Schulinterner Lehrplan Mathematik Stufe EF

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Schulinterner Lehrplan Mathematik Stufe EF"

Transkript

1 Schulinterner Lehrplan Mathematik Stufe EF Thema Funktionstypen Inhaltsbezogene Kompetenzen: Die Schülerinnen und Schüler Funktionen und Analysis beschreiben die Eigenschaften einer Funktion und berechnen zugehörige Funktionswerte beschreiben die Eigenschaften von Potenzfunktionen mit ganzzahligen Exponenten sowie von quadratischen und kubischen Wurzelfunktionen beschreiben Wachstumsprozesse mithilfe linearer Funktionen und Exponentialfunktionen wenden einfache Transformationen (Streckung, Verschiebung) auf Funktionen (lineare und quadratische Funktionen, Funktionen dritten Grades, Sinusfunktionen, Exponentialfunktionen) an und deuten die zugehörigen Parameter verwenden am Graphen oder Term einer Funktion ablesbare Eigenschaften (y-achsenabschnitt, Nullstellen, Symmetrie) als Argumente beim von inner- und außermathematischen Problemen lösen Polynomgleichungen, die sich durch einfaches Ausklammern oder Substituieren auf lineare und quadratische Gleichungen zurückführen lassen, ohne digitale Hilfsmittel Prozessbezogene Kompetenzen: Die Schülerinnen und Schüler Strukturieren erfassen und strukturieren zunehmend komplexe Sachsituationen mit Blick auf eine konkrete Fragestellung, treffen Annahmen und nehmen begründet Vereinfachungen einer realen Situation vor übersetzen zunehmend komplexe Sachsituationen in mathematische Modelle und erarbeiten mithilfe math. Kenntnisse und Fertigkeiten eine Lösung innerhalb des math. Modells, ordnen einem mathematischen Modell verschiedene passende Sachsituationen zu beziehen die erarbeitete Lösung wieder auf die Sachsituation, reflektieren die Angemessenheit aufgestellter Modelle für die Fragestellung, verbessern aufgestellte Modelle mit Blick auf die Fragestellung setzen ausgewählte Routineverfahren auch hilfsmittelfrei zur Lösung ein, wählen Werkzeuge aus, die den Lösungsweg unterstützen überprüfen Ergebnisse auf dem Hintergrund der Fragestellung und auf Plausibilität, vergleichen verschiedene Lösungswege stellen Vermutungen auf, unterstützen diese beispielgebunden und präzisieren diese mithilfe von erklären vorgegebene Argumentationen und mathematische

2 Beweise beschreiben Beobachtungen, bekannte Lösungswege und Verfahren, erläutern mathematische Fachbegriffe in theoretischen Zusammenhängen formulieren eigene Überlegungen und beschreiben eigene Lösungswege Diskutieren nehmen zu mathematikhaltigen, auch fehlerbehafteten Aussagen und Darstellungen begründet Stellung, beurteilen ausgearbeitete Lösungen hinsichtlich ihrer Verständlichkeit und fachsprachlichen Qualität, führen auf der Grundlage fachbezogener Diskussionen Entscheidungen herbei nutzen digitale Werkzeuge zum Erkunden und zum Darstellen von Funktionen (graphisch und als Wertetabelle), zum zielgerichteten Variieren der Parameter von Funktionen, zum von Gleichungen Abhängigkeiten und Änderungen Funktionen und Analysis deuten und berechnen durchschnittliche Änderungsraten im Kontext berechnen und interpretieren lokale Änderungsraten im Kontext erläutern auf der Grundlage eines propädeutischen Grenzwertbegriffs an Beispielen den Übergang von der durchschnittlichen zur lokalen Änderungsrate qualitativ deuten die Tangente als Grenzlage einer Folge von Sekanten, interpretieren die Ableitung an einer Stelle als lokale Änderungsrate/Tangentensteigung beschreiben und interpretieren Änderungsraten funktional (Ableitungsfunktion) leiten Funktionen graphisch ab nutzen die Ableitungsregel für Potenzfunktionen mit natürlichem Exponenten wenden die Summen- und Faktorregel auf ganzrationale Funktionen an nennen die Kosinusfunktion als Ableitung der übersetzen Sachsituationen in mathematische Modelle, erarbeiten mithilfe math. Kenntnisse und Fertigkeiten eine Lösung innerhalb des math. Modells überprüfen die Plausibilität von Ergebnissen beziehen die erarbeitete Lösung wieder auf die Sachsituation, reflektieren die Angemessenheit aufgestellter Modelle für die Fragestellung Erkunden erkennen Muster und Beziehungen nutzen heuristische Strategien und Prinzipien, wählen geeignete Begriffe, Zusammenhänge und Verfahren zur

3 Funktionsuntersuchungen Sinusfunktion Funktionen und Analysis begründen Eigenschaften von Funktionsgraphen (Monotonie, Extrempunkte) mit Hilfe der Graphen der Ableitungsfunktionen unterscheiden lokale und globale Extrema im Definitionsbereich verwenden am Graphen oder Term einer Funktion ablesbare Eigenschaften als Argument beim von inner- und außermathematischen Problemen verwenden notwendige Kriterien und Vorzeichenwechselkriterien sowie weitere hinreichende Kriterien zur Bestimmung von Extremund Wendepunkten beschreiben das Krümmungsverhalten des Graphen Problemlösung aus überprüfen die Plausibilität von Ergebnissen stellen Vermutungen auf Beurteilen überprüfen Ergebnisse, Begriffe und Regeln auf Verallgemeinerbarkeit beschreiben Beobachtungen, bekannte Lösungswege und Verfahren verwenden die Fachsprache und fachspezifische Notation in angemessenem Umfang, wechseln flexibel zwischen mathematischen Darstellungsformen Diskutieren nehmen zu mathematikhaltigen, auch fehlerbehafteten Aussagen und Darstellungen begründet Stellung nutzen digitale Werkzeuge zum Erkunden und Berechnen und zum Darstellen von Funktionen (graphisch und als Wertetabelle), zum zielgerichteten Variieren von Parametern, zum grafischen Messen von Steigungen, zum Berechnen der Ableitung einer Funktion an einer Stelle Strukturieren erfassen Sachsituationen mit Blick auf eine konkrete Fragestellung übersetzen Sachsituationen in mathematische Modelle, erarbeiten mithilfe math. Kenntnisse und Fertigkeiten eine Lösung innerhalb des math. Modells beziehen die erarbeitete Lösung wieder auf die Sachsituation

