2 (Ein-)Blick in die Zahlenwelt

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2 (Ein-)Blick in die Zahlenwelt"

Transkript

1

2 (Ein)Blick in die Zahlenwelt - Kapitelübersicht Fremdwährungen Zinsrechnung Prozentrechnung Grundrechnungsarten

3 Grundrechnungsarten ADDITION SUBTRAKTION + - runden MULTIPLIKATION Tipp: Ergebnis hat immer so viele Stellen hinter dem Komma, wie die Dezimalzahlen in der Angabe. DIVISION Tipp: Einer-Stelle des Divisors bestimmt den Stellenwert schätzen exakt berechnen

4 Längenmaße

5 Gewichtsmaße

6 Flächenmaße

7 Hohlmaße bei Flüssigkeiten

8 Prozentrechnung

9 Prozentrechnung - Rechengrößen Grundwert (G) oder Basiswert: stellt das Ganze dar und entspricht somit 100 % Prozentsatz (p) Anzahl der Hundertstel Prozentwert (P) Wert der Hundertstel (140,00 EUR, 30 kg, 400 Personen) Beispiel: Die Klasse besteht aus 30 Schülerinnen und Schülern. 10 % der Schüler/innen sind Linkshänder. Das entspricht 3 Schüler/innen.

10 Zusammenhang Brüche/Prozent/Dezimalzahlen 3 als Bruch: = als Prozentsatz: 75 % als Dezimalzahl: 0,75

11 Lösungsschritte Prozentrechnung Schritt 4: Schritt 3: Schritt 1: Welche Größen sind gegeben? Schritt 2: Formulierung der Schlussrechnung bzw. des Kettensatzes Schätzung des Ergebnisses exakte Berechnung des Ergebnisses

12 Lösung mit Hilfe der Schlussrechnung Sonderpreis!!!! 300,00 EUR - 20 % Preisnachlass 1. Welche Größen sind gegeben? Grundwert in der Höhe von 300,00 EUR = 100 % Prozentsatz: 20 % 2. Formulierung der Schlussrechnung 300 EUR % x EUR.. 20 % 3. Schätzung des Ergebnisses 4. Exakte Berechnung des Ergebnisses x : 20 = 300 : 100 x 100 = x = x = 60 EUR

13 Lösung mit Hilfe des Kettensatzes 300,00 EUR - 20 % Preisnachlass 1. Welche Größen sind gegeben? Grundwert in der Höhe von 300,00 EUR = 100 % Prozentsatz: 20 % 2. Formulierung des Kettensatzes Sonderpreis!!!! Wie viel EUR sind 20 % wenn 100 % 300,00 EUR sind? oder verkürzte Schreibweise x EUR 20 % 100 % 300,00 EUR 3. Schätzung des Ergebnisses 4. Exakte Berechnung des Ergebnisses Kettensatz um 90 Grad nach links drehen und Bruch auflösen x = = 60,00 EUR

14 Beispiel Autokauf: erhöhter Grundwert (> 100 %) Bsp: durch Extras steigt der Preis auf EUR ,00 Prozentsatz % durch Extras steigt Preis um 15 % erhöhter Grundwert = 115 %. Prozentwert in EUR, kg, Mehrkosten von 2.400,00 EUR = Differenz zwischen Listenpreis (100 %) und Preis inkl. der Extras (115 %) Ausgangswert Grundwert Bsp: Listenpreis beträgt ,00 EUR (100 %) verminderter Grundwert (< 100 %) Bsp: Kunde zahlt nach Preisnachlass lediglich ,00 EUR Preisnachlass von 10 %. verminderter Grundwert = 90 %. Preisnachlass = 1.600,00 EUR. Preisnachlass + verminderter Grundwert = 100 % (in diesem Fall ,00 EUR)

15 Preisnachlässe

16 Preisnachlässe Skonto Rabatt Zahlbar innerhalb von 8 Tagen abzüglich 3 % Skonto oder innerhalb von 30 Tagen ohne Abzug. Kunde bezahlt innerhalb eines vereinbarten kurzen Zeitraums und beansprucht nicht das gesamte Zahlungsziel Preisnachlass wird ohne Berücksichtigung des Zahlungszeitraumes vereinbart Gründe für die Gewährung eines Rabatts Kauf einer großen Menge Einführung eines neuen Produkts Fehlerhafte Ware Erreichen eines bestimmten Umsatzes Regelmäßiger Einkauf Räumung des Lagers

17 Umsatzsteuer entspricht 100 % (Grundwert, Basis für die Berechnung der Steuer) Netto = ohne Steuer Gleiche Bedeutung: exklusive USt zuzüglich USt Steuer, die grundsätzlich anfällt für Lieferungen und sonstige Leistungen, die ein Unternehmer im Rahmen seines Unternehmens gegen Entgelt erbringt. entspricht 120 % (erhöhter Grundwert) Brutto = mit Steuer Gleiche Bedeutung: inklusive USt

18 Umsatzsteuer - Steuersätze Normalsteuersatz 20 % Gilt z. B. bei: Getränken Vermietung von Räumlichkeiten an Unternehmen Friseurbesuch Tierfutter ermäßigter Steuersatz 10 % Gilt bei: Lebensmitteln Büchern, Zeitungen, Zeitschriften Vermietung von Wohnungen zu Wohnzwecken Kino-, Theater- und Konzertbesuchen Personenbeförderung Medikamenten Beherbergung im Hotel

19 Prozentrechnen mit Faktoren Schritt 4: Schritt 1: Welche Größen sind gegeben? Schritt 2: Ermittlung des Faktors Schritt 3: Schätzung des Ergebnisses Multiplikation mit dem Faktor / Division durch den Faktor exaktes Ergebnis

