Verteilte Systeme. Synchronisation I. Prof. Dr. Oliver Haase

Größe: px
Ab Seite anzeigen:

Download "Verteilte Systeme. Synchronisation I. Prof. Dr. Oliver Haase"

Transkript

1 Verteilte Systeme Synchronisation I Prof. Dr. Oliver Haase 1

2 Überblick Synchronisation 1 Zeit in verteilten Systemen Verfahren zum gegenseitigen Ausschluss Synchronisation 2 Globale Zustände Wahlalgorithmen 2

3 Zeit in verteilten Systemen 3

4 Motivation Für viele dieser Algorithmen ist ein gemeinsames Verständnis der Zeit in allen beteiligten Knoten notwendig: wer hat ein Ereignis zuerst ausgelöst? wer hat auf zuerst / zuletzt auf eine Ressource zugegriffen? In einem zentralisierten System kein Problem, da es dort nur eine Zeitquelle gibt. In verteilten Systemen hat jedoch jeder Knoten seine eigene Zeitquelle und damit u.u. eine andere Uhrzeit. Problem? 4

5 Beispiel: Verteilte SW-Entwicklung aus: [Tanenbaum, van Steen. Verteilte Systeme: Grundlagen und Paradigmen] output.o scheint jünger als output.c wird beim nächsten make nicht neu übersetzt. 5

6 Zeit in verteilten Systemen Computer haben eine lokale Uhr, die mit einer bestimmten Frequenz H einen Interrupt auslöst (Clock Tick). Die Interrupts werden gezählt und messen die Zeit. typische Frequenz H: 50 oder 60 Hz, i.e. 50/sec oder 60/sec Problem: die Uhren unterschiedlicher Computer zeigen unterschiedliche Zeiten an! Problem 1: unterschiedliche Startzeiten kann relativ leicht gelöst werden Problem 2: unterschiedliche Laufzeiten schwieriger zu lösen 6

7 Universal Coordinated Time (UTC) weltweite Standardzeit, Grundlage aller staatlicher Zeiterfassungen basiert auf TAI (Temps Atomique International), i.e. gemittelte Atomzeit UTC passt TAI regelmässig um Schaltsekunden der Sonnenzeit an (Sonnensekunde wird permanent länger) hat mittlere Greenwich-Zeit abgelöst Empfänger für UTC-Sender mittlerweile recht billig 7

8 Genauigkeit von Uhren Chips haben eine Genauigkeit - Draftrate ρ - von etwa Beispiel: Bei H = 60Hz sollte eine Uhr mal pro Stunde ticken. Realistisch ist ein Wert zwischen und eine Uhr läuft korrekt, wenn sie die vom Hersteller angegebene Driftrate ρ einhält, auch wenn sie dann zu langsam oder schnell läuft. 8

9 Uhrensynchronisation Folge: zu einem Zeitpunkt t1 = t0 + t nach der Synchronisation zweier Uhren können die beiden Uhren maximal δ = 2ρ t auseinander liegen. Beispiel: t = 20sec, ρ = 10-5 δ = 0,4msec Will man sicherstellen, dass zwei Uhren niemals mehr als ein gewünschter Wert δ auseinander liegen, muss man die Uhren innerhalb von tmax = δ/(2ρ) Sekunden synchronisieren. Beispiel: δ = 1msec, ρ = 10-5 tmax = 50sec 9

10 Uhrensynchronisation Nicht jeder Rechner hat einen UTC-Empfänger, so dass keine externe Synchronisation durchgeführt werden kann. Stattdessen gibt es Uhrensynchonisationsalgorithmen, die auf der Verwendung weniger Zeitserver basieren. 10

11 Der Algorithmus von Christian Es wird die Existenz eines UTC-Empfängers im System angenommen, der dann als Zeit-Server fungiert. Jede andere Maschine sendet mind. alle δ/(2ρ) ein Time Request an den Server, der so schnell wie möglich mit der aktuellen UTC antwortet. Nun könnte man Uhr auf erhaltene UTC-Zeit setzen. Erstes ABER: Wenn Anfragender schnelle Uhr hat, dann müsste seine Uhr zurückgesetzt werden. Verboten, da kein Zeitpunkt zweimal auftaucht darf! Lösung: Uhr wird graduell angepasst, indem sie eine Weile langsamer läuft, d.h. verringerte Zeitspanne pro Clock-Tick. 11

12 Der Algorithmus von Christian Zweites ABER: Wegen Signallaufzeit für die Nachrichten ist Antwort, wenn sie kommt, schon veraltet. Lösung: Signallaufzeit wird gemessen bzw. geschätzt. Annahme: Signallaufzeit in beide Richtungen gleich. aus: [Tanenbaum, van Steen. Verteilte Systeme: Grundlagen und Paradigmen] tneu = tserv + ((T4 - T1) - (T3 - T2)) / 2 12

13 Network Time Protocol NTP Entwickelt in den 1980er Jahren, inzwischen ein IETF RFC Ziele Clients sollen sich möglichst genau mit UTC synchronisieren können, trotz stark schwankender Übertragungsverzögerungen im Netz Bereitstellung eines zuverlässigen Dienstes mittels Redundanz Clients sollen in der Lage sein, sich oft zu synchronisieren, Skalierbarkeit wird damit ein Thema 13

14 Funktionsweise von NTP Der NTP-Dienst wird von einem Netzwerk von Servern erbracht. Die Primary Servers sind direkt mit der UTC-Quelle verbunden. Die Secondary Servers synchronisieren sich mit den Primary Servers. Das Server-Netzwerk ist rekonfigurierbar,um auf Fehler reagieren zu können. 14

15 Funktionsweise von NTP Die Server tauschen häufig Nachrichten aus, um Netzwerkverzögerungen und Uhrungenauigkeiten zu messen. Clients synchronisieren sich mit dem Server mit der geringsten gemessenen Signallaufzeit. NTP erreicht eine weltweite Genauigkeit von 1 bis 50 ms. 15

16 Berkeley-Algorithmus Entwickelt für eine Gruppe von Berkeley-Unix-Rechnern Sinnvoll, wenn kein UTC-Server zur Verfügung steht Ein Rechner wird als Zeit-Server bestimmt Zeit-Server fragt regelmäßig aktiv bei allen Rechner nach aktueller Zeit und bildet Durchschnitt Durchschnitt wird allen Rechnern mitgeteilt, die ihre Uhren danach anpassen 16

17 Berkeley-Algorithmus aus: [Tanenbaum, van Steen. Verteilte Systeme: Grundlagen und Paradigmen] a) Zeit-Daemon (Zeit-Server) sendet seine Zeit an alle b) jeder Rechner antwortet mit seiner Differenz c) Zeit-Daemon errechnet neuen Durchschnitt und sendet jedem Rechner Korrekturdifferenz 17

18 Logical Time Generell unmöglich, physikalische Uhren in verteilten System absolut zu synchronisieren unmöglich, basierend auf Zeit die Reihenfolge zweier beliebiger Ereignisse zu bestimmen. Für einige Anwendungen benötigt man jedoch genau diese Information, dafür aber keinen Bezug zur realen Zeit. Lösung: Logische Zeit (logical time) 18

