wie hoch ist der Zinssatz? 12,5 % 1 Eine Rechnung über 936 ist fällig. Herr Beer bezahlt sie aber erst 2 Monate später. Dafür muss er 17,16 Verzugszinsen zahlen. Wie hoch ist der Zinssatz für die Verzugszinsen? 11 %

8 EvB Mathematik Köberich Zinsrechnung D (Lösungen / Angabe in Tagen) Berechne bei den nachfolgenden Aufgaben jeweils die Zeit! Z K i p 12% 6% 3,5% 10% 2,1% 6% Z K i p 3,5% 1,8% 4,5% 5,4% 7,2% 4,8% Z K i p 5,2% 7,5% 6,4% 9,6% 12,5% 4,8% Z ,60 48 K i p 4% 4% 5% 4,5% 4,5% 6,25% 5. Wie viele Tage waren die Darlehen jeweils ausgeliehen? a) 4500 bei 11% und einer Rückzahlung von b) 5000 bei 8,5% und einer Rückzahlung von 5041,32-35 (Kommawert) c) 3000 bei 10,5% und einer Rückzahlung von 3061,25-70 d) 6700 bei 9% und einer Rückzahlung von 6917, e) 8000 bei 9,75% und einer Rückzahlung von f) bei 10,2% und einer Rückzahlung von 10099,17-35 (Kommawert) g) 7600 bei 6% und einer Rückzahlung von sind mit 8,5% verzinst. Nach welcher Zeit erhält man 1062,50 Zinsen? Sigrid hat 800 auf ihrem Sparbuch. Der Zinssatz beträgt 6%. Wie lange muss sie warten, bis sie 36 Zinsen bekommt? Herr Wohlfarth leiht sich bei einer Bank Das Geld wird mit 6% verzinst. Wie lange hatte Herr Wohlfarth das Geld ausgeliehen, wenn er 200 Zinsen zahlen musste? Frau Bühler nimmt zum Kauf eines Autos einen Kredit über 4500 auf, der mit 6,5% verzinst wird. Mit Zinsen zahlt sie 4597,50 zurück. Wie viele Tage war das Geld ausgeliehen? 120

Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung Downloadauszug aus dem Originaltitel: Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung

Mehr

2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit?

2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit? Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Zinsrechnung 1. Wie viel Zinsen sind

Mehr

Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen.

Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen. Zinsen berechnen Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Grundwert G Kapital K Prozentwert P Zinsen Z Prozentsatz p Zinssatz p Frau Mayer hat ein Guthaben von

Mehr

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme Information In der Zinsrechnung sind 4 Größen wichtig: ZINSEN Z ist die Vergütung für die leihweise Überlassung von Kapital KAPITAL K ist die leihweise überlassenen Geldsumme ZINSSATZ p (Zinsfuß) gibt

Mehr

a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit: 3 Monate

a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit: 3 Monate Zinsrechnung 2 1 leicht Monatszinsen Berechne jeweils die Zinsen! a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit:

Mehr

Zinsrechnung Z leicht 1

Zinsrechnung Z leicht 1 Zinsrechnung Z leicht 1 Berechne die Jahreszinsen im Kopf! a) Kapital: 500 Zinssatz: 1 % b) Kapital: 1 000 Zinssatz: 1,5 % c) Kapital: 20 000 Zinssatz: 4 % d) Kapital: 5 000 Zinssatz: 2 % e) Kapital: 10

Mehr

Aufgaben zum Zinsrechnen, Nr. 1

Aufgaben zum Zinsrechnen, Nr. 1 Aufgaben zum Zinsrechnen, Nr. 1 1.) Berechnen Sie die jährlichen Zinsen! a) 42 T zu 9 % d) 36 T zu 6¾ % b) 30 T zu 7½ % e) 84 T zu 9¼ % c) 12 T zu 7¼ % f) 24 T zu 9¼ % 2.) Berechnen Sie Z! a) 2.540 zu

Mehr

Zinsrechnung 2 leicht 1

Zinsrechnung 2 leicht 1 Zinsrechnung 2 leicht 1 Berechne! a) b) c) Kapital 3 400 a) 16 000 b) 24 500 c) Zinsen 2,5% 85 400 612,50 Kapital 3 400 16 000 24 500 KESt (25% der Zinsen) 21,25 100 153,13 Zinsen effektive (2,5 Zinsen

Mehr

6. Zinsrechnen () 1. / 3 Jahr? / 4 Jahr? (A) 12,00 W (B) 16,00 W (D) 81,00 W (E) 108,00 W (C) 50,00 W (D) 200,00 W (A) 24,00 W (B) 48,00 W