20 Lösung mit Hilfe von Faktoren Sonderpreis!!!! 300,00 EUR - 20 % Preisnachlass 1. Welche Größen sind gegeben? Grundwert in der Höhe von 300,00 EUR = 100 % Prozentsatz: 20 % 2. Ermittlung des Faktors 20 % als Dezimalzahl = 0,2 3. Schätzung des Ergebnisses 4. Exakte Berechnung des Ergebnisses 300 0,2 = 60,00 EUR

21 Zinsrechnung Prozentrechnung + = Zeitfaktor Zinsrechnung

22 Zinsrechnung - Rechengrößen Kapital (K) Zinssatz (p) Verzinsungszeit (t) Zinsen (Z) Betrag, von dem die Zinsen berechnet werden sollen (entspricht 100 %) Prozentsatz für eine bestimmte Zeiteinheit Zeitraum, für den die Zinsen berechnet werden sollen Betrag, den man für einen bestimmten Zeitraum erhält bzw. bezahlen muss Beispiel: 2.500,00 EUR sollen auf einem Sparbuch veranlagt werden 2 % pro Jahr (p. a.) bis (= 116 Tage bei 30/360) 16,11 EUR

23 Zinsrechnung Berechnung der Tage 30/360: Jeder Monat hat vereinfacht 30 Tage. Das Jahr hat 360 Tage. klm/360: Jeder Monat wird mit der tatsächlichen Anzahl an Tagen (= kalendermäßig = klm) berücksichtigt. Das Jahr hat vereinfacht 360 Tage. klm/365: Alle Monate werden mit der tatsächlichen Anzahl an Tagen (= kalendermäßig) berücksichtigt. Das Jahr hat 365 Tage.

24 Lösungsschritte Zinsrechnung Schritt 5: Schritt 4: Schritt 1: Berechnung der Tage Schritt 2: Formulierung der Schlussrechnung Schritt 3: Erweiterung der Schlussrechnung um den Zeitfaktor Schätzung des Ergebnisses exakte Berechnung des Ergebnisses

25 Valuten = ausländisches Bargeld (Banknoten, Münzen) Devisen = ausländisches Buchgeld (Bankguthaben in ausländischer Währung, Auslandsüberweisungen, ) Kurse = Preis für 1 EURO Briefkurs = Kurs, der von der Bank beim Verkauf von Fremdwährungen verrechnet wird (= niedrigerer Kurs) Geldkurs = Kurs, der von der Bank beim Kauf von Fremdwährungen verrechnet wird (= höherer Kurs)

26 Schritte bei der Umrechnung von Fremdwährungen Schritt 4: Schritt 1: Valuten oder Devisen? Schritt 2: Welcher Kurs muss verwendet werden? Schritt 3: Schätzung des Ergebnisses exakte Berechnung des Ergebnisses mittels Schlussrechnung

27 Umrechnung von EUR in Fremdwährung EUR Kurs = Fremdwährung Umrechnung von Fremdwährung in EUR Fremdwährung Kurs = EUR

Prozente. Prozente. 6 Rabatt und Mehrwertsteuer6. 8 Zinsen für mehr als 1 Jahr z% j Jahre Algebra. 3 Berechnung des Prozentsatzes 4 Berechnung des

Prozente. Prozente. 6 Rabatt und Mehrwertsteuer6. 8 Zinsen für mehr als 1 Jahr z% j Jahre Algebra. 3 Berechnung des Prozentsatzes 4 Berechnung des Anteile als Darstellung von n Berechnung des Prozentsatzes Berechnung des Rabatt und Mehrwertsteuer Prozentwertes Berechnung des Grundwertes 8 Zinsen mehr als Jahr K K (+ Das magisches Dreieck decke die

Mehr

Mathematik Bäckerei/Konditorei

Mathematik Bäckerei/Konditorei Bildungsverlag EINS, Gehler-Kieser, Mathematik Bäckerei/Konditorei,. AK MS Michael Buchheister Mathematik Bäckerei/Konditorei Fachverkäufer/Fachverkäuferinnen im Nahrungsmittelhandwerk 0. Auflage Bestellnummer

Mehr

Wochenplanarbeit Name:... % % Prozentrechnen % %

Wochenplanarbeit Name:... % % Prozentrechnen % % Inhaltsverzeichnis 1. Darstellung von Prozentwerten... 2 2. Veranschaulichen von Prozentwerten... 3 3. Prozent - / Bruch - / Dezimalschreibweise... 4 4. Grundaufgaben der Prozentrechnung... 4 5. Kreisdiagramme...

Mehr

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann.

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann. Dreisatz Der Dreisatz ist ein Rechenverfahren, das man bei proportionalen Zuordnungen anwenden kann. 3 Tafeln Schokolade wiegen 5 g. Wie viel Gramm wiegen 5 Tafeln? 1. Satz: 3 Tafeln wiegen 5 g.. Satz:

Mehr

Das Kapital (Grundwert) entspricht immer 100% ist das Kapital. 100% entsprechen also 1600.

Das Kapital (Grundwert) entspricht immer 100% ist das Kapital. 100% entsprechen also 1600. Berechnung der Jahreszinsen (Prozentwert) Ein Sparbuch mit 1600 wird mit % verzinst. Wie viel Zinsen erhält man im Jahr? Geg.: K = 1600 p% = % ges.: Z % 1600 Das Kapital (Grundwert) entspricht immer %.