19 Happened-Before-Beziehung eingeführt von Leslie Lamport a b bedeutet: a hat vor b stattgefunden auch relation of causal ordering wenn in einem Prozess pi gilt: a i b, dann gilt auch für das Gesamtsystem: a b für jede Nachricht m gilt: send(m) receive(m) a b und b c, dann auch a c (Transitivität) Ereignisse, die nicht in dieser Beziehung stehen, gelten als nebenläufig 19

20 Happened-Before: Beispiel P 1 a e i m P 2 b d g j n P 3 c f h k l a e i m; b d g j n; c f h k l a d, g h, h k, k m deshalb z. B.: a g, g m nebenläufig z.b.: a, b, c; und e, d, f 20

21 Umsetzung Jeder Prozess Pi hat eine logische Uhr, die beim Auftreten eines Ereignisses a abgelesen wird und den Wert Ci(a) liefert. Dieser Wert muss so angepasst werden, dass er als C(a) eindeutig im ganzen verteilten System ist. Ein Algorithmus, der die logischen Uhren entsprechend richtig stellt, muss folgendes umsetzen: Wenn a b, dann C(a) < C(b). 21

22 Umsetzung Jeder Prozess Pi wendet den folgenden Algorithmus an, um seine Uhr Ci richtig zu stellen: Ci wird vor jedem neuen Ereignis in Pi um 1 erhöht wenn Pi eine Nachricht N sendet, dann schickt er den aktuellen Wert von Ci mit bei Erhalt von (N, t) setzt Pi seine Uhr auf t, falls t > Ci, danach Erhöhung um 1. 22

23 Umsetzung: Beispiel P 1 13 a 14 e 15 i 18 m P 2 9 b 14 d 15 g 16 j 17 n P 3 5 c 6 f 16 h 17 k 18 l 23

24 Zusammenfassung Die absolut selbe Zeit in allen Rechnern eines Systems kann nicht erreicht werden. Hardware-Synchronisation ist möglich, jedoch haben nicht alle Rechner einen UTC- Empfänger Synchronisationsalgorithmen für die physikalische Zeit funktionieren recht gut (NTP). In vielen Anwendungen genügt Wissen über die Ordnung von Ereignissen ohne quantitative Zeitangaben Verwendung logischer Zeit 24

25 Verfahren zum gegenseitigen Ausschluss 25

26 Überblick Begriff des gegenseitigen Ausschlusses Algorithmen in VS zum Erreichen des gegenseitigen Ausschlusses Zentraler Algorithmus verteilter Algorithmus Token-Ring-Algorithmus Vergleich 26

27 Definition Wenn sich zwei oder mehrere Prozesse beim Zugriff auf gemeinsame Daten koordinieren müssen, um die Konsistenz der Daten zu erhalten, geschieht dies am einfachsten über das Konzept der kritischen Region. Jeweils nur ein Prozess darf in einer kritischen Region aktiv sein, d.h., es wird gegenseitiger Ausschluss (mutual exclusion) erreicht. Ein-Prozessor-Systeme: Semaphore oder Monitore Wie funktioniert das in verteilten Systemen? 27

28 Zentraler Algorithmus Einer der Prozesse wird zum Koordinator für eine kritische Region bestimmt. Alle anderen müssen sich nun zuerst an den Koordinator wenden, bevor sie die entsprechende Region betreten. Wenn die kritische Region frei ist, erhält der Prozess das OK vom Server. Nach Abarbeitung der Aufgaben gibt der Prozess dieses Token zurück. Ist die Region nicht frei, wird der anfragende Prozess in eine Warteschlange aufgenommen. Er erhält erst das Token, wenn alle Prozesse vor ihm bedient wurden. 28

29 Zentraler Algorithmus: Beispiel (a) Prozess 1 bittet den Koordinator um Zugriff auf eine gemeinsam genutzte Ressource. Erlaubnis wird gewährt. (b) Prozess 2 bittet um Zugriff auf dieselbe Ressource. Koordinator antwortet nicht. (c) Sobald Prozess 1 Ressource freigibt, teilt er dies dem Koordinator mit, der dann die Anforderung von 2 beantwortet. 29

30 Zentraler Algorithmus: Eigenschaften + gegenseitiger Ausschluss wird erreicht fair: Tokens werden in Reihenfolge der Anfragen vergeben einfach zu implementieren nur 3 Nachrichten pro Zugang zu kritischer Region (Anfrage, Erlaubnis, Freigabe) _ Koordinator ist Single Point of Failure Keine Antwort kann lange Warteschlange oder toten Koordinator bedeuten Performance Bottleneck in großen Systemen 30

31 Verteilter Algorithmus Besitzt keinen ausgewiesenen Koordinator. Jeder Prozess besitzt eine logische Uhr Wenn ein Prozess eine kritische Region betreten will, sendet er ein Request an alle anderen Prozesse. Erst wenn alle Prozesse ihr OK gegeben haben, kann der Prozess die kritische Region betreten. 31

32 Verteilter Algorithmus nach Ricart und Agrawala, 1981: 32

33 Ricart und Agrawala: Beispiel (a) P0 bittet alle Prozesse um Erlaubnis, T0 = 8 P2 bittet alle Prozesse um Erlaubnis, T2 = 12 (b) P1 erteilt P0 und P1 Erlaubnis P2 erteilt P0 Erlaubnis, da T0 < T2 P0 hält Erlaubnis an P2 zurück, da T0 < T2 (c) P0 erteilt P2 nach eigenem Zugriff Erlaubnis 33

34 Verteilter Algorithmus: Eigenschaften _ Jeder Knoten ist ein Single Point of Failure (lässt sich durch sofortige Bestätigungsnachrichten minimieren, aber nicht ausschalten) Jeder Prozess muss bei jeder Entscheidung mitwirken, auch wenn er selbst nicht konkurriert (Skalierbarkeit!) mehr Nachrichten, größere Netzwerklast Nun, warum überhaupt betrachten? zeigt, dass verteilter Algorithmus möglich ist, und dass hier noch Forschungsbedarf besteht! 34

35 Token-Ring-Algorithmus Prozesse werden in logischem Ring angeordnet (z.b. anhand (Network-ID, Prozess-ID)-Kombination Token kreist durch Ring. Wenn Prozess, der Token bekommt, einen kritischen Abschnitt betreten möchte selbiges einmal tun, danach Token weitergeben Ansonsten Token einfach weitergeben. 35

36 Token-Ring: Eigenschaften + Korrektheit leicht zu sehen fair: Token wird der Reihe nach vergeben kein Aushungern o max. Wartezeit: alle anderen Prozesse in je einem kritischen Abschnitt _ tote Prozesse müssen erkannt werden verlorene Token schwer zu erkennen (lange Verweilzeit) Koordinator muss verlorenes Token neu einspeisen 36

37 Vergleich der Algorithmen Algorithmus Nachrichten pro Ausführung kritischer Abschnitt Verzögerung vor Eintritt [in Nachrichten] Probleme zentral 3 2 Ausfall Koordinator verteilt 2(n -1) 2(n -1) Ausfall eines Prozesses Token Ring 1 bis 0 bis n -1 verlorener Token 37