4 einer Funktion mit Hilfe der 2. Ableitung Erkunden erkennen Muster und Beziehungen setzen ausgewählte Routineverfahren auch hilfsmittelfrei zur Lösung ein, wählen Werkzeuge aus, die den Lösungsweg unterstützen, berücksichtigen einschränkende Bedingungen überprüfen Ergebnisse auf dem Hintergrund der Fragestellung, überprüfen die Plausibilität von Ergebnissen, vergleichen verschiedene Lösungswege stellen Vermutungen auf und präzisieren diese mithilfe von nutzen math. Regeln und Sätze für Begründungen beschreiben Beobachtungen, bekannte Lösungswege und Verfahren, erläutern math. Begriffe in Sachzusammenhängen verwenden die Fachsprache und fachspezifische Notation in angemessenem Umfang, dokumentieren Arbeitsschritte nachvollziehbar nutzen digitale Werkzeuge zum Erkunden und zum Darstellen von Funktionen (graphisch und als Wertetabelle) Wahrscheinlichkeit Stochastik deuten Alltagssituationen als Zufallsexperimente, simulieren Zufallsexperimente, stellen Wahrscheinlichkeitsverteilungen auf und führen Erwartungswertbetrachtungen durch modellieren Sachverhalte mithilfe von Baumdiagrammen beschreiben mehrstufige Zufallsexperimente und ermitteln mithilfe der Pfadregeln Wahrscheinlichkeiten verwenden Urnenmodelle zur Beschreibung von Zufallsprozessen modellieren Sachverhalte mithilfe von Baumdiagrammen und Vier- oder Mehrfeldertafeln Strukturieren erfassen und strukturieren zunehmend komplexe Sachsituationen mit Blick auf eine konkrete Fragestellung, treffen Annahmen und nehmen begründet Vereinfachungen einer realen Situation vor übersetzen zunehmend komplexe Sachsituationen in mathematische Modelle, erarbeiten mithilfe math. Kenntnisse und Fertigkeiten eine Lösung innerhalb des math. Modells, ordnen einem mathematischen Modell verschiedene

5 bestimmen bedingte Wahrscheinlichkeiten prüfen Teilvorgänge mehrstufiger Zufallsexperimente auf stochastische Unabhängigkeit bearbeiten Problemstellungen im Kontext bedingter Wahrscheinlichkeiten passende Sachsituationen zu beziehen die erarbeitete Lösung wieder auf die Sachsituation Erkunden finden und stellen Fragen zu einer gegebenen Problemsituation, analysieren und strukturieren die Situation setzen ausgewählte Routineverfahren auch hilfsmittelfrei zur Lösung ein, wählen Werkzeuge aus, die den Lösungsweg unterstützen überprüfen Ergebnisse auf dem Hintergrund der Fragestellung und auf Plausibilität, vergleichen verschiedene Lösungswege stellen Vermutungen auf und präzisieren mithilfe von nutzen math. Regeln und Sätze für Begründungen erfassen, strukturieren und formalisieren Informationen aus mathematikhaltigen Texten und Darstellungen nutzen digitale Werkzeuge zum Generieren von Zufallszahlen, zum Ermitteln von Kennzahlen von Wahrscheinlichkeitsverteilungen (Erwartungswert) und zum Erstellen von Histogrammen von Wahrscheinlichkeitsverteilungen Vektoren Analytische Geometrie und Lineare Algebra wählen ein geeignetes kartesisches Koordinatensystem für die Bearbeitung eines geometrischen Sachverhaltes in der Ebene und im Raum übersetzen Sachsituationen in mathematische Modelle, erarbeiten mithilfe math. Kenntnisse und Fertigkeiten eine Lösung innerhalb des math. Modells

6 stellen geometrische Objekte in einem räumlichen kartesischen Koordinatensystem dar deuten Vektoren (in Koordinatendarstellung) als Verschiebungen und kennzeichnen Punkte im Raum durch Ortsvektoren addieren Vektoren, multiplizieren mit einem Skalar und untersuchen Vektoren auf Kollinearität berechnen Längen von Vektoren und Abstände zwischen Punkten mithilfe des Satzes des Pythagoras stellen gerichtete Größen (Geschwindigkeit, Beschleunigung und Kraft) durch Vektoren dar weisen Eigenschaften von besonderen Dreiecken und Vierecken mithilfe von Vektoren nach wählen eine geeignetes kartesisches Koordinatensystem für die Bearbeitung eines geometrischen Sachverhaltes in der Ebene und im Raum beziehen die erarbeitete Lösung wieder auf die Sachsituation Erkunden erkennen Muster und Beziehungen wählen Werkzeuge aus, die den Lösungsweg unterstützen, wählen geeignete Begriffe, Zusammenhänge und Verfahren zur Problemlösung aus stellen Vermutungen auf, unterstützen diese beispielgebunden und präzisieren diese mithilfe von stellen Zusammenhänge zwischen Ober- und Unterbegriffen her, nutzen math. Regeln und Sätze für Begründungen und verknüpfen Argumente zu Argumentationsketten, nutzen verschiedene Argumentationsstrategien Beurteilen erkennen und ergänzen bzw. korrigieren lückenhafte und fehlerhafte Argumentationsketten erläutern math. Begriffe in Sachzusammenhängen formulieren eigene Überlegungen und beschreiben eigene Lösungswege, verwenden Fachsprache und fachspezifische Notation verwenden Diskutieren nehmen zu mathematikhaltigen, auch fehlerbehafteten Aussagen und Darstellungen begründet Stellung nutzen digitale Werkzeuge zum Darstellen von Objekten im Raum, zum grafischen Darstellen von Ortsvektoren und Vektorsummen, zum Durchführen von Operationen mit Vektoren

7

Lerninhalte EF Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Hilfsmittel und Methoden. Problemlösen. Argumentieren.