6. Zinsrechnen () 1. / 3 Jahr? / 4 Jahr? (A) 12,00 W (B) 16,00 W (D) 81,00 W (E) 108,00 W (C) 50,00 W (D) 200,00 W (A) 24,00 W (B) 48,00 W 6. Zinsrechnen 382 Wie viele Zinsen bringt ein Kapital in HoÈ he von 8.000,00 a bei einem Zinssatz von 6 % p.a. in 90 Tagen? (A) 90,00 W (B) 120,00 W (C) 180,00 W (D) 210,00 W (E) 240,00 W 383 Zu welchem

Mehr

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Dieser Download ist ein Auszug aus dem Originaltitel Klassenarbeiten

Mehr

Zinsrechnung 2 mittel 1

Zinsrechnung 2 mittel 1 Zinsrechnung 2 mittel 1 Berechne jeweils das Kapital! a) Zinsen: 42 Zinssatz: 1,5 % Zeitraum: 8 Monate b) Zinsen: 687,50 Zinssatz: 2,5 % Zeitraum: 11 Monate H2 Zinsrechnung 2 mittel 2 Berechne jeweils

Mehr

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Differenzierte Materialien

Mehr

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate 1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate b) 12800,00 8,75 % 2 Jahre, 9 Monate c) 4560,00 9,25 % 5 Monate d) 53400,00 5,5 % 7 Monate e) 1 080,00

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013

R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013 R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013 SEK I Lösungen zur Zinseszinsrechnung I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Rechnen mit Zinseszinsen I. Zinseszins Rechenaufgaben

Mehr

Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1

Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1 Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1 1. Aufgabe Der durchschnittliche Einlagenbestand eines KI gliedert sich in - Sichteinlagen 360 Mio. zu 0,4 % -

Mehr

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät

Mehr

Zinsrechnung % leicht 1

Zinsrechnung % leicht 1 Zinsrechnung % leicht 1 Berechne den Zinssatz im Kopf! a) b) c) d) Kapital: 1 000 Kapital: 500 Kapital: 20 000 Kapital: 5 000 Zinsen: 20 a) p = 2 % b) p = Zinsen: 1 % 5 c) p = 4 % d) p = Zinsen: 3 % 800

Mehr

Übungsserie 6: Rentenrechnung

Übungsserie 6: Rentenrechnung HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik I Finanzmathematik Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie 6: Rentenrechnung 1. Gegeben ist eine

Mehr

Bei der Ermittlung der Zinstage wird der erste Tag nicht, der letzte Tag aber voll mitgerechnet.

Bei der Ermittlung der Zinstage wird der erste Tag nicht, der letzte Tag aber voll mitgerechnet. Zinsrechnung Sofern nicht ausdrücklich erwähnt, werden die Zinsen nach der deutschen Zinsmethode berechnet. Bei der deutschen Zinsmethode wird das Zinsjahr mit 360 Tagen und der Monat mit 30 Tagen gerechnet:

Mehr

Zinsrechnen. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de

Zinsrechnen. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de Das Zinsrechnen Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Begriffe der Zinsrechnung Das Zinsrechnen ist Prozentrechnen unter

Mehr

1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt?

1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt? Zinsrechnung mit der Tabellenform: Berechnen der Jahreszinsen Ein Sparbuch mit 1600 wird mit 4% verzinst. Wie Zinsen erhält man im Jahr? Geg.: K = 1600 p% = 4% ges.: Z Das Kapital (Grundwert) entspricht

Mehr

Qualiaufgaben Zinsrechnung

Qualiaufgaben Zinsrechnung Qualiaufgabe 2008 Aufgabengruppe I Der 17- Jährige Ferdinand hat 3000 gespart und möchte dieses Geld für 9 Monate anlegen. Hierfür hat er zwei Angebote. BANK A BANK B Sonderaktion für Jugendliche Taschengeldkonto

Mehr

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss:

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss: 2 2. Prozentrechnung Was du schon können musst: Du solltest proportionale Zusammenhänge kennen und wissen, wie man damit rechnet. Außerdem musst du Dreisatzrechnungen rasch und sicher durchführen können.

Mehr

Universität Duisburg-Essen

Universität Duisburg-Essen T U T O R I U M S A U F G A B E N z u r I N V E S T I T I O N u n d F I N A N Z I E R U N G Einführung in die Zinsrechnung Zinsen sind die Vergütung für die zeitweise Überlassung von Kapital; sie kommen

Mehr

b) Wie hoch ist der Betrag nach Abschluss eines Studiums von sechs Jahren?

b) Wie hoch ist der Betrag nach Abschluss eines Studiums von sechs Jahren? Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Mathematik für Prüfungskandidaten und Prüfungskandidatinnen Unterjährliche

Mehr

Das Kapital (Grundwert) entspricht immer 100% ist das Kapital. 100% entsprechen also 1600.

Das Kapital (Grundwert) entspricht immer 100% ist das Kapital. 100% entsprechen also 1600. Berechnung der Jahreszinsen (Prozentwert) Ein Sparbuch mit 1600 wird mit % verzinst. Wie viel Zinsen erhält man im Jahr? Geg.: K = 1600 p% = % ges.: Z % 1600 Das Kapital (Grundwert) entspricht immer %.