Mehr

Basiswissen Prozentrechnen Seite 1 von 6 0,1= 1 10 = 10

Basiswissen Prozentrechnen Seite 1 von 6 0,1= 1 10 = 10 Basiswissen Prozentrechnen Seite von 6 Nenne die Dezimalzahlen 0,; 0,2; 0,3; bis in der Prozentschreibweise. 0,= 0 = 0 00 =0 00 =0% 0,2=20% ; 0,3=30% ; 0,4=40 % ;0,5=50%; 0,6=60% ; 0,7=70 % ;... 0.9=90%

Mehr

6. Klasse. 1. Zahlen 1.1. Brüche und Bruchteile

6. Klasse. 1. Zahlen 1.1. Brüche und Bruchteile 1. Zahlen 1.1. Brüche und Bruchteile 1.2.Die Menge der rationalen Zahlen => Die Menge aller Brüche, wobei die Zähler eine beliebige ganze Zahl und die Nenner eine ganze Zahl außer Null sein dürfen nennt

Mehr

f) = 3% = 9% = 34% = 65% = 21% = 88% f) 540 = 2% = 80% = 40% = 50% = 17% = 90% f) = 33,3% = 83,3% = 42,9% = 116,7% = 34,8% = 30,8%

f) = 3% = 9% = 34% = 65% = 21% = 88% f) 540 = 2% = 80% = 40% = 50% = 17% = 90% f) = 33,3% = 83,3% = 42,9% = 116,7% = 34,8% = 30,8% Prozentrechnung Lösungen 1. Schreibe als Prozent. 4 5 21 88 b) c) d) = % = % = 4% = 5% = 21% = 88% 2. Schreibe als Prozent. 4 b) 50 c) 10 d) 450 85 540 200 700 400 00 500 00 = 2% = 80% = 40% = 50% = 17%

Mehr

Auch der Prozentsatz kann mit dem Dreisatzschema berechnet werden: gegebener Prozentwert gesuchter Prozentsatz

Auch der Prozentsatz kann mit dem Dreisatzschema berechnet werden: gegebener Prozentwert gesuchter Prozentsatz 20 8 Prozentsatz Wird der Preis einer Ware von 350 auf 200 reduziert, so stellt man die Frage nach dem prozentualen Rabatt. Dieser Prozentsatz ist zu berechnen, Grundwert und Prozentwert sind gegeben.

Mehr

Prozentrechnung 1. Name: Klasse: Blatt: 9 Grundlagen. in Worten als Kürzel als Beispiel. Grundwert Prozentwert Gw 100% Prozentsatz % Gw % Ps % 100% 1%

Prozentrechnung 1. Name: Klasse: Blatt: 9 Grundlagen. in Worten als Kürzel als Beispiel. Grundwert Prozentwert Gw 100% Prozentsatz % Gw % Ps % 100% 1% Prozentrechnung 1 Name: Klasse: Blatt: 9 Grundwert Prozentwert Gw Pw 250 2,50 100% Prozentsatz % Gw % Ps % 100% 1% Aufgaben mit Grundwert = 100 % 1. Berechnen Sie den jeweiligen Prozentwert! a ) 10 % von

Mehr

Lehrplan. Mathematik. Berufsgrundschule. Ministerium für Bildung, Kultur und Wissenschaft

Lehrplan. Mathematik. Berufsgrundschule. Ministerium für Bildung, Kultur und Wissenschaft Lehrplan Mathematik Berufsgrundschule Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024 Saarbrücken Saarbrücken 2006 Hinweis: Der Lehrplan

Mehr

7 Prozent- und Zinsrechnung

7 Prozent- und Zinsrechnung 45 Lösungen zum Schülerband 7 Prozent- und Zinsrechnung 9 9 400 Zinsen 560 kostet der Kredit bei einer Laufzeit von Monaten (zuzüglich der geliehenen Summe) Summe gesetzlicher Abzüge: 5,7 Netto: 767,6

Mehr

Prozentrechnung. Prozent- und einfache Zinsrechnung Der MATHE COACH

Prozentrechnung. Prozent- und einfache Zinsrechnung Der MATHE COACH Prozentrechnung Prozent- und einfache Zinsrechnung Was bedeutet Prozent? Hundertstel von Hundert der hundertste Teil Was beschreiben wir mit Prozenten? Anteile Verhältnisse Zusammenhänge Elemente der Prozentrechnung

Mehr

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate 1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate b) 12800,00 8,75 % 2 Jahre, 9 Monate c) 4560,00 9,25 % 5 Monate d) 53400,00 5,5 % 7 Monate e) 1 080,00

Mehr

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen Grundwissen Mathematik G8 6. Klasse Zahlen. Brüche.. Bruchteile und Bruchzahlen Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Ganzes: 0 Kästchen 6 6 graue Kästchen, also: 0

Mehr

Prozentsatzaufgaben rechnet man vorzüglich mit dem Kettensatz

Prozentsatzaufgaben rechnet man vorzüglich mit dem Kettensatz Prozentrechnung Prozentrechnung ist die Vergleichrechnung zur Vergleichzahl 100. Promillerechnung ist die Vergleichsrechnung zur Vergleichszahl 1.000. Grundwert (GW): (Das Ganze) = Die Zahl die 100 % entspricht.

Mehr

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern

Mehr

Mathe: sehr gut, 6. Klasse - Buch mit Download für phase-6

Mathe: sehr gut, 6. Klasse - Buch mit Download für phase-6 mentor sehr gut: Deutsch, Mathe, Englisch für die 5. - 8. Klasse Mathe: sehr gut,. Klasse - Buch mit Download für phase- Mit Download für phase- Bearbeitet von Uwe Fricke 1. Auflage 2009. Taschenbuch.

Mehr

Prozentrechnung. Prozent- und einfache Zinsrechnung Der MATHE COACH

Prozentrechnung. Prozent- und einfache Zinsrechnung Der MATHE COACH Prozentrechnung Prozent- und einfache Zinsrechnung Was bedeutet Prozent? Hundertstel von Hundert der hundertste Teil Was beschreiben wir mit Prozenten? Anteile Verhältnisse Zusammenhänge Elemente der Prozentrechnung

Mehr

Erster Teil. Wir lernen die Grundbegriffe der Buchführung. und den Kontenzusammenhang kennen

Erster Teil. Wir lernen die Grundbegriffe der Buchführung. und den Kontenzusammenhang kennen Erster Teil Wir lernen die Grundbegriffe der Buchführung und den Kontenzusammenhang kennen Vorbemerkung Da wir die Buchungen zur Umsatzsteuer (Mehrwertsteuer) soweit wie möglich schon im ersten Teil berücksichtigen

Mehr

Üben für die 2. Schularbeit Mathematik 3

Üben für die 2. Schularbeit Mathematik 3 Üben für die 2. Schularbeit Mathematik 3 LÖSUNG wird zwischen 08.12. und 12.12.2016 in Teilen in eurer Klassenkiste auf lernkiste.at verfügbar sein. (1) Rationale Zahlen multiplizieren und dividieren a)

Mehr

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28.