Lerninhalte EF Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Hilfsmittel und Methoden. Problemlösen. Argumentieren. Thema 1: Funktionen und Analysis Grundlegende Eigenschaften von Potenzund Sinusfunktionen (17 UE) 1 Funktionen (1 UE) 2 Lineare und quadratische Funktionen (3 UE) 3 Potenzfunktionen (1 UE) 4 Ganzrationale

Mehr

Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren

Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren Unterrichtsvorhaben I: Eigenschaften von (Wiederholung und Symmetrie, Nullstellen, Transformation), Grundlegende Eigenschaften von Potenz-und Sinusfunktionen Zeitbedarf: 23 Std. Unterrichtsvorhaben IV:

Mehr

Curriculum Mathematik Einführungsphase an der Gesamtschule Marienheide (abgestimmt auf das Lehrwerk Lambacher Schweizer Einführungsphase)

Curriculum Mathematik Einführungsphase an der Gesamtschule Marienheide (abgestimmt auf das Lehrwerk Lambacher Schweizer Einführungsphase) Unterrichtsvorhaben I: Eigenschaften von (Wiederholung und Symmetrie, Nullstellen, Transformation), Inhaltsfeld: (A) Grundlegende Eigenschaften von Potenz-und Sinusfunktionen Zeitbedarf: 23 Std. Unterrichtsvorhaben

Mehr

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Lösen ausgewählte Routineverfahren auch hilfsmittelfrei zur Potenzfunktionen mit ganzzahligen

Lösen ausgewählte Routineverfahren auch hilfsmittelfrei zur Potenzfunktionen mit ganzzahligen Einführungsphase: Funktionen und Analysis Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Vorhabenbezogene Absprache Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext

Mehr

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Stoffverteilungsplan Mathematik auf der Grundlage des Kernlehrplans Unterrichtsvorhaben I: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation), Inhaltsfeld: Funktionen

Mehr

Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren

Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren In der Jahrgangsstufe 10 arbeitet das SGR mit dem Lehrbuch Lambacher Schweizer Einführungsphase und dem TI-nspire CX CAS. Die im eingeführten Lehrbuch vorhandenen Hinweise im Hinblick auf den Einsatz bzw.

Mehr

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Kernlehrplan Mathematik: Einführungsphase

Kernlehrplan Mathematik: Einführungsphase Eine umfassende mathematische Grundbildung im Mathematikunterricht kann erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht werden. Entsprechend dieser

Mehr

Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1)

Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) Schulinternes Curriculum - Mathematik - Einführungsphase Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) beschreiben

Mehr

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik Einführungsphase auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik Einführungsphase auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Die Umsetzung der Lehrplaninhalte in auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Schulinternes Curriculum Schülerbuch 978-3-06-041672-1 Lehrerfassung des Schülerbuchs 978-3-06-041673-8

Mehr

Stoffverteilungsplan Mathematik EF auf der Grundlage des Kernlehrplans Gymnasium An der Stenner Klettbuch

Stoffverteilungsplan Mathematik EF auf der Grundlage des Kernlehrplans Gymnasium An der Stenner Klettbuch Bei der Erstellung des Stoffverteilungsplans wurde auf den Entwurf vom Klett Verlag zurückgegriffen. Hierbei wurde das Lehrbuch Lambacher Schweizer Mathematik zugrunde gelegt. Klettbuch 978-3-12-735431-2

Mehr

Schulinternes Curriculum Mathematik auf der Grundlage des Kernlehrplans Städtisches Gymnasium Porta Westfalica

Schulinternes Curriculum Mathematik auf der Grundlage des Kernlehrplans Städtisches Gymnasium Porta Westfalica Schulinternes Curriculum Mathematik auf der Grundlage des Kernlehrplans 1 Die Fachgruppe Mathematik am In der Regel werden in der fünf parallele Grundkurse eingerichtet, aus denen sich für die Q-Phase

Mehr

2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks

2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks 2.1.2 Konkretisierte Unterrichtsv auf der Basis des Lehrwerks Einführungsphase 1 Buch: Bigalke, Dr. A., Köhler, Dr. N.: Mathematik Gymnasiale Oberstufe Nordrhein-Westfalen Einführungsphase, Berlin 2014,

Mehr

Stoffverteilung Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer EF

Stoffverteilung Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer EF Der zeitliche Umfang der Unterrichtseinheiten ist eine Orientierung. In der ZAP werden immer zwei Themengebiete geprüft, aller Voraussicht nach sind diese im Wechsel: Analysis - Vektorrechung oder Analysis

Mehr

Mathematik Schulinterner Lehrplan Einführungsphase (EF)

Mathematik Schulinterner Lehrplan Einführungsphase (EF) Mathematik Schulinterner Lehrplan (EF) Unterrichtsvorhaben I: Den Zufall im Griff Modellierung von Zufallsprozessen 2 UE 2 UE Stochastik Mehrstufige Zufallsexperimente Sachverhalte mithilfe von Baumdiagrammen

Mehr

Schulinternes Curriculum Mathematik Einführungsphase

Schulinternes Curriculum Mathematik Einführungsphase Schulinternes Curriculum Mathematik Einführungsphase Inhaltsverzeichnis Abfolge der Unterrichtsvorhaben... 2 Unterrichtsvorhaben und... 3 Kompetenzerwartungen in den prozessbezogenen Kompetenzbereichen...