Mehr

Aufgaben zur Finanzmathematik, Nr. 1

Aufgaben zur Finanzmathematik, Nr. 1 Aufgaben zur Finanzmathematik, Nr. 1 1.) Ein Unternehmen soll einen Kredit in Höhe von 800.000 in fünf gleich großen Tilgungsraten zurückzahlen. Der Zinssatz beträgt 6,5 % p. a. Erstellen Sie einen Tilgungsplan!

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 7.09.202 Lösungen zur Zinseszinsrechnung Ergebnisse E Auf welchen Betrag wachsen foende Anfangskapitalien an? a) 800 wachsen bei einem Zinssatz von 5% in 0 Jahren

Mehr

Korrigenda Wirtschaft DHF/DHA umfassend repetiert

Korrigenda Wirtschaft DHF/DHA umfassend repetiert Korrigenda Wirtschaft DHF/DHA umfassend repetiert 1. Auflage 2012, ISBN 978-3-905726-45-9 7. Rechnen und Statistik 7.10 Zinsrechnen Der Zins (census, Abgabe) ist die Entschädigung für das Ausleihen von

Mehr

Aufgabensammlung Grundlagen der Finanzmathematik

Aufgabensammlung Grundlagen der Finanzmathematik Aufgabensammlung Grundlagen der Finanzmathematik Marco Papatrifon Zi.2321 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg 1 Zinsrechnung Aufgabe 1 Fred überweist 6000 auf

Mehr

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000. Finanzmathematik Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de Das Tilgungsrechnen Für Kredite gibt es drei unterschiedliche

Mehr

A n a l y s i s Finanzmathematik

A n a l y s i s Finanzmathematik A n a l y s i s Finanzmathematik Die Finanzmathematik ist eine Disziplin der angewandten Mathematik, die sich mit Themen aus dem Bereich von Finanzdienstleistern, wie etwa Banken oder Versicherungen, beschäftigt.

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln. Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM2 Nachschüssige Verzinsung Aufgabe

Mehr

Auch der Prozentsatz kann mit dem Dreisatzschema berechnet werden: gegebener Prozentwert gesuchter Prozentsatz

Auch der Prozentsatz kann mit dem Dreisatzschema berechnet werden: gegebener Prozentwert gesuchter Prozentsatz 20 8 Prozentsatz Wird der Preis einer Ware von 350 auf 200 reduziert, so stellt man die Frage nach dem prozentualen Rabatt. Dieser Prozentsatz ist zu berechnen, Grundwert und Prozentwert sind gegeben.

Mehr

Zinsrechnung K leicht 1

Zinsrechnung K leicht 1 Zinsrechnung K leicht 1 Berechne jeweils das Kapital im Kopf! (Zeitraum: 1 Jahr) a) K = 3 000 a) Zinsen: 30 b) K = 7 500 c) K = 100 000 d) K = 20 Zinssatz: 000 1 % b) Zinsen: 150 Zinssatz: 2 % c) Zinsen:

Mehr

Finanzmathematik. Zinsrechnung I 1.)

Finanzmathematik. Zinsrechnung I 1.) Finanzmathematik Zinsrechnung I 1.) Ein Vater leiht seinem Sohn am 1.1. eines Jahres 1.000.- DM. Es wird vereinbart, dass der Sohn bei einfacher Verzinsung von 8% das Kapital einschließlich der Zinsen

Mehr

.DXIPlQQLVFKHV5HFKQHQ =LQVUHFKQHQ. Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ"

.DXIPlQQLVFKHV5HFKQHQ =LQVUHFKQHQ. Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ =LQVUHFKQHQ Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ" =LQV =LQVVDW]=LQVIX =HLW -DKU 0RQDW der Preis für die Nutzung eines Kapitals während einer bestimmten

Mehr

ZINSEN- 3/2011 Beispiele: Berechnung des Schließungswerts: Beispiel 1

ZINSEN- 3/2011 Beispiele: Berechnung des Schließungswerts: Beispiel 1 Beispiel 1 BEISPIEL 1: Frau Margarethe Siebenschläfer eröffnet am Montag, den 17.2., ein Sparbuch mit einer Einlage von 200.000.--. Zinssatz: 4,5 % Bindung: 12 Monate mit sofortiger Kündigung. Am Mittwoch,

Mehr

Rentenrechnung 5. unterjhrige Verzinsung mit Zinseszins K n. q m n =K 0. N=m n N= m=anzahl der Zinsperioden n=laufzeit. aa) K 10

Rentenrechnung 5. unterjhrige Verzinsung mit Zinseszins K n. q m n =K 0. N=m n N= m=anzahl der Zinsperioden n=laufzeit. aa) K 10 Rentenrechnung 5 Kai Schiemenz Finanzmathematik Ihrig/Pflaumer Oldenburg Verlag 50.Am 0.0.990 wurde ein Sparkonto von 000 eröffnet. Das Guthaben wird vierteljährlich mit % verzinst. a.wie hoch ist das