38 Zusammenfassung Gegenseitiger Ausschluss im verteilten System ist schwieriger zu erreichen als in einem Ein-Prozessor-System. Es existieren verschiedene Algorithmen mit unterschiedlicher Bedeutung für die Praxis. Vollkommene Verteilung bringt hier viele Nachteile mit sich. 38

Uhrensynchronisation. Dipl.-Inf. J. Richling Wintersemester 2003/2004

Uhrensynchronisation. Dipl.-Inf. J. Richling Wintersemester 2003/2004 Uhrensynchronisation Dipl.-Inf. J. Richling Wintersemester 2003/2004 Motivation Zeit kann in Anwendungen eine große Rolle spielen, insbesondere bei Echtzeitsystemen Häufig wichtiger noch als korrekte Zeit:

Mehr

Prof. Dr.-Ing. Dagmar Meyer Architekturen verteilter SW-Systeme 5 SYNCHRONISATION

Prof. Dr.-Ing. Dagmar Meyer Architekturen verteilter SW-Systeme 5 SYNCHRONISATION Prof. Dr.-Ing. Dagmar Meyer 5 SYNCHRONISATION Warum braucht man Synchronisation? Ausgangssituation Prozesse müssen sich koordinieren / synchronisieren, z. B. beim Zugriff auf gemeinsame Ressourcen. Alle

Mehr

Verteilte Systeme - 3. Übung

Verteilte Systeme - 3. Übung Verteilte Systeme - 3. Übung Dr. Jens Brandt Sommersemester 2011 1. Zeit in verteilten Systemen a) Nennen Sie mindestens drei verschiedene Ursachen zeitlicher Verzögerungen, die bei einem Entwurf eines

Mehr

Verteilte Systeme Kapitel 7: Synchronisation

Verteilte Systeme Kapitel 7: Synchronisation Verteilte Systeme Kapitel 7: Synchronisation Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/fischer Inhaltsüberblick der Vorlesung 1. Einführung

Mehr

Verteilte Systeme SS 2015. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404. Stand: 7.

Verteilte Systeme SS 2015. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404. Stand: 7. Verteilte Systeme SS 2015 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 7. Juli 2015 Betriebssysteme / verteilte Systeme Verteilte Systeme (1/13) i

Mehr

Verteilte Systeme - Synchronisation

Verteilte Systeme - Synchronisation Verteilte Systeme - Synchronisation... alois.schuette@h-da.de Alois Schütte 25. Februar 2014 1 / 24 Inhaltsverzeichnis Die Synchronisationsmethoden bei Einprozessorsystemen (z.b. Semaphore oder Monitore)

Mehr

Grundlagen verteilter Systeme

Grundlagen verteilter Systeme Universität Augsburg Insitut für Informatik Prof. Dr. Bernhard Bauer Wolf Fischer Christian Saad Wintersemester 08/09 Übungsblatt 5 26.11.08 Grundlagen verteilter Systeme Lösungsvorschlag Aufgabe 1: Erläutern

Mehr

Prof. Dr. Th. Letschert CS5001. Verteilte Systeme. Master of Science (Informatik) - Formalisierungen, Logische Zeit - Th Letschert FH Gießen-Friedberg

Prof. Dr. Th. Letschert CS5001. Verteilte Systeme. Master of Science (Informatik) - Formalisierungen, Logische Zeit - Th Letschert FH Gießen-Friedberg Prof. Dr. Th. Letschert CS5 Master of Science (Informatik) - Formalisierungen, Logische Zeit - Th Letschert FH Gießen-Friedberg Formalisierung verteilter Berechnungen Logische Zeit 2 Formalisierung verteilter

Mehr

Grundlagen verteilter Systeme

Grundlagen verteilter Systeme Universität Augsburg Institut für Informatik Prof. Dr. Bernhard Bauer Stephan Roser Viviane Schöbel Wintersemester 07/08 Übungsblatt 5 08.01.08 Grundlagen verteilter Systeme Lösungsvorschlag Aufgabe 1:

Mehr

9: Verteilte Algorithmen

9: Verteilte Algorithmen 9: Verteilte Algorithmen Verteiltes System: Zusammenschluss unabhängiger Computer ( Knoten ), das sich für den Benutzer als einzelnes System präsentiert. (Begriffsbildung nach A. Tanenbaum hatten wir schon)

Mehr

Verteilte Systeme. 5. Synchronisation

Verteilte Systeme. 5. Synchronisation 5-2 Überblick Verteilte Systeme 5. Synchronisation Sommersemester 2011 Institut für Betriebssysteme und Rechnerverbund TU Braunschweig Dr. Christian Werner Bundesamt für Strahlenschutz Zeit in Verteilten

Mehr

Aufgaben: (dazugehörige Kapitel / Seitenangaben in Kursiv: Kapitel Seite Seitennummern)

Aufgaben: (dazugehörige Kapitel / Seitenangaben in Kursiv: Kapitel Seite Seitennummern) Klausur Verteilte Systeme 15.6. R120A 8:00-9:30 5 Aufgaben, 50 Punkte (8 12 pro Aufgabe) 45-50 1.0 44 1.1 35 2.0 25 3.0 15 4.0 http://www.bts.fh-mannheim.de Aufgaben: (dazugehörige Kapitel / Seitenangaben

Mehr

Vorlesung "Verteilte Systeme" Sommersemester 1999. Verteilte Systeme NTP) Verteilte Systeme, Sommersemester 1999 Folie 4.2

Vorlesung Verteilte Systeme Sommersemester 1999. Verteilte Systeme NTP) Verteilte Systeme, Sommersemester 1999 Folie 4.2 Verteilte Systeme 4. Zeit Ansätze Pragmatisch: Uhrensynchronisation Abgleich der lokalen Uhren Beispiele Zeitabgleich nach F. Christian Berkeley-Algorithmus Verteilte Synchronisation Network Time Protocol

Mehr

S1 Zeit in verteilten Systemen

S1 Zeit in verteilten Systemen S1 Zeit in verteilten Systemen Süddeutsche Zeitung vom 1.1.1 FK4 Prof. Dr. Rainer Seck 1 Eigenschaften verteilter Systeme Szenarien: konkurrierender Zugriff auf einmal vorhandene Betriebsmittel verteilter

Mehr

Softwareentwicklung in verteilten Umgebungen, Teil 8 Time and Global States (Coulouris et al., Kapitel 11) Dieter Schmalstieg

Softwareentwicklung in verteilten Umgebungen, Teil 8 Time and Global States (Coulouris et al., Kapitel 11) Dieter Schmalstieg Softwareentwicklung in verteilten Umgebungen, Teil 8 Time and Global States (Coulouris et al., Kapitel 11) Dieter Schmalstieg Zeit und Uhren in Computersystemen Netw ork Uhren auf verschiedenen Computern

Mehr

Verteilte Algorithmen. Zeitsynchronisation (Time Service) Zustandsalgorithmen

Verteilte Algorithmen. Zeitsynchronisation (Time Service) Zustandsalgorithmen Verteilte Algorithmen Zeitsynchronisation (Time Service) Zustandsalgorithmen VIS-1 VertAlg-1 Gliederung Übersicht verteilte Algorithmen Zeitalgorithmen ith Zustandsalgorithmen VIS-1 VertAlg-2 Übersicht

Mehr

Network Time Protocol NTP

Network Time Protocol NTP Network Time Protocol NTP Autor: Luca Costa, HTW Chur, luca.costa@tet.htwchur.ch Dozent: Bruno Wenk, HTW Chur, bruno.wenk@fh-htwchur.ch Inhaltsverzeichnis 1 Network Time Protocol... 3 1.1 Einleitung...