Mehr

Schulinternes Curriculum. Mathematik. Einführungsphase. Gymnasium Letmathe

Schulinternes Curriculum. Mathematik. Einführungsphase. Gymnasium Letmathe Schulinternes Curriculum Mathematik Einführungsphase Gymnasium Letmathe Einführungsphase Stand: März 2015 Inhaltsfeld: Funktionen und Analysis (A) (Zeitbedarf: 1 UE entspricht 67,5 Minuten) Funktionen

Mehr

Stoffverteilungsplan Mathematik auf Grundlage des Kernlehrplans Einführungsphase (Klasse 10)

Stoffverteilungsplan Mathematik auf Grundlage des Kernlehrplans Einführungsphase (Klasse 10) Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Stoffverteilungsplan Elemente der Mathematik (EdM) Einführungsphase NRW ( )

Stoffverteilungsplan Elemente der Mathematik (EdM) Einführungsphase NRW ( ) Stoffverteilungsplan Elemente der Mathematik (EdM) Einführungsphase NRW (978-3-507-87980-5) 2014 Bildungshaus Schulbuchverlage Westermann Schroedel Diesterweg Schöningh Winklers GmbH, Braunschweig Inhaltliche

Mehr

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch 978-3-12-735431-2

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch 978-3-12-735431-2 Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1)

Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) beschreiben die Eigenschaften von Potenzfunktionen mit ganzzahligen

Mehr

Schulinterner Lehrplan gymnasiale Oberstufe Einführungsphase Mathematik

Schulinterner Lehrplan gymnasiale Oberstufe Einführungsphase Mathematik Schulinterner Lehrplan Mathematik Heinrich- Böll-Gymnasium Troisdorf Stand: Februar 2015 Schulinterner Lehrplan gymnasiale Oberstufe Einführungsphase Mathematik Schulinterner Lehrplan Mathematik Heinrich-

Mehr

Einführungsphase Funktionen und Analysis (A)

Einführungsphase Funktionen und Analysis (A) Einführungsphase Funktionen und Analysis (A) Ravensberger Gymnasium Fachschaft Mathematik Werrestraße 10 32049 Herford Tel.: 05221-1893690 Fax: 05221-1893694 Thema: Grundlegende Eigenschaften von Potenz-

Mehr

Schulinterner Lehrplan der Gesamtschule Paderborn-Elsen. Mathematik SII Einführungsphase

Schulinterner Lehrplan der Gesamtschule Paderborn-Elsen. Mathematik SII Einführungsphase Schulinterner Lehrplan der Gesamtschule Paderborn-Elsen Mathematik SII Einführungsphase Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung

Mehr

Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1)

Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) Ein besonderes Augenmerk soll in diesem Unterrichtsvorhaben auf die

Mehr

Mathematik. Gymnasium Rodenkirchen Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe

Mathematik. Gymnasium Rodenkirchen Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Gymnasium Rodenkirchen Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik Stand: April 2015 (überarbeitete Fassung BRAN, NIES, LEUC) 1 1 Übersichtsraster Unterrichtsvorhaben

Mehr

Schulinterner LEHRPLAN MATHEMATIK für die Einführungsphase

Schulinterner LEHRPLAN MATHEMATIK für die Einführungsphase Inhaltsfeld Funktionen und Analysis Stochastik Lineare Algebra / Analytische Geometrie UNTERRICHTSVORHABEN THEMENÜBERBLICK EINFÜHRUNGSPHASE Themen Beschreibung der Eigenschaften von Funktionen und deren

Mehr

Gymnasium Rodenkirchen Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase der gymnasialen Oberstufe. Mathematik

Gymnasium Rodenkirchen Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase der gymnasialen Oberstufe. Mathematik Gymnasium Rodenkirchen Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase der gymnasialen Oberstufe Mathematik 1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben I: Einführungsphase

Mehr

Schulinternes Curriculum für die Einführungsphase. M a t h e m a t i k. Gymnasium am Neandertal - Erkrath

Schulinternes Curriculum für die Einführungsphase. M a t h e m a t i k. Gymnasium am Neandertal - Erkrath Schulinternes Curriculum für die Einführungsphase M a t h e m a t i k Gymnasium am Neandertal - Erkrath Inhalt 1. Die Fachgruppe Mathematik am Gymnasium am Neandertal 3 2. Entscheidungen zum Unterricht

Mehr

Einführungsphase Funktionen und Analysis (A)

Einführungsphase Funktionen und Analysis (A) Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) beschreiben die Eigenschaften von Potenzfunktionen mit ganzzahligen

Mehr

Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1)

Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) Zu entwickelnde Kompetenzen Std Vorhabenbezogene Absprachen und Empfehlungen

Mehr

Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II :

Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II : Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II : Eigenschaften von Funktionen (Höhere Ableitungen, Besondere Punkte von Funktionsgraphen, Funktionen bestimmen, Optimierungsprobleme,

Mehr

Übersichtsraster Unterrichtsvorhaben Einführungsphase - 84 Stunden

Übersichtsraster Unterrichtsvorhaben Einführungsphase - 84 Stunden Übersichtsraster Unterrichtsvorhaben Einführungsphase - 84 Stunden Vorhaben I Vorhaben II Vorhaben III Vorhaben IV Vorhaben V Vorhaben VI Vorhaben VII Den Zufall im Griff - Modellierung von Zufallsprozessen

Mehr

3.1.1 Übersichtsraster Unterrichtsvorhaben Einführungsphase

3.1.1 Übersichtsraster Unterrichtsvorhaben Einführungsphase 3.1.1 Übersichtsraster Unterrichtsvorhaben Einführungsphase Einführungsphase Unterrichtsvorhaben I: Thema: Den Zufall im Griff Modellierung von Zufallsprozessen (E-S1) Zentrale Kompetenzen: Modellieren

Mehr

Städtische Gesamtschule Solingen Schulinterner Lehrplan für die EF (ab Schuljahr 2014/15) Einführungsphase

Städtische Gesamtschule Solingen Schulinterner Lehrplan für die EF (ab Schuljahr 2014/15) Einführungsphase Städtische Gesamtschule Solingen Schulinterner Lehrplan für die EF (ab Schuljahr 2014/15) Einführungsphase Unterrichtsvorhaben I: Den Zufall im Griff Modellierung von Zufallsprozessen (E-S1) Modellieren