Mehr

Tipps zur Nutzung der ViT 1 Lernen ViT Üben HAU ViT ViT ViT ViT ViT Testen ViT VORSC Bewerten RAGTIME ViT zur Vollversion ViT

Tipps zur Nutzung der ViT 1 Lernen ViT Üben HAU ViT ViT ViT ViT ViT Testen ViT VORSC Bewerten RAGTIME ViT zur Vollversion ViT Fit mit Tipps zur Nutzung der s Auf den folgenden Seiten finden Sie 50 Tests mit ähnlichem Inhalt. Damit können Sie z.b. Parallelklassen, Nachzügler, Gruppen oder alle Schüler einer Klasse bei Klassenarbeiten

Mehr

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50 Prozent- und Zinsrechnung Grundgleichung der Prozentrechnung 1 1% = 100 % = 100 12 Bs. 12% = 100 W G W- Prozentwert -Prozentsatz G- Grundwert 1. Berechnung von Prozentwerten W = G Bs. Wie viel sind 15%

Mehr

Wochenplanarbeit Name:... % % Prozentrechnen % %

Wochenplanarbeit Name:... % % Prozentrechnen % % Inhaltsverzeichnis 1. Darstellung von Prozentwerten... 2 2. Veranschaulichen von Prozentwerten... 3 3. Prozent - / Bruch - / Dezimalschreibweise... 4 4. Grundaufgaben der Prozentrechnung... 4 5. Kreisdiagramme...

Mehr

Zinsen, Zinseszins, Rentenrechnung und Tilgung

Zinsen, Zinseszins, Rentenrechnung und Tilgung Zinsen, Zinseszins, Rentenrechnung und Tilgung 1. Zinsen, Zinseszins 2. Rentenrechnung 3. Tilgung Nevzat Ates, Birgit Jacobs Zinsrechnen mit dem Dreisatz 1 Zinsen Zinsrechnen mit den Formeln Zinseszins

Mehr

DOWNLOAD. Zinsrechnen 9./10. Klasse. Mathetraining in 3 Kompetenzstufen. Brigitte Penzenstadler. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Zinsrechnen 9./10. Klasse. Mathetraining in 3 Kompetenzstufen. Brigitte Penzenstadler. Downloadauszug aus dem Originaltitel: DOWNLOAD Brigitte Penzenstadler 9./10. lasse Mathetraining in 3 ompetenzstufen Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen Urheberrecht. Der

Mehr

o Der Endwert der Rente beträgt CHF 198'394.10. Aufgabe 19.1 (Seite 649) 6%% ~ Jahre qn_1 q-1 7'125.-- (vorschüssig)

o Der Endwert der Rente beträgt CHF 198'394.10. Aufgabe 19.1 (Seite 649) 6%% ~ Jahre qn_1 q-1 7'125.-- (vorschüssig) Aufgabe 19.1 (Seite 649) CD Berechnen von Bar- und Endwerten a) Die Laufzeit einer jeweils Anfang Jahr ausbezahlten Rente von CHF 7'125.-- beträgt 16 Jahre. Wie hoch ist der Endwert der Rente, wenn die

Mehr

Sparen. Sparformen Bilder. Material. [1 von 10] Bild: Petra Bork / pixelio.de

Sparen. Sparformen Bilder. Material. [1 von 10] Bild: Petra Bork / pixelio.de [1 von 10] Bild: Petra Bork / pixelio.de 13 [2 von 10] Sparschwein Einzahlung Jederzeit nach Lust und Laune. Laufzeit/ Bindefrist Meistens wird das Geld 1 Jahr lang gespart und dann gesammelt auf ein Sparbuch

Mehr

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S;

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; 1 5.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit

Mehr

Merke z = K p i 100. 7.1 Von der Jahreszinsformel zur Tageszinsformel. Lösung: Herleitung der Jahreszinsformel

Merke z = K p i 100. 7.1 Von der Jahreszinsformel zur Tageszinsformel. Lösung: Herleitung der Jahreszinsformel Kapitel 7: Zinsrechnung 105 7.1 Von der Jahreszinsformel zur Tageszinsformel Durch die Größe Zeit wird die Zinsrechnung im Vergleich zur Prozentrechnung um eine Größe erweitert. Sind der Kapitalbetrag

Mehr

DOWNLOAD Freiarbeit: Prozent- und Zinsrechnen

DOWNLOAD Freiarbeit: Prozent- und Zinsrechnen DOWNLOAD Günther Koch Freiarbeit: Prozent- und Zinsrechnen Materialien für die 9. Klasse in zwei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen

Mehr

3.3. Tilgungsrechnung

3.3. Tilgungsrechnung 3.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit Es

Mehr

Geld leihen Lehrerinformation

Geld leihen Lehrerinformation Lehrerinformation 1/7 Arbeitsauftrag Ziel Material Die SuS lesen einen kurzen Text zum Thema. Sie bearbeiten Fragen dazu auf einem Arbeitsblatt. Im Klassengespräch werden die Vor- und Nachteile von Krediten

Mehr

Fritz verlangt einen Zins von 257.14% (Jahreszins. das ist übelster Wucher ) b) k = CHF 150.--, Zeit: 2 Monate, zm = CHF 10.