Mehr

Zeitsynchronisation Windows Server 2008 R2 PDC Master der FRD mit einer externen Zeitquelle

Zeitsynchronisation Windows Server 2008 R2 PDC Master der FRD mit einer externen Zeitquelle Zeitsynchronisation Windows Server 2008 R2 PDC Master der FRD mit einer externen Zeitquelle Wie funktioniert die Zeitsynchronisation in Windows Netzwerken: http://support.microsoft.com/kb/816042 MSDN Blog

Mehr

Uhrensynchronisation & Gruppenkommunikation. Jan-Arne Sobania Seminar Prozesssteuerung und Robotik 10. Dezember 2008

Uhrensynchronisation & Gruppenkommunikation. Jan-Arne Sobania Seminar Prozesssteuerung und Robotik 10. Dezember 2008 Uhrensynchronisation & Gruppenkommunikation Jan-Arne Sobania Seminar Prozesssteuerung und Robotik 10. Dezember 2008 Gliederung 2 Uhrensynchronisation Zeitmessung Interne vs. Externe Synchronisation Synchronisation

Mehr

Verteilte Systeme. Zeit, Synchronisation und globale Zustände

Verteilte Systeme. Zeit, Synchronisation und globale Zustände Verteilte Systeme Zeit, Synchronisation und globale Zustände 1 Probleme 2 Problem: Schnappschuß Globaler Zustand eines verteilten Systems besteht aus den lokalen Zuständen aller Prozesse und aller unterwegs

Mehr

1 Hochverfügbarkeit. 1.1 Einführung. 1.2 Network Load Balancing (NLB) Quelle: Microsoft. Hochverfügbarkeit

1 Hochverfügbarkeit. 1.1 Einführung. 1.2 Network Load Balancing (NLB) Quelle: Microsoft. Hochverfügbarkeit 1 Hochverfügbarkeit Lernziele: Network Load Balancing (NLB) Failover-Servercluster Verwalten der Failover Cluster Rolle Arbeiten mit virtuellen Maschinen Prüfungsanforderungen von Microsoft: Configure

Mehr

PIWIN II. Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler II. Vorlesung 2 SWS SS 08

PIWIN II. Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler II. Vorlesung 2 SWS SS 08 PIWIN II Kap. 3: Verteilte Systeme & Rechnernetze 1 PIWIN II Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler II Vorlesung 2 SWS SS 08 Fakultät für Informatik Technische

Mehr

Verteilte Systeme CS5001

Verteilte Systeme CS5001 CS5001 Th. Letschert TH Mittelhessen Gießen University of Applied Sciences Einführung Administratives Unterlagen Verwendbar: Master of Science (Informatik) Wahlpflichtfach (Theorie-Pool) Unterlagen Folien:

Mehr

Grundlagen verteilter Systeme

Grundlagen verteilter Systeme Universität Augsburg Institut für Informatik Prof. Dr. Bernhard Bauer Stephan Roser Viviane Schöbel Wintersemester 07/08 Übungsblatt 4 18.1.07 Grundlagen verteilter Systeme Lösungsvorschlag Aufgabe 1:

Mehr

Seminar Moderne Konzepte für weitverteilte Systeme SS 02

Seminar Moderne Konzepte für weitverteilte Systeme SS 02 Seminar Moderne Konzepte für weitverteilte Systeme SS 02 Filesharing mit Gnutella: Skalierungsprobleme eines populären P2P-Systems Torsten Ehlers 10.06.2002 1 Übersicht Gnutella: Eigenschaften des Systems

Mehr

Musterlösung Klausur SS 2004

Musterlösung Klausur SS 2004 Musterlösung Klausur SS 2004 Fachrichtung: Informatik Lehrveranstaltung: Verteilte Systeme Dozent: Prof. G. Bengel Tag: 15.6.04 Bearbeitungszeit: 90 Minuten Name:... Matr.Nr.:... Punkte:... Note:... Hilfsmittel:

Mehr

OSEK/VDX NM (Network Management)

OSEK/VDX NM (Network Management) OSEK/VDX NM (Network Management) Alexander Berger alexander.berger@uni-dortmund.de PG Seminarwochenende 21.-23. Oktober 2007 1 Überblick Motivation Aufgaben des NM Architektur Konzept und Verhalten Indirektes

Mehr

9 Verteilte Verklemmungserkennung

9 Verteilte Verklemmungserkennung 9 Verteilte Verklemmungserkennung 9.1 Grundlagen Für die Existenz einer Verklemmung notwendige Bedingungen Exklusive Betriebsmittelbelegung Betriebsmittel können nachgefordert werden Betriebsmittel können

Mehr

Überblick Wintersemester 2014/2015

Überblick Wintersemester 2014/2015 Überblick Wintersemester 2014/2015 Prof. Dr. Peter Mandl Verteilte Systeme Einführung und Überblick Zeitsynchronisation Wahl und Übereinstimmung RPC, verteilte Objekte und Dienste Verteilte Transaktionen

Mehr

OSEK / OSEKtime Ausgewählte Kapitel eingebetteter Systeme

OSEK / OSEKtime Ausgewählte Kapitel eingebetteter Systeme OSEK / OSEKtime Ausgewählte Kapitel eingebetteter Systeme Wilhelm Haas Wilhelm.Haas@informatik.stud.uni-erlangen.de Friedrich-Alexander-Universität Erlangen-Nürnberg Institut für Informatik Lehrstuhl 4

Mehr

Kommunikation und Kooperative Systeme

Kommunikation und Kooperative Systeme Kommunikation und Kooperative Systeme Teil II Verteilte Dienste und Anwendungen Nik Klever FB Informatik - FH klever@fh-augsburg.de Einführung Begriffsbestimmung Kommunikation: Austausch, Übermittlung

Mehr

Übung zur Vorlesung Echtzeitsysteme

Übung zur Vorlesung Echtzeitsysteme Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik VI Übung zur Vorlesung Echtzeitsysteme Aufgabe 3 Nadine Keddis keddis@fortiss.org Stephan Sommer sommerst@in.tum.de

Mehr

Moderne Betriebssysteme. Kapitel 8. Kapitel 8. Folie: 1. Multiprozessorsysteme. Autor: Andrew S. Tanenbaum

Moderne Betriebssysteme. Kapitel 8. Kapitel 8. Folie: 1. Multiprozessorsysteme. Autor: Andrew S. Tanenbaum Moderne Betriebssysteme Kapitel 8 Multiprozessorsysteme Kapitel 8 Folie: 1 Multiprozessorsysteme Autor: Andrew S. Tanenbaum Pearson Studium 2009 2 3 4 5 6 7 Betriebssystemarten für Multiprozessoren Jede

Mehr

Uberblick Verteilte Synchronisation Zeit in verteilten Systemen Logische Uhr Synchronisation Aufgabe 6 VS- Ubung (SS15) Verteilte Synchronisation 10 1

Uberblick Verteilte Synchronisation Zeit in verteilten Systemen Logische Uhr Synchronisation Aufgabe 6 VS- Ubung (SS15) Verteilte Synchronisation 10 1 Überblick Verteilte Synchronisation Zeit in verteilten Systemen Logische Uhr Synchronisation Aufgabe 6 VS-Übung (SS15) Verteilte Synchronisation 10 1 Zeit in verteilten Systemen Ist Ereignis A auf Knoten

Mehr

Prüfungsprotokoll der mündlichen Prüfung Verteilte Systeme 1678 (Bachelor Informatik)

Prüfungsprotokoll der mündlichen Prüfung Verteilte Systeme 1678 (Bachelor Informatik) Prüfungsprotokoll der mündlichen Prüfung Verteilte Systeme 1678 (Bachelor Informatik) Prüfer: Prof. Dr. Haake Semester der Prüfung: WS 10/11 Datum der Prüfung: 02.05.2011 Dauer: ca. 25 min Note: 2.0 Hier

Mehr

Message Oriented Middleware am Beispiel von XMLBlaster

Message Oriented Middleware am Beispiel von XMLBlaster Message Oriented Middleware am Beispiel von XMLBlaster Vortrag im Seminar XML und intelligente Systeme an der Universität Bielefeld WS 2005/2006 Vortragender: Frederic Siepmann fsiepman@techfak.uni bielefeld.de

Mehr

Übersicht. Nebenläufige Programmierung. Praxis und Semantik. Einleitung. Sequentielle und nebenläufige Programmierung. Warum ist. interessant?

Übersicht. Nebenläufige Programmierung. Praxis und Semantik. Einleitung. Sequentielle und nebenläufige Programmierung. Warum ist. interessant? Übersicht Aktuelle Themen zu Informatik der Systeme: Nebenläufige Programmierung: Praxis und Semantik Einleitung 1 2 der nebenläufigen Programmierung WS 2011/12 Stand der Folien: 18. Oktober 2011 1 TIDS

Mehr

Das Kerberos-Protokoll

Das Kerberos-Protokoll Konzepte von Betriebssystemkomponenten Schwerpunkt Authentifizierung Das Kerberos-Protokoll Referent: Guido Söldner Überblick über Kerberos Network Authentication Protocol Am MIT Mitte der 80er Jahre entwickelt

Mehr

Elementare Systemkomponenten:

Elementare Systemkomponenten: Elementare Systemkomponenten: Zeitsynchronisation in verteilten Systemen (Time Service) VIS2-Time-1 Gibt es etwas aus der Welt der Technik, das Sie besonders beeindruckt? F.A.Z. Mein funkgesteuerter Wecker,

Mehr

Verteilte Systeme SS 2015. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404. Stand: 7.

Verteilte Systeme SS 2015. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404. Stand: 7. Verteilte Systeme SS 2015 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 7. Juli 2015 Betriebssysteme / verteilte Systeme Verteilte Systeme (1/13) i

Mehr

Verteilte Systeme - 5. Übung

Verteilte Systeme - 5. Übung Verteilte Systeme - 5. Übung Dr. Jens Brandt Sommersemester 2011 Transaktionen a) Erläutere was Transaktionen sind und wofür diese benötigt werden. Folge von Operationen mit bestimmten Eigenschaften: Atomicity

Mehr

Verteilte Systeme. Benennungen und Namenssysteme. Hinweis: Dieser Foliensatz enthält nur die Teilthemen, die nicht selbst zu erarbeiten waren.

Verteilte Systeme. Benennungen und Namenssysteme. Hinweis: Dieser Foliensatz enthält nur die Teilthemen, die nicht selbst zu erarbeiten waren. Verteilte Systeme Benennungen und Namenssysteme Prof. Dr. Oliver Haase Hinweis: Dieser Foliensatz enthält nur die Teilthemen, die nicht selbst zu erarbeiten waren. 1 Verteilte Hashtabellen: Chord Idee:

Mehr

Motivation für Fehlertoleranz in VS Fehlermodelle Erreichen von Fehlertoleranz. Verteilte Systeme. 7. Fehlertoleranz

Motivation für Fehlertoleranz in VS Fehlermodelle Erreichen von Fehlertoleranz. Verteilte Systeme. 7. Fehlertoleranz 7-2 Überblick Verteilte Systeme 7. Fehlertoleranz Sommersemester 2011 Motivation für Fehlertoleranz in VS Fehlermodelle Erreichen von Fehlertoleranz Ausfallsicherheit von Prozessen Zuverlässiger Remote

Mehr

Mobile Anwendungen Google Cloud Messaging

Mobile Anwendungen Google Cloud Messaging Mobile Anwendungen Google Cloud Messaging 1. Allgemeines zu Google Cloud Messaging (GCM): - 60% der Top 100 Apps nutzen Google Cloud Messagging - 200.000 Messages pro Sekunde = 17 Milliarden Messages pro

Mehr

Beyond Music File Sharing: A Technical Introduction to P2P Networks

Beyond Music File Sharing: A Technical Introduction to P2P Networks Beispielbild Beyond Music File Sharing: A Technical Introduction to P2P Networks Christian Cikryt Fachbereich Informatik, Freie Universität Berlin 29. Januar 2010 Gliederung 1. Motivation 2. Überblick

Mehr

Fehlertolerante verteilte Systeme, Peer-To-Peer Netzwerke

Fehlertolerante verteilte Systeme, Peer-To-Peer Netzwerke Fehlertolerante verteilte Systeme, Peer-To-Peer Netzwerke Hauptseminar im SS 2002 Hans Reiser, Rüdiger Kapitza Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme Universität Erlangen-Nürnberg

Mehr

GeoShop Netzwerkhandbuch

GeoShop Netzwerkhandbuch Technoparkstrasse 1 8005 Zürich Tel.: 044 / 350 10 10 Fax.: 044 / 350 10 19 GeoShop Netzwerkhandbuch Zusammenfassung Diese Dokumentation beschreibt die Einbindung des GeoShop in bestehende Netzwerkumgebungen.

Mehr

Klausur Verteilte Systeme

Klausur Verteilte Systeme VS SS-05 Oß (Fachbereich 5, Elektrotechnik und Informationstechnik) Zuname: Vorname: Matr.-Nr.: Fach-Nummer: Termin: Prüfer: Klausur Verteilte Systeme 5661 (Fachprüfung) Mittwoch, 13. Juli 2005, 8.30-11.30

Mehr

Zeitsynchronisation in drahtlosen Sensornetzen Verfahren und Anwendungen

Zeitsynchronisation in drahtlosen Sensornetzen Verfahren und Anwendungen Zeitsynchronisation in drahtlosen Sensornetzen Verfahren und Anwendungen Dipl.-Inf. Stefan Schramm Wissenschaftlicher Mitarbeiter Internationale wissenschaftliche Konferenz Mittweida Mittweida, 05.11.2014

Mehr

56. UKW Tagung Weinheim 2011 Zeitsynchronisation mit NTP (Network Time Protocol)

56. UKW Tagung Weinheim 2011 Zeitsynchronisation mit NTP (Network Time Protocol) (Network Time Protocol) Warum NTP? Grundlagen von NTP Netzarchitektur Zeitserver (Einzelsystem, Pool) Clientkonfiguration UNIX / Linux Clientkonfiguration Windows Literaturquellen Diskussion Referent:

Mehr

Kommunikation. Sitzung 01 04./11. Dezember 2015

Kommunikation. Sitzung 01 04./11. Dezember 2015 Kommunikation Sitzung 01 04./11. Dezember 2015 Unser Vorhaben Kommunikationsmodell Überblick über Netzwerk-Topologien Server-Client-Modell Internet Was ist Informatik eigentlich? Kunstwort aus Information

Mehr

Wintersemester 2014/2015. Überblick. Prof. Dr. Peter Mandl Verteilte Systeme

Wintersemester 2014/2015. Überblick. Prof. Dr. Peter Mandl Verteilte Systeme Überblick Wintersemester 2014/2015 Verteilte Systeme Einführung und Überblick Zeitsynchronisation Wahl und Übereinstimmung RPC, verteilte Objekte und Dienste Verteilte Transaktionen Message Passing Middlewareplattformen

Mehr

Konfigurieren eines autorisierenden Zeitservers in Windows

Konfigurieren eines autorisierenden Zeitservers in Windows Seite 1 von 5 Suche in -> Deutsche Artikel Konfigurieren eines autorisierenden Zeitservers in Windows 2000 Dieser Artikel wurde zuvor veröffentlicht unter D42387 Artikel-ID : 216734 Dieser Artikel ist

Mehr

Lösung Verteilte Systeme WS 2011/12 Teil 1

Lösung Verteilte Systeme WS 2011/12 Teil 1 Seite 1 von 5 Lösung Verteilte Systeme WS 2011/12 Teil 1 2.02.2012 1. Aufgabe (5) Sie fahren in Ihrem Privatfahrzeug auf einer Autobahn und hinter Ihnen fährt ein Polizeifahrzeug. 1.1 Nennen Sie ein Szenario,

Mehr

Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 2011 / 2012

Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 2011 / 2012 Name: Matrikelnummer: Studiengang: INF CV IM Lehramt BSc MSc BEd MEd Diplom Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 0 / 0 Montag, den. Februar 0, 09: Uhr 0: Uhr Prof. Dr. D. Zöbel, Dipl.

Mehr

Konzepte von Betriebssystem-Komponenten Schwerpunkt Authentifizierung. Das Kerberos-Protokoll

Konzepte von Betriebssystem-Komponenten Schwerpunkt Authentifizierung. Das Kerberos-Protokoll Konzepte von Betriebssystem-Komponenten Schwerpunkt Authentifizierung Das Kerberos-Protokoll Guido Söldner guido@netlogix.de. Überblick über das Kerberos-Protokoll Ein Standardvorgang in der Computersicherheit

Mehr

OAuth Ein offener Standard für die sichere Autentifizierung in APIs

OAuth Ein offener Standard für die sichere Autentifizierung in APIs OAuth Ein offener Standard für die sichere Autentifizierung in APIs Max Horváth, Andre Zayarni, Bastian Hofmann 1 Vorstellung der Speaker 2 Was ist OAuth?? 3 Was ist OAuth? OAuth ermöglicht dem Endnutzer

Mehr

Projekt für Systemprogrammierung WS 06/07

Projekt für Systemprogrammierung WS 06/07 Dienstag 30.01.2007 Projekt für Systemprogrammierung WS 06/07 Von: Hassan Bellamin E-Mail: h_bellamin@web.de Gliederung: 1. Geschichte und Definition 2. Was ist Virtualisierung? 3. Welche Virtualisierungssoftware

Mehr

Rechnernetze I. Rechnernetze I. 1 Einführung SS 2014. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404

Rechnernetze I. Rechnernetze I. 1 Einführung SS 2014. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Rechnernetze I SS 2014 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 9. Mai 2014 Betriebssysteme / verteilte Systeme Rechnernetze I (1/10) i Rechnernetze

Mehr

Synchronisation des Temperatur-Loggers

Synchronisation des Temperatur-Loggers Synchronisation des Temperaturloggers Juni 10, 2010 1 / 7 Synchronisation des Temperatur-Loggers Einführung Zwei oder mehr Installationen der Temperaturlogger-Software können so zusammen geschaltet werden,

Mehr

Überblick. 2 Bestandsaufnahme 2.1 Beispiele von verteilten Systemen 2.2 Anwendungsszenarien 2.3 Vorteile 2.4 Problembereiche

Überblick. 2 Bestandsaufnahme 2.1 Beispiele von verteilten Systemen 2.2 Anwendungsszenarien 2.3 Vorteile 2.4 Problembereiche Überblick 2 Bestandsaufnahme 2.1 Beispiele von verteilten Systemen 2.2 Anwendungsszenarien 2.3 Vorteile 2.4 Problembereiche c rk,wosch,jk VS (SS 2015) 2 Bestandsaufnahme 2 1 Prozessorfarm @Google c rk,wosch,jk

Mehr

IPv6 Autokonfiguration Windows Server 2008

IPv6 Autokonfiguration Windows Server 2008 IPv6 Autokonfiguration Windows Server 2008 David Schwalb Hasso-Plattner-Institut Potsdam Seminar: Betriebssystemadministration 9. Juli 2008 Übersicht 2 IPv6 Adresstypen Stateless Autokonfiguration Ablauf

Mehr

Verteilte Systeme. Einführung. Prof. Dr. Oliver Haase

Verteilte Systeme. Einführung. Prof. Dr. Oliver Haase Verteilte Systeme Einführung Prof. Dr. Oliver Haase 1 Definition A distributed system is a collection of independent computers that appears to its users as a single coherent system. - Andrew Tanenbaum

Mehr

Verteilte Systeme Jürgen Nehmer, SS 2003

Verteilte Systeme Jürgen Nehmer, SS 2003 Definitionen Instanz Verteilte Systeme Jürgen Nehmer, SS 2003 Einführung Rechnervernetzung Verteiltes Programm Eine Menge autonomer Softwareinstanzen, die ein gemeinsames Problem bearbeiten und zu diesem

Mehr

Zeitstempel für digitale Dokumente. Ein neuer Dienst in der DFN-PKI

Zeitstempel für digitale Dokumente. Ein neuer Dienst in der DFN-PKI Zeitstempel für digitale Dokumente Ein neuer Dienst in der DFN-PKI DFN-Betriebstagung 26. Februar 2008 Gerti Foest (pki@dfn.de) Was ist ein Zeitstempel? Zeitstempel sind gemäß [ISO18014-1] digitale Daten,

Mehr

One-Way Delay Determination Techniques

One-Way Delay Determination Techniques One-Way Delay Determination Techniques Mislav Boras Betreuer: Dirk Haage Seminar Innovative Internet-Technologien und Mobilkommunikation WS09/10 Institut für Informatik, Lehrstuhl Netzarchitekturen und

Mehr

Netzwerk- Konfiguration. für Anfänger

Netzwerk- Konfiguration. für Anfänger Netzwerk- Konfiguration für Anfänger 1 Vorstellung Christian Bockermann Informatikstudent an der Universität Dortmund Freiberuflich in den Bereichen Software- Entwicklung und Netzwerk-Sicherheit tätig

Mehr

IP routing und traceroute

IP routing und traceroute IP routing und traceroute Seminar Internet-Protokolle Dezember 2002 Falko Klaaßen fklaasse@techfak.uni-bielefeld.de 1 Übersicht zum Vortrag Was ist ein internet? Was sind Router? IP routing Subnet Routing

Mehr

Bericht über Kooperation zwischen JOIN/Fa. Meinberg

Bericht über Kooperation zwischen JOIN/Fa. Meinberg Meinberg Lantime und IPv6-Integration Bericht über Kooperation zwischen JOIN/Fa. Meinberg Copyright 2003 by Christian Strauf (JOIN) 39. Betriebstagung des DFN in Berlin 11.-12.

Mehr

Betriebssystembau (BSB)

Betriebssystembau (BSB) Betriebssystembau (BSB) 6. Übung http://ess.cs.tu-.de/de/teaching/ws2013/bsb/ Olaf Spinczyk olaf.spinczyk@tu-.de http://ess.cs.tu-.de/~os AG Eingebettete System Informatik 12, TU Dortmund Agenda Vorstellung

Mehr

Paradigmenwechsel. Von Client/Server zu Peer-to-Peer. Ein Paradigmenwechsel

Paradigmenwechsel. Von Client/Server zu Peer-to-Peer. Ein Paradigmenwechsel Von Client/Server zu Peer-to-Peer Distributed Computing Group Roger Wattenhofer Ein Paradigmenwechsel Paradigmenwechsel Eitle Wissenschaftler umschreiben eine Situation, in der ihnen ein Thema oder eine

Mehr

Client-Server mit Socket und API von Berkeley

Client-Server mit Socket und API von Berkeley Client-Server mit Socket und API von Berkeley L A TEX Projektbereich Deutsche Sprache Klasse 3F Schuljahr 2015/2016 Copyleft 3F Inhaltsverzeichnis 1 NETZWERKPROTOKOLLE 3 1.1 TCP/IP..................................................

Mehr

2. Veranschauliche an einem Beispiel, welche Bedeutung die Vernetzung von Computern im öffentlichen, privaten und geschäftlichen Bereich hat.

2. Veranschauliche an einem Beispiel, welche Bedeutung die Vernetzung von Computern im öffentlichen, privaten und geschäftlichen Bereich hat. Schwerpunkte der 2. Klassenarbeit zum Thema Netzwerke Gruppe H. Krause Netzwerk allgemein - Nutzen und Gefahren - Einteilung nach Reichweite, Topologie - Peer-to-Peer, Client- Geräte: - Hub /Switch - Netzwerkkabel

Mehr

VS7 Slide 1. Verteilte Systeme. Vorlesung 7 vom 27.05.2004 Dr. Sebastian Iwanowski FH Wedel

VS7 Slide 1. Verteilte Systeme. Vorlesung 7 vom 27.05.2004 Dr. Sebastian Iwanowski FH Wedel VS7 Slide 1 Verteilte Systeme Vorlesung 7 vom 27.05.2004 Dr. Sebastian Iwanowski FH Wedel Inhaltsverzeichnis für die Vorlesung Zur Motivation: 4 Beispiele aus der Praxis Allgemeine Anforderungen an Verteilte

Mehr

Infrastruktur fit machen für Hochverfügbarkeit, Workload Management und Skalierbarkeit

Infrastruktur fit machen für Hochverfügbarkeit, Workload Management und Skalierbarkeit make connections share ideas be inspired Infrastruktur fit machen für Hochverfügbarkeit, Workload Management und Skalierbarkeit Artur Eigenseher, SAS Deutschland Herausforderungen SAS Umgebungen sind in

Mehr

Endorsed SI Anwenderbericht: Einsatz von System Platform 2012 R2 in virtualisierten Umgebungen zur Prozessvisualisierung

Endorsed SI Anwenderbericht: Einsatz von System Platform 2012 R2 in virtualisierten Umgebungen zur Prozessvisualisierung Endorsed SI Anwenderbericht: Einsatz von System Platform 2012 R2 in virtualisierten Umgebungen zur Prozessvisualisierung Fritz Günther 17.03.2014 Folie 1 Agenda Was ist Virtualisierung Server- / Clientvirtualisierung

Mehr

... relevante Ports für Streaming bzw. Remote Control!

... relevante Ports für Streaming bzw. Remote Control! ... relevante Ports für Streaming bzw. Remote Control! Wenn Sie mit der Installation des IO [io] 8000 / 8001 beginnen, ist es am sinnvollsten mit einem minilan zu beginnen, da dies mögliche Fehlrequellen

Mehr

Modul 8: Geschäftsprozesse, SLA, ITIL und CMDB (Fortsetzung)

Modul 8: Geschäftsprozesse, SLA, ITIL und CMDB (Fortsetzung) Modul 8: Geschäftsprozesse, SLA, ITIL und CMDB (Fortsetzung) M. Leischner Netzmanagement Folie 1 Prozessbewertung (Process Assessment) Critical Success Factors (CSF - kritische Erfolgsfaktoren) Bedingungen,

Mehr

Grundsätzliches. Grundsätzliche Überlegungen zu Netzwerken Stand : Juli 2006

Grundsätzliches. Grundsätzliche Überlegungen zu Netzwerken Stand : Juli 2006 Grundsätzliches Grundsätzliche Überlegungen zu Netzwerken Stand : Juli 2006 Netzanforderungen und - probleme Radikale Designänderungen während des Baus / der Gestaltung von Netzwerken, daher unberechenbare

Mehr

Personal Power Plant

Personal Power Plant Inhalt Einleitung Version vom 1. März 2007 Inhalt Einleitung Peer to Peer Netzwerke Was ist verteiltes Rechnen Inhalt 1 Einleitung Peer to Peer Netzwerke Was ist verteiltes Rechnen Inhalt Einleitung Peer

Mehr

RARP, BOOTP, DHCP Wie ermittelt ein Client seine IP-Adresse?

RARP, BOOTP, DHCP Wie ermittelt ein Client seine IP-Adresse? RARP, BOOTP, DHCP Wie ermittelt ein Client seine IP-Adresse? Holger Jakobs, bibjah@bg.bib.de Bildungszentrum b.i.b. e. V. RCSfile: dhcp.tex,v Revision: 1.2 p. 1 RARP Was heißt RARP? Reverse Address Resolution

Mehr

Algorithmen für Peer-to-Peer-Netzwerke Sommersemester 2004 04.06.2004 7. Vorlesung

Algorithmen für Peer-to-Peer-Netzwerke Sommersemester 2004 04.06.2004 7. Vorlesung Algorithmen für Peer-to-Peer-Netzwerke Sommersemester 2004 04.06.2004 7. Vorlesung 1 Kapitel III Skalierbare Peer to Peer-Netzwerke Tapestry von Zhao, Kubiatowicz und Joseph (2001) Netzw erke 2 Tapestry

Mehr

Leveraging BitTorrent for End Host Measurements

Leveraging BitTorrent for End Host Measurements Leveraging BitTorrent for End Host Measurements Ralf Stange Betreuer Oliver Hohlfeld Technische Universität Berlin Wintersemester 2008/2009 Leveraging BitTorrent for End Host Measurements 1 / 26 Worum

Mehr

Welche der folgenden Aussagen gelten? a) Im allgemeinen gilt: ein Deadlock tritt auf gdw. der Resource-Allocation Graph einen Zykel

Welche der folgenden Aussagen gelten? a) Im allgemeinen gilt: ein Deadlock tritt auf gdw. der Resource-Allocation Graph einen Zykel Aufgabe 1 (5 Punkte) (Multiple Choice) Beantworten Sie folgende Fragen durch Ankreuzen der richtigen Antwort. Für jede falsche Antwort wird ein Punkt abgezogen (es werden minimal 0 Punkte vergeben). Welche

Mehr

Multimedia-Streams: Client-Puffer

Multimedia-Streams: Client-Puffer Multimedia-Streams: Client-Puffer Cumulative data constant bit rate video transmission variable network delay client video reception buffered video constant bit rate video playout at client client playout

Mehr

Motivation. Motivation

Motivation. Motivation Vorlesung Modellierung nebenläufiger Systeme Sommersemester 2012 Universität Duisburg-Essen Was sind nebenläufige Systeme? Ganz allgemein: Systeme, bei denen mehrere Komponenten/Prozesse nebenläufig arbeiten

Mehr

Datenzentrisches Routing und Directed Diffusion

Datenzentrisches Routing und Directed Diffusion Hauptseminar Thema 3 Datenzentrisches Routing und Directed Diffusion Fred Schmidt Übersicht Einführung Datenzentrisches Routing Datenzentrisches vs. Adressorientiertes Routing Directed Diffusion Interestpropagierung

Mehr

Interrupts. Funktionsprinzip. Funktionsprinzip. Beispiel in C

Interrupts. Funktionsprinzip. Funktionsprinzip. Beispiel in C Interrupts Funktionsprinzip Interrupts bei ATmega128 Beispiel in C Funktionsprinzip 1 Was ist ein Interrupt? C muss auf Ereignisse reagieren können, z.b.: - jemand drückt eine Taste - USART hat Daten empfangen

Mehr

Distributed Space Partitioning Trees

Distributed Space Partitioning Trees Distributed Space Partitioning Trees Management von ortsbezogenen Diensten Fachbereich Informatik FernUniversität Hagen Ortsbezogene Dienste Ein ortsbezogener Dienst ist eine Anwendung, die: - auf geographischen

Mehr

IPv6: Fragen, Antworten & Diskussion

IPv6: Fragen, Antworten & Diskussion IPv6: Fragen, Antworten & Diskussion 40. DFN-Betriebstagung 09.-10. März 2003 IPv6-Forum Tina Strauf (JOIN) 1 Werden die IPv4-Adressen tatsächlich bald ausgehen? Prognosen reichen von 2005-2020 2,4 von

Mehr

Wie verhalte ich mich bei Problemen? Kapitel 9. 9 Wie verhalte ich mich bei Problemen? Netzwerkprobleme

Wie verhalte ich mich bei Problemen? Kapitel 9. 9 Wie verhalte ich mich bei Problemen? Netzwerkprobleme Wie verhalte ich mich bei Problemen? 9 Wie verhalte ich mich bei Problemen? Wie nicht anders zu erwarten, treten auch im Netzwerkbereich immer wieder die unterschiedlichsten Probleme auf. Leider gibt es

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

FOPT 5: Eigenständige Client-Server-Anwendungen (Programmierung verteilter Anwendungen in Java 1)

FOPT 5: Eigenständige Client-Server-Anwendungen (Programmierung verteilter Anwendungen in Java 1) 1 FOPT 5: Eigenständige Client-Server-Anwendungen (Programmierung verteilter Anwendungen in Java 1) In dieser Kurseinheit geht es um verteilte Anwendungen, bei denen wir sowohl ein Client- als auch ein

Mehr

Vorlesung. Rechnernetze II Teil 13. Sommersemester 2004

Vorlesung. Rechnernetze II Teil 13. Sommersemester 2004 Vorlesung Rechnernetze II Teil 13 Sommersemester 2004 Christian Grimm Fachgebiet Distributed Virtual Reality (DVR) Lehrgebiet Rechnernetze C. Grimm 14. Juli 2004 Übersicht Motivation und Beispiele Zeiteinheit

Mehr

Fresh Minder 3-Server

Fresh Minder 3-Server Fresh Minder 3-Server Installation und Betrieb Fresh Minder-Vertrieb Rieslingweg 25 D - 74354 Besigheim support@freshminder.de www.freshminder.de ÜBERSICHT Die Standardversion (Einzelplatzversion) von

Mehr

Netzwerktechnologie 2 Sommersemester 2004

Netzwerktechnologie 2 Sommersemester 2004 Netzwerktechnologie 2 Sommersemester 2004 FH-Prof. Dipl.-Ing. Dr. Gerhard Jahn Gerhard.Jahn@fh-hagenberg.at Fachhochschulstudiengänge Software Engineering Software Engineering für Medizin Software Engineering

Mehr

RAC auf Sun Cluster 3.0

RAC auf Sun Cluster 3.0 RAC auf Sun Cluster 3.0 Schlüsselworte RAC, OPS, Sun Cluster, Performance, Availability Zusammenfassung Oracle hat mit dem Real Application Cluster (RAC) aus einer Hochverfügbarkeitslösung eine Höchstverfügbarkeitslösung

Mehr

Verteilte Systeme CS5001

Verteilte Systeme CS5001 Verteilte Systeme CS5001 Th. Letschert TH Mittelhessen Gießen University of Applied Sciences Client-Server-Anwendungen: Vom passiven (shared state) Monitor zum aktiven Monitor Monitor (Hoare, Brinch-Hansen,

Mehr

Autorisierung. Sicherheit und Zugriffskontrolle & Erstellen einer Berechtigungskomponente

Autorisierung. Sicherheit und Zugriffskontrolle & Erstellen einer Berechtigungskomponente Autorisierung Sicherheit und Zugriffskontrolle & Erstellen einer Berechtigungskomponente Dokumentation zum Referat von Matthias Warnicke und Joachim Schröder Modul: Komponenten basierte Softwareentwickelung

Mehr

Linux als File- und Printserver - SAMBA

Linux als File- und Printserver - SAMBA Linux als File- und Printserver - SAMBA Wolfgang Karall karall@mail.zserv.tuwien.ac.at 18.-21. März 2002 Abstract Durchführung der Installation, Konfiguration und Administration eines File- und Printservers

Mehr