Mehr

Schulinternes Curriculum Mathematik SII Einführungsphase. Übersicht über die Unterrichtsvorhaben

Schulinternes Curriculum Mathematik SII Einführungsphase. Übersicht über die Unterrichtsvorhaben Schulinternes Curriculum Mathematik SII Einführungsphase Übersicht über die Unterrichtsvorhaben E-Phase Unterrichtsvorhaben Thema Stundenzahl I E-A1 15 II E-A2 12 III E-A3 12 IV E-S1 9 V E-S2 9 VI E-A4

Mehr

Aus dem Planungsstand des Beispiels für einen schulinternen Lehrplan

Aus dem Planungsstand des Beispiels für einen schulinternen Lehrplan Aus dem Planungsstand des Beispiels für einen schulinternen Lehrplan 2.1.1 Übersichtsraster Unterrichtsvorhaben Übersicht über die Unterrichtsvorhaben E-Phase Unterrichtsvorhaben Thema Stundenzahl Den

Mehr

Schulinternes Curriculum Mathematik SII

Schulinternes Curriculum Mathematik SII GESAMTSCHULE EISERFELD Schulinternes Curriculum Mathematik SII Einführungsphase Stand Juni 2014 Übersichtsraster Unterrichtsvorhaben Thema 1 EF A1 Beschreibung der Eigenschaften von Funktionen und deren

Mehr

schulinterner Kernlehrplan Mathematik Einführungsphase:

schulinterner Kernlehrplan Mathematik Einführungsphase: schulinterner Kernlehrplan Mathematik Einführungsphase: Unterrichtsvorhaben I: Den Zufall im Griff Modellierung von Zufallsprozessen (E-S1) Modellieren Werkzeuge nutzen Inhaltsfeld: Stochastik (S) Mehrstufige

Mehr

Stoffverteilungsplan Mathematik Qualifikationsphase auf der Grundlage des Kernlehrplans

Stoffverteilungsplan Mathematik Qualifikationsphase auf der Grundlage des Kernlehrplans Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks

2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks Qualifikationsphase GRUNDKURS QI 2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks Buch: Elemente der Mathematik, Qualifikationsphase NRW Grundkurs, Braunschweig 2015, Westermann Schroedel

Mehr

Qualifikationsphase (Q1) LEISTUNGSKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II:

Qualifikationsphase (Q1) LEISTUNGSKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II: Qualifikationsphase (Q1) LEISTUNGSKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II: Eigenschaften von Funktionen (Höhere Ableitungen, Besondere Punkte von Funktionsgraphen, Funktionen bestimmen,

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik 1 Inhalt 1 Die Fachgruppe Mathematik am Gymnasium Norf 2 Entscheidungen zum Unterricht 2.1 Unterrichtsvorhaben 2.1.1 Übersichtsraster

Mehr

Schulinterner Lehrplan des Pestalozzi- Gymnasiums Unna zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Schulinterner Lehrplan des Pestalozzi- Gymnasiums Unna zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Schulinterner Lehrplan des Pestalozzi- Gymnasiums Unna zum Kernlehrplan für die gymnasiale Oberstufe Mathematik 1. Unterrichtsvorhaben 1.1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben I: Einführungsphase

Mehr

Thema 1: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E I) 15 Unt.std.

Thema 1: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E I) 15 Unt.std. Thema 1: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E I) 15 Unt.std. Inhaltsbegogene Kompetenten: beschreiben die Eigenschaften von Potenzfunktionen mit ganzzahligen Exponenten

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 7

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 7 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 7 Reihen -folge Buchabschnit t Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 1.1 1.9 Zuordnungen -

Mehr

Schulcurriculum Mathematik

Schulcurriculum Mathematik Fachkonferenz Mathematik Schulcurriculum Mathematik Schuljahrgang 8 Lehrwerk: Fundamente der Mathematik 8, Schroedel-Verlag, ISBN 978-3-06-008008-3 Das Schulcurriculum ist auf Grundlange des Stoffverteilungsplans

Mehr

Heinrich-Heine-Gymnasium Herausforderungen annehmen Haltungen entwickeln Gemeinschaft stärken

Heinrich-Heine-Gymnasium Herausforderungen annehmen Haltungen entwickeln Gemeinschaft stärken Heinrich-Heine-Gymnasium Herausforderungen annehmen Haltungen entwickeln Gemeinschaft stärken Schulinterner Lehrplan Mathematik in der ab dem Schuljahr 2014/15 Eingeführtes Schulbuch: Mathematik Gymnasiale

Mehr

Schulinternes Curriculum. Mathematik Sekundarstufe II

Schulinternes Curriculum. Mathematik Sekundarstufe II Schulinternes Curriculum Mathematik Sekundarstufe II August 2015 I Inhaltsverzeichnis Entscheidungen zum Unterricht Unterrichtsvorhaben 1. Übersichtsraster für die Einführungs- und Qualifikationsphase

Mehr

1. Flächen und Rauminhalte

1. Flächen und Rauminhalte Stoffverteilungsplan Klasse 8 Schulbuch: Elemente der Mathematik Die Kapitelangaben sind dem Lehrbuch entnommen 1. Flächen und Rauminhalte Lernbereich Längen, Flächen- und Rauminhalte und deren Terme.