Fritz verlangt einen Zins von 257.14% (Jahreszins. das ist übelster Wucher ) b) k = CHF 150.--, Zeit: 2 Monate, zm = CHF 10. Seite 8 1 Zinssatz Bruttozins am 31.12. Verrechnungssteuer Nettozins am 31.12. Kapital k Saldo am 31.12. a) 3.5% 2436 852.60 1583.4 69 600 71 183.40 b) 2.3% 4046 1416.10 2629.90 175 913.05 178'542.95 c)

Mehr

Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui

Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui Übungsaufgaben zur Einführung in die Finanzmathematik Übungsaufgaben Aufgabe 1: A hat B am 1.1.1995 einen Betrag von EUR 65,- geliehen. B verpflichtet sich, den geliehenen Betrag mit 7% einfach zu verzinsen

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 204 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei der Rentenrechnung geht es um aus einem angesparten Kapital bzw. um um das Kapital aufzubauen, die innerhalb

Mehr

Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben:

Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben: Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 22, Tel. 394 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe

Mehr

Berechnung des Grundwertes 27. Zinsrechnung

Berechnung des Grundwertes 27. Zinsrechnung Berechnung des Grundwertes 27 Das Rechnen mit Zinsen hat im Wirtschaftsleben große Bedeutung. Banken vergüten Ihnen Zinsen, wenn Sie Geld anlegen oder berechnen Zinsen, wenn Sie einen Kredit beanspruchen.

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

Sparen 4.3. Sparformen - Bilder 4.3/13. Version 03/2009

Sparen 4.3. Sparformen - Bilder 4.3/13. Version 03/2009 1 4.3/13 1 Sparschwein Einzahlung Jederzeit - nach Lust und Laune. Laufzeit / Bindefrist Meistens wird das Geld ein Jahr lang gespart und dann gesammelt auf ein Sparbuch oder Konto einbezahlt. (Weltspartag!)

Mehr

Mathematik-Klausur vom 16.4.2004

Mathematik-Klausur vom 16.4.2004 Mathematik-Klausur vom 16..200 Aufgabe 1 Die Wucher-Kredit GmbH verleiht Kapital zu einem nominellen Jahreszinsfuß von 20%, wobei sie die anfallenden Kreditzinsen am Ende eines jeden Vierteljahres der

Mehr

Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016. Name. Vorname. Prüfungsdatum.

Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016. Name. Vorname. Prüfungsdatum. Nachholbildung Art. 32 BBV Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016 Name Vorname Prüfungsdatum Dauer 45 Minuten Bewertung Maximale Punktzahl 31 Punkte Erreichte Punktzahl Prozente

Mehr

DOWNLOAD VORSCHAU. Mathematik lebensnah: Rund ums Geld. Differenzierte Unterrichtsmaterialien fürs Gymnasium

DOWNLOAD VORSCHAU. Mathematik lebensnah: Rund ums Geld. Differenzierte Unterrichtsmaterialien fürs Gymnasium DOWNLOAD Nathalie Mang Mathematik lebensnah: Rund ums Geld Differenzierte Unterrichtsmaterialien fürs Gymnasium Natalie Mang Bergedorfer Unterrichtsideen MATHEMATIK Downloadauszug aus dem Originaltitel:

Mehr

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011 Mathematik-Klausur vom 08.07.20 und Finanzmathematik-Klausur vom 4.07.20 Studiengang BWL DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min

Mehr

Demo: Mathe-CD. Prozentrechnung Zinsrechnung. Aufgabensammlung zum Üben- und Wiederholen. Datei Nr. 10570. Friedrich Buckel. Stand 28.

Demo: Mathe-CD. Prozentrechnung Zinsrechnung. Aufgabensammlung zum Üben- und Wiederholen. Datei Nr. 10570. Friedrich Buckel. Stand 28. Mathematik für Klasse 7 Prozentrechnung Zinsrechnung Aufgabensammlung zum Üben- und Wiederholen Datei Nr. 10570 Stand 28. März 2008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt Teil 1 17 Übungsaufgaben

Mehr

Geldanlage auf Bankkonten

Geldanlage auf Bankkonten Das Tagesgeldkonto ist ein verzinstes Konto ohne festgelegte Laufzeit. Dabei kann der Kontoinhaber jederzeit in beliebiger Höhe über sein Guthaben verfügen. Kündigungsfristen existieren nicht. Je nach

Mehr

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Finanzmathematik Literatur Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1, 17. Auflage,

Mehr

f) = 3% = 9% = 34% = 65% = 21% = 88% f) 540 = 2% = 80% = 40% = 50% = 17% = 90% f) = 33,3% = 83,3% = 42,9% = 116,7% = 34,8% = 30,8%

f) = 3% = 9% = 34% = 65% = 21% = 88% f) 540 = 2% = 80% = 40% = 50% = 17% = 90% f) = 33,3% = 83,3% = 42,9% = 116,7% = 34,8% = 30,8% Prozentrechnung Lösungen 1. Schreibe als Prozent. 4 5 21 88 b) c) d) = % = % = 4% = 5% = 21% = 88% 2. Schreibe als Prozent. 4 b) 50 c) 10 d) 450 85 540 200 700 400 00 500 00 = 2% = 80% = 40% = 50% = 17%

Mehr

, und wie zuvor. 2. Einmalanlage mehrjährig mit festen Zinssatz (Kapitalentwicklung): mit Endkapital, Anfangskapital und 1 %

, und wie zuvor. 2. Einmalanlage mehrjährig mit festen Zinssatz (Kapitalentwicklung): mit Endkapital, Anfangskapital und 1 % Themenerläuterung Das Thema verlangt von dir die Berechnung von Zinsen bzw. Zinseszinsen, Anfangskapital, Endkapital und Sparraten. In seltenen Fällen wird auch einmal die Berechnung eines Kleinkredites

Mehr

Zinsrechnung. 2.1 Was sind Zinsen?

Zinsrechnung. 2.1 Was sind Zinsen? Zinsrechnung 2 Dieses Kapitel fasst aus fachwissenschaftlicher Sicht die wichtigsten ökonomischen und mathematischen Grundlagen derjenigen Inhalte zum Thema Zinsrechnung zusammen, die Gegenstand der im

Mehr

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1 Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z

Mehr

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung 4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor

Mehr

Prozente. Prozente. 6 Rabatt und Mehrwertsteuer6. 8 Zinsen für mehr als 1 Jahr z% j Jahre Algebra. 3 Berechnung des Prozentsatzes 4 Berechnung des

Prozente. Prozente. 6 Rabatt und Mehrwertsteuer6. 8 Zinsen für mehr als 1 Jahr z% j Jahre Algebra. 3 Berechnung des Prozentsatzes 4 Berechnung des Anteile als Darstellung von n Berechnung des Prozentsatzes Berechnung des Rabatt und Mehrwertsteuer Prozentwertes Berechnung des Grundwertes 8 Zinsen mehr als Jahr K K (+ Das magisches Dreieck decke die

Mehr

1. Einfache Zinsrechnung (lineare Verzinsung)...2. 2. Zinseszinsrechnung (exponentielle Verzinsung)...4. 3. Rentenrechnung...5

1. Einfache Zinsrechnung (lineare Verzinsung)...2. 2. Zinseszinsrechnung (exponentielle Verzinsung)...4. 3. Rentenrechnung...5 Inhalt. Einfache Zinsrechnung (lineare Verzinsung).... Zinseszinsrechnung (exponentielle Verzinsung)...4. Rentenrechnung...5 4. Tilgungsrechnung...6 Die Größe p bezeichnet den Zinsfuß (z.b. 0). Die Größe

Mehr

Mathematik-Klausur vom 4.2.2004

Mathematik-Klausur vom 4.2.2004 Mathematik-Klausur vom 4.2.2004 Aufgabe 1 Ein Klein-Sparer verfügt über 2 000, die er möglichst hoch verzinst anlegen möchte. a) Eine Anlage-Alternative besteht im Kauf von Bundesschatzbriefen vom Typ

Mehr

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) 3. Finanzmathematik 3.1. Zinsrechnung 3.1.1. Grundbegriffe K... Kapital (caput - das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen

Mehr

Übungsaufgaben zur Zinsrechnung aus einer Klassenarbeit

Übungsaufgaben zur Zinsrechnung aus einer Klassenarbeit Übungsaufgaben zur Zinsrechnung aus einer Klassenarbeit 1. Aufgabe Ein Kapital in Höhe von 1500 wird zunächst drei Jahre lang mit 5% verzinst und dann mit 6,2% verzinst. Das Kapital beträgt dann 2.645,64.

Mehr

Aufgaben. Belegorganisation 19.07.2014

Aufgaben. Belegorganisation 19.07.2014 19.07.2014 1 1. Aufgabe (20 Punkte) a) Kontiere den Rechnungsbeleg der Vita Couch OHG. b) Am 26 August 2014 wird die Rechnung durch Banküberweisung bezahlt, 1. ermittle den Zahlungsbetrag. 2. wie hoch

Mehr

Lineare Gleichungssysteme mit zwei Variablen Lösungen

Lineare Gleichungssysteme mit zwei Variablen Lösungen Lineare Gleichungssysteme mit zwei Variablen Lösungen. Bestimme rechnerisch und grafisch die Lösungsmenge L der folgenden Gleichungssysteme. a) b) c) I. x y I. 5y (x ) 5 II. x y II. x y I. 5y (x ) 5 II.

Mehr

Neo-Institutionalistischer Finanzierungsbegriff

Neo-Institutionalistischer Finanzierungsbegriff Finanzierung: (1) Beschaffung (Zufluss) finanzieller Mittel... (2)... welche in der Folge einen Abfluss liquider Mittel zur Folge Hat/haben kann... Neo-Institutionalistischer Finanzierungsbegriff (3)...unter

Mehr

Lösungen. Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie Name. Vorname. Prüfungsdatum.

Lösungen. Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie Name. Vorname. Prüfungsdatum. Nachholbildung Art. 32 BBV Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016 Name Lösungen Vorname Prüfungsdatum Dauer 45 Minuten Bewertung Maximale Punktzahl 31 Punkte Erreichte Punktzahl

Mehr

Prozentrechnung. Klaus : = Karin : =

Prozentrechnung. Klaus : = Karin : = Prozentrechnung Klaus erzählt, dass bei der letzten Mathe-Arbeit 6 seiner Mitschüler die Note gut erhalten hätten. Seine Schwester Karin hat auch eine Arbeit zurück bekommen. In ihrer Klasse haben sogar

Mehr

Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap

Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap Verfasser: Martina Dadek, Oberstudienrätin Sabine Jakobs-Arendt, Oberstudienrätin

Mehr

NACHRANGKAPITAL-SCHULDSCHEIN 2007-2022 (SSD 49)

NACHRANGKAPITAL-SCHULDSCHEIN 2007-2022 (SSD 49) NACHRANGKAPITAL-SCHULDSCHEIN 2007-2022 (SSD 49) der Kommunalkredit Austria AG über ein Nachrangkapitai-Darlehen in Höhe von EUR 1 0.000.000,-- (in Worten: EUR zehn Millionen) Die bestätigt hiermit, von

Mehr

Jugendverschuldung 1. Welches sind Ihrer Meinung nach die am meisten auftretenden Schuldenfal en für Jugendliche? (Mehrere Kreuze möglich)

Jugendverschuldung 1. Welches sind Ihrer Meinung nach die am meisten auftretenden Schuldenfal en für Jugendliche? (Mehrere Kreuze möglich) Jugendverschuldung Wir Schülerinnen der Kantonsschule Ausserschwyz sind dabei, ein Schulprojekt zum Thema Jugendverschuldung durchzuführen. Wir danken Ihnen für Ihre Bereitschaft, diesen Fragebogen auszufüllen.

Mehr

Montessori Verein Kösching e.v.

Montessori Verein Kösching e.v. Darlehensvertrag Zwischen dem Montessori Verein Kösching e.v. als Träger der Montessori-Schule Kösching - nachfolgend Schule genannt Und (Name, Vorname) (Straße, PLZ, Wohnort) - nachfolgend Darlehensgeber

Mehr

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) 1 2. Zinsrechnung 2.1. Grundbegriffe K... Kapital (caput das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen eines Kapitals

Mehr

BAföG-Bankdarlehen Die Förderung für Ihren Studienabschluss

BAföG-Bankdarlehen Die Förderung für Ihren Studienabschluss BAföG-Bankdarlehen Die Förderung für Ihren Studienabschluss Bildung hat bei uns Kredit Eine gute Ausbildung ist eine Investition in die eigene Zukunft. Sie bringt aber auch finanzielle Belastungen mit

Mehr

Musterbeispiele zur Prozentrechnung. W = G p = 100 G = 100 100 G p G = Grundwert W = Prozentwert p = Prozentsatz

Musterbeispiele zur Prozentrechnung. W = G p = 100 G = 100 100 G p G = Grundwert W = Prozentwert p = Prozentsatz R. Brinkmann http://brinkmann-du.de Seite 1 18.01.2008 Musterbeispiele zur Prozentrechnung p W W W = G p = 100 G = 100 100 G p G = Grundwert W = Prozentwert p = Prozentsatz Beispiele Prozentrechnung: 1.

Mehr

Das Darlehn wurde nach 42 Monaten (3,5 Jahren) abgelöst. Auf Artikel I ist ein Rabatt von 12,5% und auf Artikel II von 5%.

Das Darlehn wurde nach 42 Monaten (3,5 Jahren) abgelöst. Auf Artikel I ist ein Rabatt von 12,5% und auf Artikel II von 5%. R. Brinkmann http://brinkmann-du.de Seite 1 17.09.01 Lösungen zur Prozent und Zinsrechnung I se: E1 E E3 E4 E5 E6 E7 E8 E9 E10 E11 E1 E13 E14 E15 Nach 9 Monaten und 10 Tagen belaufen sich die anfallenden

Mehr

Kartenzahlung Onlinebanking; Electronic-Cash; elektronischer Zahlungsverkehr. Kontoauszugsdrucker Sparbuch, Aktien, Festgeld

Kartenzahlung Onlinebanking; Electronic-Cash; elektronischer Zahlungsverkehr. Kontoauszugsdrucker Sparbuch, Aktien, Festgeld Themenbereich 4 Geld/Geldinstitute 1. Aufgabenbereich Auslandsgeschäfte Bargeldloser Zahlungsverkehr EDV-Service Dienstleitungen Geldanlage Bereitstellung von Krediten Beispiele Bereitstellen von ausländischen

Mehr

Anspar-Darlehensvertrag

Anspar-Darlehensvertrag Anspar-Darlehensvertrag Zwischen Name: Straße: PLZ, Ort: Tel.: Mobil: E-Mail: Personalausweisnummer: - nachfolgend Gläubiger genannt und der Wilms, Ingo und Winkels, Friedrich, Florian GbR vertreten durch:

Mehr

Für Wünsche, Notfälle oder das Alter warum und wie wir sparen

Für Wünsche, Notfälle oder das Alter warum und wie wir sparen Für Wünsche, Notfälle oder das Alter warum und wie wir sparen Reich wird man nicht durch das, was man verdient, sondern durch das, was man nicht ausgibt. Henry Ford, amerikanischer Großindustrieller (1863

Mehr

Anlageentscheidung. Wofür würdest du eigentlich sparen? 1 Sparen + Anlegen. Nele + Freunde. Sparmotive

Anlageentscheidung. Wofür würdest du eigentlich sparen? 1 Sparen + Anlegen. Nele + Freunde. Sparmotive 1 Wofür würdest du eigentlich sparen? Endlich 16 Jahre alt! Die Geburtstagsfeier war super, alle waren da. Und Nele hat tolle Geschenke bekommen. Das Beste kam allerdings zum Schluss, als die Großeltern

Mehr

Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen

Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen Mathematik -Intensivierung * Jahrgangsstufe Lösung von Gleichungen durch Äquivalenzumformungen Musterbeispiel: 5 ( x - ) + x = ( 5 - x ) (Vereinfachen!) 5 x - 0 + x = 0-6 x (Vereinfachen!) 8 x - 0 = 0-6

Mehr

Buch: Einblicke Mathematik 8 Klett ISBN 3-12-745580-1. Modul 8. Prozentrechnen (Seiten 86 96)

Buch: Einblicke Mathematik 8 Klett ISBN 3-12-745580-1. Modul 8. Prozentrechnen (Seiten 86 96) Buch: Einblicke Mathematik 8 Klett ISBN 3-12-745580-1 Modul 8 Prozentrechnen (Seiten 86 96) 1) Vergleichen von Anteilen über Prozentsätze Als erstes soll man auf den Unterschied zwischen dem absoluten

Mehr

Skript Prozentrechnung. Erstellt: 2015/16 Von: www.mathe-in-smarties.de

Skript Prozentrechnung. Erstellt: 2015/16 Von: www.mathe-in-smarties.de Skript Prozentrechnung Erstellt: 2015/16 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Einführung... 3 2. Berechnung des Prozentwertes... 5 3. Berechnung des Prozentsatzes... 6 4. Berechnung

Mehr

Übungsaufgaben zur Zinsrechnung

Übungsaufgaben zur Zinsrechnung Seite 1 von 5 a.) Jemand legt heute 4.000.- zu 4,8% Zinsen an. Nach wie vielen Jahren wird sein Guthaben auf 5.056,69 angewachsen sein? 4.000 1,048 x = 5.056,69 : 4.000 1,048 x = 1,64175 lg x = lg 1,64175

Mehr

Das Sparkonto. 2. Wenn du ein Sparkonto eröffnest, erhältst du als Nachweis ein.

Das Sparkonto. 2. Wenn du ein Sparkonto eröffnest, erhältst du als Nachweis ein. Das Sparkonto 1. Warum eröffnen Menschen Sparkonten? Weil sie Geld möchten. 2. Wenn du ein Sparkonto eröffnest, erhältst du als Nachweis ein. 3. Deine Ersparnisse sind auf einem Sparkonto sicherer als

Mehr

Übungsaufgaben. zur Vorlesung ( B A C H E L O R ) Teil E Betriebliche Finanzwirtschaft. Dr. Horst Kunhenn. Vertretungsprofessor

Übungsaufgaben. zur Vorlesung ( B A C H E L O R ) Teil E Betriebliche Finanzwirtschaft. Dr. Horst Kunhenn. Vertretungsprofessor Übungsaufgaben zur Vorlesung FINANZIERUNG UND CONTROLLING ( B A C H E L O R ) Teil E Betriebliche Finanzwirtschaft Dr. Horst Kunhenn Vertretungsprofessor Institut für Technische Betriebswirtschaft (ITB)

Mehr

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de 1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht

Mehr