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28. Demoseiten für Mathematik für Klasse 6/7 Prozentrechnen Trainingseinheiten zum Üben und Vertiefen Teil Grundlagen Teil 2 Anwendungen Datei Nr. 055 Stand 28. März 2008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

86.000, , , ,00

86.000, , , ,00 Aufgabe 1 Folgende Anfangsbestände sind gegeben: Bankguthaben...120.000,00 EUR Darlehen Deutsche Bank... 50.000,00 EUR Eigenkapital...?,?? EUR Kasse... 10.000,00 EUR BGA... 80.000,00 EUR Gebäude...400.000,00

Mehr

KERNSTOFF RECHNUNGSWESEN I. Jahrgang 1. Klasse

KERNSTOFF RECHNUNGSWESEN I. Jahrgang 1. Klasse KERNSTOFF RECHNUNGSWESEN I. Jahrgang 1. Klasse 1. Grundbegriffe des wirtschaftlichen Rechnens Grundrechnungsarten Schätzen von Ergebnissen Prozentrechnung: in, auf und von hundert 2. Grundzüge des Rechnungswesens

Mehr

7 Mathematik. Übungsaufgaben mit Lösungen Brandenburg

7 Mathematik. Übungsaufgaben mit Lösungen Brandenburg 7 Mathematik Übungsaufgaben mit Lösungen Brandenburg 2 Natürliche und gebrochene Zahlen Natürliche und gebrochene Zahlen Rechne vorteilhaft. a) 75 + 6 + 25 + 84 b) 87 + 2 7 + 9 c) 6 + (4 + 7) d) + (2 +

Mehr

Alle Inhalte dieses ebooks sind urheberrechtlich geschützt. Die Herstellung und Verbreitung von Kopien ist nur mit ausdrücklicher Genehmigung des

Alle Inhalte dieses ebooks sind urheberrechtlich geschützt. Die Herstellung und Verbreitung von Kopien ist nur mit ausdrücklicher Genehmigung des Alle Inhalte dieses ebooks sind urheberrechtlich geschützt. Die Herstellung und Verbreitung von Kopien ist nur mit ausdrücklicher Genehmigung des Verlages gestattet. Kaufmännisches Rechnen Dipl.-Kfm. Manfred

Mehr

Friseurfachrechnen. Von Oberstudienrätin Hanna Lipp-Thoben, Kassel, und Oberstudienrätin Pet ra Jany, Göttingen

Friseurfachrechnen. Von Oberstudienrätin Hanna Lipp-Thoben, Kassel, und Oberstudienrätin Pet ra Jany, Göttingen Friseurfachrechnen Von Oberstudienrätin Hanna Lipp-Thoben, Kassel, und Oberstudienrätin Pet ra Jany, Göttingen 3., neu bearbeitete Auflage mit 72 Bildern und Tabellen, 268 Beispielen und 2282 Aufgaben

Mehr

Inhaltsbereich. Größen und Messen benachbarte Einheiten umrechnen

Inhaltsbereich. Größen und Messen benachbarte Einheiten umrechnen Schulcurriculum Mathematik Hauptschule Klassse 8 Hauptschule Lehrwerk: Maßstab Band 8 Verlag: Schrödel ISBN: 3-507-84304-8 Inhalte Medien e gemäß Kerncurriculum Thema 1 LB S. 8-21 Zahlen und Größen Addition

Mehr

Kapitel 5. Umsatzsteuer

Kapitel 5. Umsatzsteuer Kapitel 5 Umsatzsteuer Kap. 5 / 1 / 27 Der Aufbau der Umsatzsteuer - Übersicht RECHNUNG Netto 2.000,-- 20 % USt 400,-- Brutto 2.400,-- stellt aus erhält Verkäufer Lieferung, Leistung Zahlt Bruttopreis

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr

Inhaltsverzeichnis / Modul 1

Inhaltsverzeichnis / Modul 1 Inhaltsverzeichnis / Modul 1 i Der Taschenrechner - Einführung 1 Der Taschenrechner - 2 Besonderheiten 2 Der Taschenrechner - 3 Übungen 3 Stellenwerte- 1 Addition 4 Stellenwerte - 2 Subtraktion 5 10, 100,

Mehr

Lösungen. Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie Name. Vorname. Prüfungsdatum.

Lösungen. Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie Name. Vorname. Prüfungsdatum. Nachholbildung Art. 32 BBV Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016 Name Lösungen Vorname Prüfungsdatum Dauer 45 Minuten Bewertung Maximale Punktzahl 31 Punkte Erreichte Punktzahl

Mehr

Zinsrechnen. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de

Zinsrechnen. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de Das Zinsrechnen Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Begriffe der Zinsrechnung Das Zinsrechnen ist Prozentrechnen unter

Mehr

Wirtschaftsrechnen mit Excel

Wirtschaftsrechnen mit Excel Wirtschaftsrechnen mit Excel überarbeitet Taschenbuch. Paperback ISBN 978 3 470 53964 5 Weitere Fachgebiete > EDV, Informatik > Datenbanken, Informationssicherheit, Geschäftssoftware > Tabellenkalkulation

Mehr

^>i:«)evedj Inhalt des III. Bandes.

^>i:«)evedj Inhalt des III. Bandes. e ^>i:«)evedj Inhalt des III. Bandes. ^'lp5ig/. 4 Teil: Rechenkunde. Äetke 1. Kapitel. Bruchrechnung 3 88 $ 1. Der Dezimalbruch 3 2. Addition der Dezimalbrüche 4 3. Subtraktion (Abziehen) mit Dezimalbrüchen

Mehr

Stationenbetrieb Rechnungswesen. Umsatzsteuer. (Infoblatt)

Stationenbetrieb Rechnungswesen. Umsatzsteuer. (Infoblatt) (Infoblatt) Alle Unternehmer sind gesetzlich verpflichtet, ihren Umsatz zu versteuern. (Ein Unternehmer macht immer dann Umsatz, wenn er Waren oder Dienstleistungen verkauft.) Zu bezahlen ist die so genannte.

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

Merkblatt Nr. 3: Umsatzsteuer - Versteuerung von Anzahlungen, Abschlagsrechnungen Stand: Juni 2006

Merkblatt Nr. 3: Umsatzsteuer - Versteuerung von Anzahlungen, Abschlagsrechnungen Stand: Juni 2006 Merkblatt Nr. 3: Umsatzsteuer - Versteuerung von Anzahlungen, Abschlagsrechnungen Stand: Juni 2006 I. Versteuerung von Anzahlungen 1. Was sind Anzahlungen? Anzahlungen (auch: Abschlagzahlungen, Vorauszahlungen)

Mehr

Die Besteuerung von E-Bikes:

Die Besteuerung von E-Bikes: Die Besteuerung von E-Bikes: Das so genannte Dienstwagenprivileg gilt ab sofort auch für Fahrräder, Pedelecs und E-Bikes. Das haben die Finanzminister der Länder nun in einem Erlass rückwirkend für das

Mehr

Demo für Prozentrechnen. Trainingseinheiten zum Üben und Vertiefen. Teil 1: Grundlagen. Datei Nr

Demo für  Prozentrechnen. Trainingseinheiten zum Üben und Vertiefen. Teil 1: Grundlagen. Datei Nr Mathematik für Klasse 6/7 Prozentrechnen Trainingseinheiten zum Üben und Vertiefen Teil : Grundlagen Datei Nr. 055 Stand 6. November 204 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 055 Prozentrechnung 2 Vorwort

Mehr

Anwendung 1: Rabatt und Skonto

Anwendung 1: Rabatt und Skonto Anwendung 1: Rabatt und Skonto Herr Gerber kauft sich ein Mountainbike. Dieses kostet gemäss Katalogpreis 2400. Franken. Weil Herr Gerber Stammkunde ist, gewährt ihm der Velohändler 15% Rabatt. Somit muss

Mehr

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Differenzierte Materialien

Mehr

Langenscheidt Training plus, Mathe 6. Klasse

Langenscheidt Training plus, Mathe 6. Klasse Langenscheidt Training plus - Mathe Langenscheidt Training plus, Mathe 6. Klasse Bearbeitet von Uwe Fricke 1. Auflage 13. Taschenbuch. ca. 128 S. Paperback ISBN 978 3 68 60073 9 Format (B x L): 17,1 x

Mehr

Prozent (pro cento) - ganz einfach

Prozent (pro cento) - ganz einfach Prozent (pro cento) - ganz einfach p p% 100 Übungen: 7% 12,5% 25% 100% 7 100 0,07 12,5 125 100 1000 25 1 0,25 100 4 100 1 100 0,125 p% ist nur eine andere Schreibweise für p 100 oder p:100 Übung zu Prozentzahlen:

Mehr

Der Anteil der Jungen beträgt 68%, der der Mädchen 32%. Der Verbrauch von Auto II liegt um 20% unter dem von Auto I.

Der Anteil der Jungen beträgt 68%, der der Mädchen 32%. Der Verbrauch von Auto II liegt um 20% unter dem von Auto I. R. Brinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen Prozentrechnung I se: E1 E2 E E4 E5 E6 E7 E8 E9 E10 E11 E12 E1 E14 E15 Der Anteil der Jungen beträgt 68%, der der Mädchen 2%. Der Kaufpreis

Mehr

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse:

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse: Grundwissen Mathematik 6 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1. Brüche 1.1 Bruchteile 1.2 Brüche als Werte von Quotienten 1.3 Bruchzahlen 1.4 Anordnung der Bruchzahlen

Mehr

Bruttopreis Rabatt Nettopreis a) CHF CHF % CHF %

Bruttopreis Rabatt Nettopreis a) CHF CHF % CHF % 1 Bruttopreis Rabatt Nettopreis a) CHF 1568. CHF 250.90 16% CHF 1317.10 84% b) CHF 309.10 CHF 68. 22% CHF 241.10 78% c) CHF 38'931. CHF 7007.60 18% CHF 31'923.40 82% d) CHF 546.25 CHF 27.30 5% CHF 518.95

Mehr

Prozent- und Zinsrechnen Kurzfragen. 26. Juni 2012

Prozent- und Zinsrechnen Kurzfragen. 26. Juni 2012 Prozent- und Zinsrechnen Kurzfragen 26. Juni 2012 Prozentrechnen Kurzfrage 1 Definition des Prozentsatzes Prozentrechnen Kurzfrage 1 Definition des Prozentsatzes p% = p 100 Prozentrechnen Kurzfrage 2 Definition

Mehr

Didaktik des Sachrechnens

Didaktik des Sachrechnens Didaktik des Sachrechnens 9. Prozentrechnung 1 9. Prozentrechnung 9.1 Begriffliche Grundlagen Zugänge zur Prozentrechnung 9.2 Die Grundaufgaben und ihre Lösungen 9.3 Methodische Orientierungen für die

Mehr

1 Zahlen. 1.1 Bruchteile und Bruchzahlen. Grundwissen Mathematik 6. Bruchteile von Ganzen lassen sich mit Hilfe von Bruchzahlen angeben. Z.B.

1 Zahlen. 1.1 Bruchteile und Bruchzahlen. Grundwissen Mathematik 6. Bruchteile von Ganzen lassen sich mit Hilfe von Bruchzahlen angeben. Z.B. Zahlen. Bruchteile und Bruchzahlen Bruchteile von Ganzen lassen sich mit Hilfe von Bruchzahlen angeen. Z.B. Rot: 5 4 6 2 Blau: 5 5 Kreisdiagramm: Beispiel Klassensprecherwahl Kandidat A B C Ungültig Stimmenzahl

Mehr

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24 Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale

Mehr

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Erweitern und Kürzen Wie erweitert man einen

Mehr

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. = Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Prozentschreibweise Was bedeutet Prozent?

Mehr

WM.2.1 Äquivalenzumformungen

WM.2.1 Äquivalenzumformungen WM.2.1 Äquivalenzumformungen Unter einer Äquivalenzumformung versteht man die Umformung einer Identität, einer Formel oder einer Gleichung, die den Wahrheitswert unverändert lässt. Die Äquivalenzumformungen

Mehr

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1 Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 15.02.2013 SEK I Lösungen zur Prozentrechnung I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Rechnen mit Prozenten I Prozentrechenaufgaben zur Vorbereitung

Mehr

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Dieser Download ist ein Auszug aus dem Originaltitel Klassenarbeiten

Mehr

Berechnung in. x ,50% bis ,00%

Berechnung in. x ,50% bis ,00% DIE HÖHE DER EINKOMMENSTEUER KAPITEL 7 KAPITEL 7 DIE HÖHE DER EINKOMMENSTEUER Die Einkommensteuer ist eine progressiv gestaltete Steuer. Das bedeutet, mit steigendem Einkommen soll auch prozentuell mehr

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung Das Thema verlangt von dir die Berechnung von Preisauf- bzw. Preisabschlägen, Mehrwertsteuerberechnungen usw. Vom Prinzip ist dieses Kapitel der Prozentrechnung zuzuordnen. Du musst hierbei

Mehr

Universität Duisburg-Essen

Universität Duisburg-Essen T U T O R I U M S A U F G A B E N z u r I N V E S T I T I O N u n d F I N A N Z I E R U N G Einführung in die Zinsrechnung Zinsen sind die Vergütung für die zeitweise Überlassung von Kapital; sie kommen

Mehr

fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil

fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.1 Brüche Brüche beschreiben Bruchteile bzw. Anteile (s. auch 6.10) Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Prozentschreibweise Anteile werden häufig in Prozent

Mehr

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss:

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss: 2 2. Prozentrechnung Was du schon können musst: Du solltest proportionale Zusammenhänge kennen und wissen, wie man damit rechnet. Außerdem musst du Dreisatzrechnungen rasch und sicher durchführen können.

Mehr

GRUNDLAGEN DER DOPPELTEN BUCHHALTUNG

GRUNDLAGEN DER DOPPELTEN BUCHHALTUNG GRUNDLAGEN DER DOPPELTEN BUCHHALTUNG BUCHHALTUNG Eine der wichtigsten Aufgaben des Rechnungswesens ist die Erfassung sämtlicher Geschäftsvorfälle eines Geschäftsjahres. Diese Erfassung erfolgt mithilfe

Mehr

S c h l u s s r e c h n u n g - P r o z e n t r e c h n u n g Jahrgang: 4. Unterstufe Themenbereich: Rechnen Dauer: ca. 50 Minuten

S c h l u s s r e c h n u n g - P r o z e n t r e c h n u n g Jahrgang: 4. Unterstufe Themenbereich: Rechnen Dauer: ca. 50 Minuten S c h l u s s r e c h n u n g - P r o z e n t r e c h n u n g Jahrgang: Unterstufe Themenbereich: Rechnen Dauer: ca. 50 Minuten Einleitende Worte Schlussrechnen und Prozentrechnen sind wichtige Grundlagen

Mehr

Begleitskript zum Kurs Prozentrechnung

Begleitskript zum Kurs Prozentrechnung Begleitskript zum Kurs Prozentrechnung Lerninhalt: Bedeutung von Prozentangaben Möglichkeiten der Veranschaulichung von Prozentangaben. Lösungswege zu allen Problemstellungen rund um die Prozentrechnung,

Mehr

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Kantonale Fachschaft Mathematik Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Lernziele... 1

Mehr

Kaufmännisches Rechnen für berufliche Schulen

Kaufmännisches Rechnen für berufliche Schulen M. Adams, H. Schenkelberg, Dr. H. Wamper Kaufmännisches Rechnen für berufliche Schulen 10. Auflage Bestellnummer 0016 A MMM. MathematikMultiMedial so lautet der Titel der CD-ROM, die dem Lehrbuch mit der

Mehr

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme Information In der Zinsrechnung sind 4 Größen wichtig: ZINSEN Z ist die Vergütung für die leihweise Überlassung von Kapital KAPITAL K ist die leihweise überlassenen Geldsumme ZINSSATZ p (Zinsfuß) gibt

Mehr

Buch: Einblicke Mathematik 8 Klett ISBN 3-12-745580-1. Modul 8. Prozentrechnen (Seiten 86 96)

Buch: Einblicke Mathematik 8 Klett ISBN 3-12-745580-1. Modul 8. Prozentrechnen (Seiten 86 96) Buch: Einblicke Mathematik 8 Klett ISBN 3-12-745580-1 Modul 8 Prozentrechnen (Seiten 86 96) 1) Vergleichen von Anteilen über Prozentsätze Als erstes soll man auf den Unterschied zwischen dem absoluten

Mehr

Koch / Köchin. Berufsbezogenes Fachrechnen Gemischte Aufgaben

Koch / Köchin. Berufsbezogenes Fachrechnen Gemischte Aufgaben 1. Aufgabe Für eine Reisegruppe sollen Sie 35 Portionen Zwiebelsuppe zubereiten. Gemäß Rezept werden für 10 Portionen Zwiebelsuppe 700 g geschälte Zwiebeln benötigt. Wie viel Kilogramm ungeschälte Zwiebeln

Mehr

Testtraining Rechnen

Testtraining Rechnen Ganz gleich, welchen Beruf Sie auch anstreben, die Grundrechenarten müssen Sie sicher beherrschen. Zahlen in den Taschenrechner einzugeben ist keine Qualifikation. A. Herrmann Zur Vorbereitung auf den

Mehr

Inhaltsverzeichnis. A Grundlagen. B Maße und Gewichte

Inhaltsverzeichnis. A Grundlagen. B Maße und Gewichte LERNFELDUNA8H ANGIG A Grundlagen B Maße und Gewichte 1 Grundrechnungsarten 14 1.1 Begriffe 14 1.2 Aufbau des Taschenrechners 14 1.3 Addition und Subtraktion 14 1.4 Multiplikation 18 1.5 Division und Rundungsregeln

Mehr

5/27/09. 1.5 Anwendungen der Bruchzahlen. Prozentrechnung. Zwei Möglichkeiten zum Einstieg

5/27/09. 1.5 Anwendungen der Bruchzahlen. Prozentrechnung. Zwei Möglichkeiten zum Einstieg 5/27/09 1.5 Anwendungen der Bruchzahlen Sachaufgaben im 6. und 7. Schuljahr a) Prozentrechnung b) Zinsrechnung c) Zinseszinsrechnung Prozentrechnung Zwei Möglichkeiten zum Einstieg I. Man geht von Prozentangaben

Mehr

Grundrechnungsarten mit Dezimalzahlen

Grundrechnungsarten mit Dezimalzahlen Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer

Mehr

Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016. Name. Vorname. Prüfungsdatum.

Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016. Name. Vorname. Prüfungsdatum. Nachholbildung Art. 32 BBV Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016 Name Vorname Prüfungsdatum Dauer 45 Minuten Bewertung Maximale Punktzahl 31 Punkte Erreichte Punktzahl Prozente

Mehr

Lektion 10 Bezugskosten

Lektion 10 Bezugskosten Lektion 10 Bezugskosten Aufgabe 1 1. Definieren Sie den Begriff Bezugskosten. 2. Nennen Sie Beispiele für Bezugskosten. 3. Sind Bezugskosten steuerpflichtig? Begründung. 4. Wie werden die Bezugskosten

Mehr

Prozentrechnung. 4 verschiedene Methoden Der MATHE COACH

Prozentrechnung. 4 verschiedene Methoden Der MATHE COACH Prozentrechnung 4 verschiedene Methoden Was bedeutet Prozent? Hundertstel von Hundert der hundertste Teil Was beschreiben wir mit Prozenten? Anteile Verhältnisse Zusammenhänge Elemente der Prozentrechnung

Mehr

Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen.

Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen. Zinsen berechnen Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Grundwert G Kapital K Prozentwert P Zinsen Z Prozentsatz p Zinssatz p Frau Mayer hat ein Guthaben von

Mehr

Kapitel 8.3: Kalkulation vom Hundert und im Hundert. Kapitel 8.4: Durchführung der Absatzkalkulation an einem Beispiel

Kapitel 8.3: Kalkulation vom Hundert und im Hundert. Kapitel 8.4: Durchführung der Absatzkalkulation an einem Beispiel 1 von 7 04.10.2010 15:59 Hinweis: Diese Druckversion der Lerneinheit stellt aufgrund der Beschaffenheit des Mediums eine im Funktionsumfang stark eingeschränkte Variante des Lernmaterials dar. Um alle

Mehr

33.01 (1) Der Möbelhändler verkauft die Möbel. + Mehrwertsteuer 8,0 % 16 800. Verkaufswert der Möbel 210 000. Abzuliefernde MWST. Faktura 226 800.

33.01 (1) Der Möbelhändler verkauft die Möbel. + Mehrwertsteuer 8,0 % 16 800. Verkaufswert der Möbel 210 000. Abzuliefernde MWST. Faktura 226 800. 33.01 (1) Holzsägerei Schreinerei Möbelhändler Die Sägerei verkauft Holz aus dem eigenen Wald an eine Schreinerei: Die Schreinerei verarbeitet das Holz zu Mö beln und verkauft diese an einen Möbelhändler:

Mehr

1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt?

1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt? Zinsrechnung mit der Tabellenform: Berechnen der Jahreszinsen Ein Sparbuch mit 1600 wird mit 4% verzinst. Wie Zinsen erhält man im Jahr? Geg.: K = 1600 p% = 4% ges.: Z Das Kapital (Grundwert) entspricht

Mehr

Musterbeispiele zur Prozentrechnung. W = G p = 100 G = 100 100 G p G = Grundwert W = Prozentwert p = Prozentsatz

Musterbeispiele zur Prozentrechnung. W = G p = 100 G = 100 100 G p G = Grundwert W = Prozentwert p = Prozentsatz R. Brinkmann http://brinkmann-du.de Seite 1 18.01.2008 Musterbeispiele zur Prozentrechnung p W W W = G p = 100 G = 100 100 G p G = Grundwert W = Prozentwert p = Prozentsatz Beispiele Prozentrechnung: 1.

Mehr

PROZENTRECHNUNG. (Infoblatt)

PROZENTRECHNUNG. (Infoblatt) PROZENTRECHNUNG (Infoblatt) Bei der werden verschiedene Zahlengrößen zueinander in Beziehung gebracht. Die Bezeichnung PROZENT % (ital. = per cento) bedeutet so viel wie für Hundert. Das GANZE bezeichnet

Mehr

Lehrplan. Wirtschaftsmathematik. Berufsgrundbildungsjahr, Berufsfeld Wirtschaft und Verwaltung. Ministerium für Bildung, Kultur und Wissenschaft

Lehrplan. Wirtschaftsmathematik. Berufsgrundbildungsjahr, Berufsfeld Wirtschaft und Verwaltung. Ministerium für Bildung, Kultur und Wissenschaft Lehrplan Wirtschaftsmathematik Berufsgrundbildungsjahr, Berufsfeld Wirtschaft und Verwaltung Ministerium für Bildung, Kultur und Wissenschaft Hohenzollerstraße 60, 66117 Saarbrücken Postfach 10 24 52,

Mehr

SAE. Arithmetik und Algebra B Name: Sekundarschulabschluss für Erwachsene

SAE. Arithmetik und Algebra B Name: Sekundarschulabschluss für Erwachsene SAE Name: Sekundarschulabschluss für Erwachsene Nummer: Arithmetik und Algebra B 2014 Totalzeit: 90 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl:

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen Grundwissen Mathematik 6.Klasse Gymnasium SOB.Weiterentwicklung der Zahlvorstellung..Bruchteile und Bruchzahlen 3 des Kreises ist rot, des Kreises ist blau gefärbt. Über dem Bruchstrich steht der Zähler,

Mehr

Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra B 2012

Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra B 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik und Algebra B 2012 Totalzeit: 90 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl:

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Prozent- und Zinsrechnung in kleinen Schritten

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Prozent- und Zinsrechnung in kleinen Schritten Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Prozent- und Zinsrechnung in kleinen Schritten Das komplette Material finden Sie hier: School-Scout.de Lars Gellner Prozent- und

Mehr

Theoretische Lehrabschlussprüfung

Theoretische Lehrabschlussprüfung Theoretische Lehrabschlussprüfung Kaufmännisch-administrative Berufe Gegenstand Kaufmännisches Rechnen, Rechnungswesen und Buchführung 1. Prozentrechnung a) Ein Großhändler verlangt für einen MP3-Player

Mehr

Allgemeiner Steuersatz (19 %) Ermäßigter Steuersatz (7 %) Alle Lieferungen und Leistungen eines Unternehmens, z.b. Verkauf von FE und HW

Allgemeiner Steuersatz (19 %) Ermäßigter Steuersatz (7 %) Alle Lieferungen und Leistungen eines Unternehmens, z.b. Verkauf von FE und HW Die Umsatzsteuer Bei fast allen Käufen und Verkäufen fällt Umsatzsteuer an. Die Umsatzsteuer ist eine Verbrauchssteuer, da sie in der Regel der Endverbraucher zu bezahlen hat. Sie ist aber auch eine Verkehrssteuer,

Mehr

sfg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 Die Schokoladentafel hat 14 Stückchen, d.h. ein Stückchen entspricht dem Anteil

sfg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 Die Schokoladentafel hat 14 Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6. Brüche Brüche beschreiben Bruchteile bzw. Anteile 3 4 von 00kg = 4 von 00kg 3 = (00kg 4) 3 = kg 3 = 7kg (s. auch 6.0) Die Schokoladentafel hat 4 Stückchen, d.h. ein Stückchen entspricht dem Anteil

Mehr

BLICKPUNKT Mathematik 1 1. September 2007

BLICKPUNKT Mathematik 1 1. September 2007 V Bekanntes aus der Volksschule Blatt Buch Vorschau Längenmaße: m - cm - mm 1a A 1, 2 13 ab 09.07 Längenmaße: m - cm - mm Lösungen 1a L 1,2 Längenmaße 1 A 12, 13 Längenmaße Lösungen Massenmaße I 2 A 14

Mehr

Einkommen und Umsatzsteuer Steuerberatungstag am 18. Juni 2012

Einkommen und Umsatzsteuer Steuerberatungstag am 18. Juni 2012 Einkommen und Umsatzsteuer Steuerberatungstag am 18. Juni 2012 1 Die Einkommensteuer ist eine Steuer, die auf das Einkommen natürlicher Personen erhoben wird. Bemessungsgrundlage ist das zu versteuernde

Mehr

Prozentrechnung. Klaus : = Karin : =

Prozentrechnung. Klaus : = Karin : = Prozentrechnung Klaus erzählt, dass bei der letzten Mathe-Arbeit 6 seiner Mitschüler die Note gut erhalten hätten. Seine Schwester Karin hat auch eine Arbeit zurück bekommen. In ihrer Klasse haben sogar

Mehr

1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I

1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I . Rationale Zahlen Brüche Brüche haben die Form nz mit z I N 0, n I N. z heißt der Zähler, n der Nenner des Bruches. Unechte Brüche kann man in gemischte Zahlen umwandeln. Bruchzahlen: Zu jeder Bruchzahl

Mehr

Begriffe, die auf eine Multiplikation oder Division hinweisen

Begriffe, die auf eine Multiplikation oder Division hinweisen Fachbegriffe der Addition und Subtraktion Bei der Addition werden Zahlen zusammengezählt: 2 + 4 = 6 1. Summand 2. Summand Summe Bei der Subtraktion wird eine Zahl von einer anderen abgezogen. 7 2 = 5 Minuend

Mehr

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50 Prozent- und Zinsrechnung Grundgleichung der Prozentrechnung 1 1% = 100 % = 100 12 Bs. 12% = 100 W G W- Prozentwert -Prozentsatz G- Grundwert 1. Berechnung von Prozentwerten W = G Bs. Wie viel sind 15%

Mehr

OJB - Test Mathe (schwer)

OJB - Test Mathe (schwer) OJB - Test Mathe (schwer) Offene Jugendberufshilfe Kölner Str. 1 1 Leverkusen Tel. 011 - Web: www.ojb-lev.de E-Mail: ojb-lev@kjde 1 I. Grundrechenarten 1,11 + 6,1 +, Lösung: b. 8, + 1 1, +,6 +,00 Lösung:

Mehr

= (Kürzen mit 4) Gleichnamige Brüche werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert) und den Nenner beibehält.

= (Kürzen mit 4) Gleichnamige Brüche werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert) und den Nenner beibehält. GRUNDWISSEN MATHEMATIK. JAHRGANGSSTUFE a b. Bruchzahlen: mit a, b N. a heißt Zähler, b heißt Nenner. a) Ein Bruch wird mit einer natürlichen Zahl erweitert (gekürzt), indem man Zähler und Nenner mit dieser

Mehr