Mehr

Stoffverteilungsplan Mathematik Qualifikationsphase Grundkurs

Stoffverteilungsplan Mathematik Qualifikationsphase Grundkurs Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen:

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen: Lehrbuch: Lambacher Schweizer, Grundkurs Die hier vereinbarte Reihenfolge der Unterrichtsvorhaben ist verbindlich. Bei besonderen inhaltlichen Schwerpunktsetzungen in den offiziellen Abiturvorgaben kann

Mehr

Abbildung der Lehrplaninhalte im Lambacher Schweizer Thüringen Klasse 9 Lambacher Schweizer 9 Klettbuch

Abbildung der Lehrplaninhalte im Lambacher Schweizer Thüringen Klasse 9 Lambacher Schweizer 9 Klettbuch Leitidee Lernkompetenzen Lambacher Schweizer Klasse 9 Anmerkungen: Der Lehrplan für das Gymnasium in Thüringen ist ein Doppeljahrgangslehrplan. Das bedeutet, dass die Inhalte, die im Lehrplan zu finden

Mehr

Kernlehrplan Mathematik in Klasse 9 am Städtischen Gymnasium Gütersloh (für das 8-jährige Gymnasium)

Kernlehrplan Mathematik in Klasse 9 am Städtischen Gymnasium Gütersloh (für das 8-jährige Gymnasium) Kernlehrplan Mathematik in Klasse 9 am Städtischen Gymnasium Gütersloh (für das 8-jährige Gymnasium) Zeitraum Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Lehrbuchkapitel Elemente der Mathematik

Mehr

Schulinterner Lehrplan des Gymnasiums Buxtehude Süd Klasse 8

Schulinterner Lehrplan des Gymnasiums Buxtehude Süd Klasse 8 1. Terme und mit Klammern Schwerpunkt: Beschreibung von Sachverhalten Schwerpunkt: Problemlösen 1.1 Auflösen und Setzen einer Klammer 1.2 Minuszeichen vor einer Klammer Subtrahieren einer Klammer 1.3 Ausklammern

Mehr

Mathematik - Klasse 9

Mathematik - Klasse 9 Schuleigener Lehrplan Mathematik - Klasse 9 1. Ähnlichkeit Geometrie 1.1. Ähnliche Vielecke 1.2. Flächeninhalt bei zueinander ähnlichen Figuren 1.3. Ähnlichkeitssatz für Dreiecke 1.3.1. Überprüfen auf

Mehr

Schulinternes Curriculum Mathematik. Jahrgang 7. Themenfolge

Schulinternes Curriculum Mathematik. Jahrgang 7. Themenfolge Schulinternes Curriculum Mathematik Jahrgang 7 Gültig ab: 2016/2017 Erläuterungen: prozessbezogene Kompetenzbereiche inhaltsbezogene Kompetenzbereiche P1 mathematisch argumentieren I1 Zahlen und Operationen

Mehr

Altes Gymnasium Oldenburg ab Schuljahr 2009/ 10. Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk

Altes Gymnasium Oldenburg ab Schuljahr 2009/ 10. Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk Schulinternes Curriculum Mathematik Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk Legende: prozessbezogene Kompetenzbereiche inhaltsbezogene Kompetenzbereiche

Mehr

Stoffverteilungsplan Mathematik Qualifikationsphase (GK und LK) auf der Grundlage des Kernlehrplans

Stoffverteilungsplan Mathematik Qualifikationsphase (GK und LK) auf der Grundlage des Kernlehrplans Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

GES Espenstraße Schulinterner Lehrplan Mathematik Stand Vorbemerkung

GES Espenstraße Schulinterner Lehrplan Mathematik Stand Vorbemerkung Vorbemerkung Die im Folgenden nach Jahrgängen sortierten Inhalte, inhaltsbezogenen Kompetenzen (IK) und prozessbezogenen Kompetenzen (PK) sind für alle im Fach Mathematik unterrichtenden Lehrer verbindlich.

Mehr

Jahrgang: 8 Themenkreise 1/5. Operieren führen Rechnungen mit dem eingeführten Taschenrechner aus und bewerten die Ergebnisse

Jahrgang: 8 Themenkreise 1/5. Operieren führen Rechnungen mit dem eingeführten Taschenrechner aus und bewerten die Ergebnisse Terme und Auflösen einer Klammer Subtrahieren einer Klammer Ausklammern Binomische Formeln Faktorisieren Mischungsaufgaben mit Parametern Typ T 1 T 2 = 0 7 46 10 16 17 18 19 21 22 27 28 33 34 37 38 40

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 8 Lambacher Schweizer 8

Stoffverteilungsplan Mathematik im Jahrgang 8 Lambacher Schweizer 8 Mathematik Jahrgangsstufe 8 (Lambacher Schweitzer 8) Zeitraum prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Informationen aus authentischen Texten Überprüfen von Ergebnissen und Ordnen Rationale

Mehr

Schulinterner Lehrplan

Schulinterner Lehrplan Fach Mathematik Jahrgangsstufe 9 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Ähnlichkeit - ähnliche Vielecke - Flächeninhalte bei zueinander ähnlichen Figuren Eventualthema: Strahlensätze

Mehr

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen:

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen: In den Jahrgangsstufen 11 und 12 arbeitet das SGR mit dem Lehrbuch Lambacher Schweizer Qualifikationsphase LK / GK und dem TI-nspire CX CAS. Die im eingeführten Lehrbuch vorhandenen Hinweise im Hinblick

Mehr

Mathematik Schulinterner Lehrplan Qualifikationsphase (GK/LK) Geschwister-Scholl-Gymnasium Pulheim. gültig ab 2015/16

Mathematik Schulinterner Lehrplan Qualifikationsphase (GK/LK) Geschwister-Scholl-Gymnasium Pulheim. gültig ab 2015/16 Mathematik Schulinterner Lehrplan (GK/LK) Geschwister-Scholl-Gymnasium Pulheim gültig ab 2015/16 Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere Ableitungen, besondere Punkte von Funktionsgraphen,

Mehr

Lehrbuch: Lambacher Schweizer Qualifikationsphase Leistungskurs / Grundkurs Bestelln.:

Lehrbuch: Lambacher Schweizer Qualifikationsphase Leistungskurs / Grundkurs Bestelln.: Kernlehrplan Mathematik LFS Bonn (Q1/Q2) (Stand 09/2015) Lehrbuch: Lambacher Schweizer Leistungskurs / Grundkurs Bestelln.: 978-3-12-735441-6 Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere

Mehr

Schulcurriculum Mathematik, Klasse 09-10

Schulcurriculum Mathematik, Klasse 09-10 Schulcurriculum Mathematik, Klasse 09-10 Themen/Inhalte: Kompetenzen Hinweise Zeit Die Nummerierung schreibt keine verbindliche Abfolge vor. Fakultative/schulinterne Inhalte sind grau hinterlegt. Leitideen

Mehr

Gymnasium der Stadt Menden Stoffverteilung Mathematik Q1/Q2, LK und GK, Stand August 2015 (vorläufig)

Gymnasium der Stadt Menden Stoffverteilung Mathematik Q1/Q2, LK und GK, Stand August 2015 (vorläufig) Stoffverteilung Mathematik Q1/Q2, LK und GK, Stand August 2015 (vorläufig) Vorbemerkung: Der folgende Lehrplan wird erstmalig im Schuljahr 2015/16 umgesetzt. Nach einem erstmaligen Durchlauf zur Erprobung

Mehr

Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 10 Stand: , Seite 1 von 7

Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 10 Stand: , Seite 1 von 7 Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 10 Stand: 25.11.2014, Seite 1 von 7 Unterrichtswerk: Elemente der Mathematik, Niedersachsen, 10. Schuljahr, Schroedel,

Mehr

Gymnasium Kreuzau. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Gymnasium Kreuzau. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Gymnasium Kreuzau Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik Inhalt 2.1 Unterrichtsvorhaben...5 2.1.1 Übersichtsraster Unterrichtsvorhaben...7 Seite 2 1 Die Fachgruppe

Mehr

Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend.

Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Schulplan Mathematik Klasse 9 Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Prozessbezogene Kompetenzbereiche

Mehr

Ursulinengymnasium Werl Mathematik Stoffverteilungsplan Klasse 5

Ursulinengymnasium Werl Mathematik Stoffverteilungsplan Klasse 5 Ursulinengymnasium Werl Mathematik Stoffverteilungsplan Klasse 5 1! " #$%&! % & '() *+, ".8 9 8 "2! "2"" 2 &2.,: ;!1,=" " + %, 1 2 < 3

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag. Grundkurs, Leistungskurs

Lehrwerk: Lambacher Schweizer, Klett Verlag. Grundkurs, Leistungskurs Jahrgangsstufe Q1 Analysis Lerninhalte Q1 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Hilfsmittel und Methoden 1 Funktionen und Analysis Funktionen als mathematische Modelle Fortführung der

Mehr

Funktionen Lineare Zuordnungen mit eigenen Worten in Wertetabellen, Graphen und in Termen darstellen und zwischen diesen Darstellungen wechseln.

Funktionen Lineare Zuordnungen mit eigenen Worten in Wertetabellen, Graphen und in Termen darstellen und zwischen diesen Darstellungen wechseln. Kernlernplan Jahrgangsstufe 8 8 Lineare Funktionen und lineare Gleichungen 1. Lineare Funktionen 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte Funktionen Interpretieren

Mehr

Stoffverteilungsplan Mathematik 7 Lehrwerk: Lambacher Schweizer 7

Stoffverteilungsplan Mathematik 7 Lehrwerk: Lambacher Schweizer 7 Prozente und Zinsen Arithmetik/Algebra Ordnen: Rationale Zahlen ordnen, vergleichen Operieren: Grundrechenarten für rationale Zahlen ausführen Prozente Vergleiche werden einfacher Prozentsatz Prozentwert

Mehr

Schulinternes Curriculum der Fachschaft Mathematik der Liebfrauenschule Köln Einführungsphase

Schulinternes Curriculum der Fachschaft Mathematik der Liebfrauenschule Köln Einführungsphase Schulinternes Curriculum der Fachschaft Mathematik der Liebfrauenschule Köln Einführungsphase Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben 0: Einführungsphase Unterrichtsvorhaben I: Check-up

Mehr

Einführungsphase. Kapitel I: Funktionen. Arithmetik/ Algebra

Einführungsphase. Kapitel I: Funktionen. Arithmetik/ Algebra Einführungsphase prozessbezogene Kompetenzen Die SuS sollen... inhaltliche Kompetenzen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I: - Realsituationen in ein mathematisches Modell

Mehr

Mathematik. Schulinterner Lehrplan

Mathematik. Schulinterner Lehrplan Mathematik Schulinterner Lehrplan Inhalt 1 Die Fachgruppe Mathematik 3 2 Entscheidungen zum Unterricht 4 2.1 Unterrichtsvorhaben 4 2.1.1 Übersichtsraster Unterrichtsvorhaben 5 2.1.2 Konkretisierte Unterrichtsvorhaben

Mehr

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 8 8 Kapitel I Reelle Zahlen 1 Von bekannten und neuen Zahlen 2 Wurzeln und Streckenlängen 3 Der geschickte Umgang mit Wurzeln

Mehr

Mathematik 8 Version 09/10

Mathematik 8 Version 09/10 Mathematik 8 Version 09/10 Informationen aus authentischen Texten mehrschrittige Argumentationen Spezialfälle finden Verallgemeinern Untersuchung von Zahlen und Figuren Überprüfen von Ergebnissen und Lösungswegen

Mehr

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell und Typ sind mit

Mehr

KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012)

KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012) Lehrbuch: Elemente der Mathematik 10 KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012) Thema Inhalte Kompetenzen Zeit in Stunden Buchseiten Bemerkungen Modellieren

Mehr

Mathematik. Schulinterner Lehrplan für die gymnasiale Oberstufe. Stand: 10. August 2015

Mathematik. Schulinterner Lehrplan für die gymnasiale Oberstufe. Stand: 10. August 2015 Schulinterner Lehrplan für die gymnasiale Oberstufe Mathematik Stand: 10. August 2015 (nach einmaligem Durchlaufen in der EF und Einarbeiten der sich aus der Evaluation dieses Durchlaufs ergebenden Änderungen

Mehr

Schulinternes Curriculum der Jahrgangsstufe 9 im Fach Mathematik

Schulinternes Curriculum der Jahrgangsstufe 9 im Fach Mathematik Eingesetzte Lehrmittel: Mathematik, Neue Wege, Band 9 Arithmetik/ Algebra mit Zahlen und Symbolen umgehen Darstellen lesen und schreiben Zahlen in Zehnerpotenzschreibweise erläutern die Potenzschreibweise

Mehr

Inhaltsbezogene Kompetenzen Arithmetik/Algebra mit Zahlen und Symbolen umgehen Rechnen mit rationalen Zahlen

Inhaltsbezogene Kompetenzen Arithmetik/Algebra mit Zahlen und Symbolen umgehen Rechnen mit rationalen Zahlen Arithmetik/Algebra mit Zahlen und Symbolen umgehen Rechnen mit rationalen Zahlen Ordnen ordnen und vergleichen rationale Zahlen Operieren lösen lineare Gleichungen nutzen lineare Gleichungssysteme mit

Mehr

Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl:

Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl: Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl: 401546 Thema 1: Zahlenbereiche und Rechengesetze Reflektieren über das Erweitern von Zahlenbereichen

Mehr

Schulinterner Lehrplan Franz-Stock-Gymnasium, Jahrgangsstufe 9. Erwartete prozessbezogene Kompetenzen am Ende der 9. Klasse:

Schulinterner Lehrplan Franz-Stock-Gymnasium, Jahrgangsstufe 9. Erwartete prozessbezogene Kompetenzen am Ende der 9. Klasse: Schulinterner Lehrplan Franz-Stock-Gymnasium, Jahrgangsstufe 9 Erwartete prozessbezogene Kompetenzen am Ende der 9. Klasse: Argumentieren/Kommunizieren Mathematische Zusammenhänge mit eigenen Worten erläutern

Mehr

Schulinternes Curriculum Mathematik Qualifikationsphase Leistungskurs / Grundkurs

Schulinternes Curriculum Mathematik Qualifikationsphase Leistungskurs / Grundkurs Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere Ableitungen, Besondere Punkte von Funktionsgraphen, Funktionen bestimmen, Parameter) Modellieren, Problemlösen Inhaltsfeld: Funktionen und Analysis

Mehr

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke.

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke. MATHEMATIK Schönbuch-Gymnasium Holzgerlingen Seite 1/5 Ähnliche Figuren - Strahlensätze Figuren zentrisch strecken Eigenschaften der zentrischen Streckung kennen und Zentrische Streckung anwenden Strahlensätze

Mehr

Schulinterner Lehrplan des Albertus-Magnus-Gymnasiums Bensberg für die Einführungsphase (EF) zum Kernlehrplan für die gymnasiale Oberstufe.

Schulinterner Lehrplan des Albertus-Magnus-Gymnasiums Bensberg für die Einführungsphase (EF) zum Kernlehrplan für die gymnasiale Oberstufe. Schulinterner Lehrplan des Albertus-Magnus-Gymnasiums Bensberg für die Einführungsphase (EF) zum Kernlehrplan für die gymnasiale Oberstufe Mathematik Inhalt Seite 1 Die Fachgruppe Mathematik am Albertus-Magnus-

Mehr

KGS-Schneverdingen Schulinterner Lehrplan Mathematik Stoffverteilungsplan Klasse Zuordnungen

KGS-Schneverdingen Schulinterner Lehrplan Mathematik Stoffverteilungsplan Klasse Zuordnungen Stoffverteilungsplan Klasse 7 Schulbuch: Elemente der Mathematik Die Kapitelangaben sind dem Lehrbuch entnommen 1. Zuordnungen Lernbereich Proportionale und antiproportionale Zusammenhänge Ausgehend von

Mehr

Seite 1 von 5. Schulinternes Curriculum Mathematik. Jahrgang 6

Seite 1 von 5. Schulinternes Curriculum Mathematik. Jahrgang 6 Seite 1 von 5 Schulinternes Curriculum Mathematik Jahrgang 6 Gültig ab: 2011/2012 Erläuterungen: prozessbezogene Kompetenzbereiche inhaltsbezogene Kompetenzbereiche P1 mathematisch argumentieren I1 Zahlen

Mehr

Schulinterner Lehrplan EF zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Schulinterner Lehrplan EF zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Schulinterner Lehrplan EF zum Kernlehrplan für die gymnasiale Oberstufe Mathematik Inhalt Seite 1 Die Fachgruppe Mathematik am Albertus-Magnus- Gymnasium 3 2 Entscheidungen zum Unterricht 4 2.1 Unterrichtsvorhaben

Mehr

Kapitel I Reelle Zahlen. Arithmetik / Algebra

Kapitel I Reelle Zahlen. Arithmetik / Algebra Themen/Inhalte inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen Aufgaben (Minimum) integrierende Wiederholung Zeit Kapitel I Reelle Zahlen Erkundungen 1. Von bekannten und neuen Zahlen 2. Wurzeln

Mehr

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN Schulinternes Curriculum der Klasse 8 am Franz-Stock-Gymnasium (vorläufige Version, Stand: 20.08.16) Grundlage ist das Lehrbuch, Cornelsen Verlag, ISBN 978-3-06-040323-3 ca. 6 Wochen Kapitel I: Terme Terme

Mehr

Gymnasium Sulingen Fachschaft Mathematik Schulcurriculum Oberstufe (Stand ) Inhaltsbezogene Kompetenzen (hilfsmittelfrei)

Gymnasium Sulingen Fachschaft Mathematik Schulcurriculum Oberstufe (Stand ) Inhaltsbezogene Kompetenzen (hilfsmittelfrei) 1. Halbjahr (Analysis I) Prozessbezogene Kompetenzen Kurvenanpassung Teilthema Biegelinien entfällt ab 2017. Kompetenzen (hilfsmittelfrei) Kompetenzen (mit CAS) Zusätzliche Hinweise der Fachschaft Die

Mehr

Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 7 Februar 2016

Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 7 Februar 2016 Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 7 Februar 2016 Anzahl der schriftlichen Arbeiten: 5, Gewichtung der schriftlichen Leistungen 50%-60% Nachweis der Durchführung: siehe

Mehr

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen:

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen: Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr