9.2 Invertierbare Matrizen

Größe: px
Ab Seite anzeigen:

Download "9.2 Invertierbare Matrizen"

Transkript

1 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen Zahlen a 0, b auf quadratische Matrizen A 0, B, dann müssen wir feststellen, dass es nicht zu jeder quadratischen Matrix A 0 eine quadratische Matrix B mit AB = E gibt (nach der 3. Eigenschaft, Seite 32, übernimmt ja die Einheitsmatrix E die Rolle der ). Nehmen wir an, es gibt eine Matrix mit AB = E. Dann gilt B = ( ) ( ) a b c d Für diese Matrix A gibt es also keine 2 2-Matrix B mit AB = E (analog auch keine Matrix B mit B E). Definition Sei A eine quadratische Matrix. Gibt es eine Matrix A mit AA = A E so heisst A invertierbar und die Matrix A nennt man Inverse von A (sie ist eindeutig bestimmt durch A). Invertierbar ist die Matrix ( ) mit A = ( ) Für die Inverse einer invertierbaren 2 2-Matrix gibt es eine einfache Formel. Satz 9. Die Matrix ( ) a b c d ist invertierbar genau dann, wenn ad bc 0. In diesem Fall gilt ( ) A d b =. ad bc c a

2 35 Sind die Matrizen invertierbar? ( ) und B = ( ) Bevor wir weitere e von Inversen betrachten, kehren wir nochmals zur Eigenschaft zurück, dass Matrizen im Allgemeinen nicht gekürzt werden dürfen. Es gilt nun nämlich das Folgende. Kürzungsregel: Für Matrizen A, B, C gilt: AB = AC und A invertierbar = B = C Diese Kürzungsregel gilt, da die Gleichung AB = AC von links mit A multipliziert werden kann: Weiter gelten die folgenden zwei Eigenschaften für invertierbare Matrizen. Satz 9.2 Seien A und B zwei invertierbare Matrizen. Dann gilt () (A ) = A (2) (AB) = B A Warum wird bei der Eigenschaft (2) die Reihenfolge der Matrizen vertauscht? Nun, sei C die Inverse von AB. Dann gilt E = C(AB). Multiplizieren wir diese Gleichung von rechts mit B, dann erhalten wir wegen BB = E B = EB = C(AB)B = CA(BB ) = CAE = CA. Nun multiplizieren wir diese Gleichung von rechts mit A und finden B A = CAA = CE = C.

3 36 Bestimmung der Inversen Um die Inverse einer Matrix von beliebiger Grösse zu bestimmen, kann der Gaußsche Algorithmus (in leicht veränderter Form) benutzt werden. Wie dies funktioniert, soll an einem erklärt werden. Gegeben ist die 3 3-Matrix Gesucht ist x u v A = x 2 u 2 v 2 x 3 u 3 v 3 mitaa = E (fallsainvertierbarist). WennwirdieMatrixmultiplikation AA ausführen, erhalten wir aus der Matrixgleichung AA = E das folgende lineare Gleichungssystem: 4x + 5x 3 = x 2 6x 3 = 0 3x + 4x 3 = 0 4u + 5u 3 = 0 u 2 6u 3 = 3u + 4u 3 = 0 4v + 5v 3 = 0 v 2 6v 3 = 0 3v + 4v 3 = Dies sind 9 Gleichungen in den 9 Unbekannten, doch die Gleichungen 3, 4 6 und 7 9 unterscheiden sich nur durch die Zahlen auf der rechten Seite. Wir haben also drei lineare Gleichungssysteme, die wir gleichzeitig mit Hilfe des Gauß-Algorithmus lösen können! Wir schreiben dazu die erweiterte Matrix der ersten drei Gleichungen hin und dahinter hängen wir die rechten Seiten der Gleichungen 4 6 und 7 9 an: = (A E) Nun führen wir den Gauß-Algorithmus durch, und zwar bis wir die Matrix A auf die reduzierte Zeilenstufenform gebracht haben, welches die Einheitsmatrix E ist, falls A invertierbar ist. Wir starten also mit (A E), führen elementare Zeilenumformungen durch (eine Zeile besteht hier aus 6 Einträgen), bis wir die Form (E B) erreichen. Die Matrix B ist dann die gesuchte Inverse A = B!

4 37 (A E) = Wir erhalten also die Inverse A = Bei diesem Verfahren muss man von einer gegebenen Matrix A nicht im Voraus wissen, ob sie invertierbar ist oder nicht. Ist A invertierbar, dann führt das eben beschriebene Vorgehen automatisch zur Inversen. Ist A jedoch nicht invertierbar, dann ist die reduzierte Zeilenstufenform von A nicht die Einheitsmatrix E; das heisst, es ist nicht möglich, durch Zeilenumformungen zur Matrix E zu gelangen. Gegeben ist die Matrix ( )

5 38 Dann gilt (A E) = ( ) ( 2 z = 4 z ) ( 2 z 2 =z 2 2z Die Zeilenstufenform der Matrix A hat eine Nullzeile. Die reduzierte Zeilenstufenform von A kann also nicht E sein. Das heisst, dass A nicht invertierbar ist. Man kann dies auch mit Hilfe des Ranges ausdrücken. Satz 9.3 Sei A eine n n-matrix. Dann gilt ) A ist invertierbar rg(a) = n 9.3 Potenzen einer Matrix und die Transponierte Für eine quadratische Matrix A definiert man A 0 = E und A n = AA A }{{} n Faktoren für n. Ist A ausserdem invertierbar, so ist A n = (A ) n = A } A A {{}. n Faktoren Es gelten die üblichen Potenzgesetze, das heisst für ganze Zahlen r und s gilt gilt Für eine Diagonalmatrix Insbesondere ist A r A s = A r+s und (A r ) s = A rs. d 0 D =... 0 d n d r 0 D r =... für r in Z. 0 d r n D = d d n Mit Diagonalmatrizen lässt es sich also sehr leicht rechnen. Wir werden im nächsten Semester sehen, wie man quadratische Matrizen diagonalisiert..

6 39 Sei weiter A eine m n-matrix, a a 2 a n a 2 a 22 a 2n.... a m a m2 a mn Dann ist die Transponierte A T von A die n m-matrix a a 2 a m a 2 a 22 a m2 A T = a n a 2n a mn, das heisst, die Zeilen werden mit den Spalten vertauscht. e ( ) 0 3, B = = A T = 0 5, B T = 3 ( ) 3, C = ( ) 2, C T = ( 0 2 ) 3 6 Man nennt eine (quadratische) Matrix A symmetrisch, wenn gilt A T = A. e Symmetrisch sind ( ) und B = Satz 9.4 Für Matrizen entsprechender Grössen gilt: () (A T ) T = A (2) (A+B) T = A T +B T (3) (AB) T = B T A T (4) Ist A invertierbar, so auch A T und (A T ) = (A ) T.

7 Determinanten Die Determinante ordnet jeder n n-matrix A eine bestimmte reelle Zahl zu. Man bezeichnet sie mit det(a). n = 2 ( ) a a 2 a 2 a 22 det(a) = a a 22 a 2 a 2 Diesen Ausdruck haben wir schon bei der Inversen von A angetroffen (Satz 9.). Das heisst, die Matrix A ist invertierbar, genau dann wenn det(a) 0. n = 3 a a 2 a 3 a 2 a 22 a 23 a 3 a 32 a 33 det(a) = a a 22 a 33 +a 2 a 23 a 3 +a 3 a 2 a 32 a 3 a 22 a 3 a a 23 a 32 a 2 a 2 a n 2 a a 2... a n a 2 a a 2n a n a n2... a nn Für allgemeines n 2 kann det(a) rekursiv definiert werden. Sei A ij diejenige (n ) (n )-Matrix, die man aus A durch Streichen der i-ten Zeile und j-ten Spalte erhält. Entwicklung nach der ersten Zeile: det(a) = a det(a ) a 2 det(a 2 )+ +( ) n+ a n det(a n )

8 4 Die Determinante kann nach einer beliebigen Zeile oder Spalte entwickelt werden. Entwicklung nach der i-ten Zeile: det(a) = Entwicklung nach der j-ten Spalte: n ( ) i+j a ij A ij j= det(a) = n ( ) i+j a ij A ij i= Die reelle Zahl ( ) i+j det(a ij ) heisst Kofaktor von a ij. e. Entwickeln wir eine 3 3-Matrix nach der ersten Zeile, so erhalten wir die obige Definition: a a 2 a 3 ) ( ) ( ) det a 2 a 22 a 23 a22 a = a det( 23 a2 a a a a 3 a 32 a 32 a 2 det 23 a2 a +a 33 a 3 a 3 det a 3 a = a a 22 a 33 a a 23 a 32 a 2 a 2 a 33 +a 2 a 23 a 3 2. Sei +a 3 a 2 a 32 a 3 a 22 a Da die letzte Spalte zwei Nullen enthält, entwickeln wir nach dieser Spalte und erhalten 3. Sei Entwicklung nach der ersten Spalte ergibt B =

9 42 Satz 9.5 Seien A und B zwei n n-matrizen. Dann gilt (a) det(ab) = det(a) det(b) (b) A invertierbar det(a) 0 (c) det(a ) = det(a), falls A invertierbar ist (d) det(a T ) = det(a) Beim Berechnen von Determinanten sind weiter die folgenden Regeln nützlich:. Vertauscht man in einer Matrix zwei Zeilen(oder zwei Spalten), so ändert die Determinante das Vorzeichen. 2. Sind zwei Zeilen (oder zwei Spalten) einer Matrix gleich, so ist die Determinante gleich Multipliziert man eine Zeile (oder Spalte) einer Matrix mit einer reellen Zahl λ, so multipliziert sich auch die Determinante mit λ. 4. Addiert man in einer Matrix ein Vielfaches einer Zeile (oder Spalte) zu einer anderen, so ändert sich die Determinante nicht. 5. Es gilt a a 2 a n a 0 0 det 0 a = det. a 2 a = a a 22 a nn. 0 0 a nn a n a nn DieRegeln, 3und4zeigen uns,wiesichdiedeterminanteeinermatrixbeieinerelementaren Zeilenumformung verändert. Zur Berechnung der Determinante können wir also elementare Zeilenumformungen durchführen (wie beim Gauß-Algorithmus), um eine obere oder untere Dreiecksmatrix zu erhalten. Mit der Regel 5 ist dann die Berechnung der Determinante einfach. 0 3 det = 2

10 43 Die Determinante hat eine geometrische Bedeutung. Für eine n n-matrix A ist det(a) gleich dem Volumen des von den Spaltenvektoren aufgespannten Parallelepipeds. Welchen Flächeninhalt hat das Parallelogramm in R 2 aufgespannt von den Vektoren u = ( 2 0 ) und v = ( 2 4 )? Schliesslich bleibt noch zu erwähnen, dass die Determinante einer n n-matrix mit Hilfe von Permutationen, das heisst, bijektiven Abbildungen σ : {,2,...,n} {,2,...,n}, definiert werden kann. Die Determinante ist dadurch eine Summe von n! Summanden (man summiert über alle Permutationen σ). Diese Definition hat aber nur einen theoretischen Nutzen. Zur konkreten Berechnung von Determinanten wird diese Definition kaum verwendet. Deshalb verzichten wir hier auf die genaue Definition. 9.5 Zwei weitere Lösungsmethoden für lineare Gleichungssysteme Wir betrachten noch einmal ein lineares Gleichungssystem a x + +a n x n = b a 2 x + +a 2n x n = b 2 a m x + +a mn x n = b m. (G) Seien a a 2 a n x b a 2 a 22 a 2n..., x = x 2. in Rn, b 2 b =. in Rm. a m a m2 a mn x n b m Dann können wir das System (G) schreiben als Lösung mit Hilfe der Inversen A x = b. Hat das lineare System gleich viele Gleichungen wie Unbekannte, sagen wir n, und ist die zugehörige Koeffizientenmatrix A invertierbar, so gilt rg(a) = rg(a b) = n. Es gibt also genau eine Lösung. Diese kann mit Hilfe der Inversen von A direkt angegeben werden. Multiplizieren wir nämlich die Gleichung A x = b von links mit A, dann ist die eindeutige Lösung des Systems. x = A b

11 44 Gegeben sei das lineare System 3x+ y = 5x+2y = Cramersche Regel Auch die Cramersche Regel, benannt nach dem Schweizer Mathematiker Gabriel Cramer ( ), ist nur anwendbar für lineare Systeme mit invertierbarer Koeffizientenmatrix. Ist A x = b das lineare System, dann ist die Lösung x = (x,...,x n ) T gegeben durch x = det(a ) det(a), x 2 = det(a 2) det(a),..., x n = det(a n) det(a) wobei die Matrix A j dadurch entsteht, dass die j-te Spalte von A durch den Spaltenvektor b ersetzt wird. Gegeben sei das lineare System 3x+ y = 5x+2y =

12 45 0 Vektorräume Die Menge R n der Vektoren ist nicht die einzige Menge in der Mathematik, deren Elemente man addieren und mit einer reellen Zahl multiplizieren kann. Zur einheitlichen Betrachtung solcher Mengen wurde der Begriff des (abstrakten) Vektorraums eingeführt. Wir werden sehen, dass die Lösungsmenge von jedem homogenen linearen Gleichungssystem ein solcher Vektorraum ist und wir werden dadurch die auftretenden Parameter besser verstehen können. Weiter können wir endlich genau erklären, was Dimension bedeutet. 0. Definition und e Die Menge R n besteht aus (Spalten-)Vektoren x mit Komponenten x,...,x n R. Wir haben in Kapitel 7 gesehen, dass man zwei Vektoren in R n addieren und mit einer reellen Zahl multiplizieren kann. Dabei gelten die Rechenregeln von Satz 7.. Nun nennt man jede Menge, die genau diese Eigenschaften hat, einen(reellen) Vektorraum (da sich diese Menge eben genau so wie die Menge R n der Vektoren verhält). Die Elemente dieser Menge müssen jedoch keine Vektoren sein! Definition Ein (reeller) Vektorraum ist eine Menge V mit einer Addition und einer Skalarmultiplikation, so dass für alle u,v V, k R auch u+v V, kv V gilt und alle Eigenschaften aus Satz 7. erfüllt sind. Aus der Bedingung k R, v V = kv V folgt insbesondere für k = 0, dass 0 V. Das heisst, ein Vektorraum enthält immer ein Nullelement. e. Die Menge R n ist für jedes n ein Vektorraum. 2. Die Menge aller n n-matrizen ist ein Vektorraum. Wir haben in Kapitel 9 gesehen, dass man zwei n n-matrizen addieren und eine Matrix mit einer reellen Zahl multiplizieren kann, wobei die Rechenregeln von Satz 7. gelten. 3. Die Menge aller Polynome vom Grad 2 { ax 2 +bx+c a,b,c R } ist ein Vektorraum. Er ist im Wesentlichen derselbe wie R 3. Analog ist die Menge aller Polynome vom Grad n (oder auch ohne Beschränkung des Grades) ein Vektorraum. 4. Die Menge aller reellen Funktionen { f f : [0,] R } ist ein Vektorraum. Man definiert Addition und Skalarmultiplikation durch (f +g)(x) = f(x)+g(x) und (kf)(x) = kf(x) für x [0,]. Das Nullelement ist dabei die Funktion f mit f(x) = 0 für alle x [0,].

13 46 Der Raum R n ist also für jede natürliche Zahl n ein Vektorraum. Man kann sich nun fragen, ob es Teilmengen U von R n (oder allgemein eines Vektorraums V) gibt, die bezüglich der Addition und Skalarmultiplikation in R n (bzw. V) einen Vektorraum bilden. Glücklicherweise kann man recht schnell überprüfen, ob eine gegebene Teilmenge U eines Vektorraums V selbst ein Vektorraum ist. Die (nichtleere) Menge U ist nämlich genau dann ein Vektorraum in V, wenn gilt u,v U, k R = u+v U, ku U. Man muss also nur überprüfen, ob die Teilmenge U abgeschlossen ist bezüglich der Addition und der Skalarmultiplikation. Als Teilmenge des Vektorraums V gelten die Eigenschaften von Satz 7. automatisch! Wählt man in der Bedingung oben k = 0, so sieht man, dass U das Nullelement 0 des Vektorraums V enthalten muss. Jeder Vektorraum V {0} enthält mindestens zwei Teilmengen, die selbst Vektorräume sind, nämlich den ganzen Raum V und den Nullvektorraum {0}. Vektorräume in R 2 Wie eben bemerkt sind R 2 und { 0} Vektorräume. Weiter ist jede Gerade durch den Ursprung ein Vektorraum. Ist eine Gerade, die nicht durch den Ursprung geht, auch ein Vektorraum? Die Vektorräume in R 2 sind also { 0} Geraden durch den Ursprung R 2

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 118 7 Lineare Gleichungssysteme Lineare Gleichungssysteme treten in vielen mathematischen, aber auch naturwissenschaftlichen Problemen auf; zum Beispiel beim Lösen von Differentialgleichungen, bei Optimierungsaufgaben,

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme.2 Determinanten 3 iii 2 LINEARE GLEIHUNGSSYSTEME UND DETERMINANTEN KAPITEL

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Der Rang einer Matrix A. Beispiel

Der Rang einer Matrix A. Beispiel Der Rang einer Matrix A ist gleich Anzahl der Zeilen ungleich 0, nachdem die Matrix durch elementare Zeilenoperationen in Zeilenstufenform gebracht worden ist. Bezeichnung: ranga oder rga. Beispiel A =

Mehr

Lineare Algebra KAPITEL III. 12 Matrizen und der Gauß-Algorithmus. I) Matrizen

Lineare Algebra KAPITEL III. 12 Matrizen und der Gauß-Algorithmus. I) Matrizen KAPITEL III Lineare Algebra 12 Matrizen und der Gauß-Algorithmus I Matrizen Definition 121 Matrizen und der R n Es seien m,n 1 zwei positive ganze Zahlen a Eine m n-matrix über R ist ein rechteckiges Schema

Mehr

Kapitel 17. Determinanten

Kapitel 17. Determinanten Kapitel 17. Determinanten Vorschau: Determinanten Es gibt drei Problemfelder, für die Determinanten von großem Nutzen sind: die formelmäßige Überprüfung der linearen Unabhängigkeit eines Systems von n

Mehr

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014 Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 Roger Burkhardt roger.burkhardt@fhnw.ch

Mehr

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung 43 Permutationen Definition Eine Permutation der Elementen {,, n} ist eine bijektive Abbildung σ : {,,n} {,,n} Es ist leicht zu sehen, dass die Hintereinanderführung zweier Permutationen ergibt wieder

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra Theoretische Fragen zu ausgewählten Themen in Lineare Algebra { Oren Halvani, Jonathan Weinberger } TU Darmstadt 25. Juni 2009 Inhaltsverzeichnis 1 Determinanten................................................

Mehr

Lineare Algebra. Teil III. Inhaltsangabe

Lineare Algebra. Teil III. Inhaltsangabe Teil III Lineare Algebra Inhaltsangabe 3 Lineare Algebra 22 3.1 Einführung.......................... 22 3.2 Matrizen und Vektoren.................... 23 3.3 Spezielle Matrizen...................... 24

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Das Lösen linearer Gleichungssysteme

Das Lösen linearer Gleichungssysteme Das Lösen linearer Gleichungssysteme Lineare Gleichungen Die Gleichung a 1 x 1 + a 2 x 2 +... + a n x n = b ist eine lineare Gleichung in den n Variablen x 1, x 2,..., x n. Die Zahlen a 1, a 2,..., a n

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Matrizen und Determinanten 1 Matrizen und Determinanten 1 Einführung in den Matrizenbegriff Zur Beschreibung und Lösung vieler physikalischer Probleme ist die Vektorrechnung vonnöten Durch Verwendung von

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

) in der Ebene aufgespannten Parallelogramms ist, wie wir wissen, gleich a 1. b 2. ) und b = ( b 1

) in der Ebene aufgespannten Parallelogramms ist, wie wir wissen, gleich a 1. b 2. ) und b = ( b 1 45 Determinanten Die orientierte Fläche eines von zwei Vektoren a ( a, a und b ( b, b in der Ebene aufgespannten Parallelogramms ist, wie wir wissen, gleich a b a b Bis auf das Vorzeichen ist dies der

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

V DETERMINANTEN In diesem Kapitel entwickeln wir die Theorie der Determinanten Die folgenden Beispiele sollen die Einfuhrung dieses Begries motivieren

V DETERMINANTEN In diesem Kapitel entwickeln wir die Theorie der Determinanten Die folgenden Beispiele sollen die Einfuhrung dieses Begries motivieren SKRIPTUM { LINEARE ALGEBRA II JB COOPER Inhaltsverzeichnis: x Determinanten x Eigenwerte x Euklidische Raume x8 Dualitat, Tensorprodukte, Alternierende Formen Anhang: ) Mengen, Abbildungen ) Gruppen )

Mehr

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme 52 II Lineare Gleichungssysteme II Lineare Gleichungssysteme 10 Matrizen und Vektoren 52 11 Der Gaußsche Algorithmus 58 12 Basen, Dimension und Rang 62 13 Reguläre Matrizen 66 14 Determinanten 69 15 Skalarprodukte

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

Quadratische Matrizen

Quadratische Matrizen Quadratische Matrizen (n n)-matrizen heißen quadratische Die entsprechenden linearen Abbildungen sind laut Definition Endomorphismen des R n (weil f A : R n R n ) Das Produkt von (n n)- Matrizen ist auch

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

Aufgaben zu Kapitel 14

Aufgaben zu Kapitel 14 Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 73 Ergänzungen Prof Dr Erich Walter Farkas Mathematik I+II, 73 Ergänzungen 1 / 17 1 Reguläre Matrizen Prof Dr

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 2013/14 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7

Mathematik für Wirtschaftswissenschaftler im WS 2013/14 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7 Mathematik für Wirtschaftswissenschaftler im WS 203/4 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7 Aufgabe 27 Sei eine lineare Abbildung f : R 4 R 3 gegeben durch f(x, x 2, x 3 ) = (2 x 3 x 2

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Lineare Algebra I Klausur. Klausur - Musterlösung

Lineare Algebra I Klausur. Klausur - Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra I Klausur Klausur - Musterlösung 20. Februar 203 Aufgabe - Lösung Aussage wahr falsch (Z, +, 0) ist eine abelsche Gruppe. Der Ring Z/24Z ist nullteilerfrei.

Mehr

täglich einmal Scilab!

täglich einmal Scilab! Mathematik 1 - Übungsblatt 7 täglich einmal Scilab! Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind skalare Größen (=einfache Zahlen im Gegensatz zu vektoriellen

Mehr

3 Matrizen und Determinanten

3 Matrizen und Determinanten 31 Matrizen 311 Matrizen und Gleichungssysteme Grundlegende Begriffe der linearen Algebra und linearen Optimierung sind die Begriffe Matrix, Vektor, Determinante und lineares Gleichungssystem Beispiel

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen.

Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen. 1 Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 2008 Kapitel 16 Determinanten und inverse Matrizen

Mehr

Mathematik 2 für ET. Vektoren in R n und C n. Addition von Vektoren Multiplikation von Vektor und Skalar. Der Nullvektor 0 =

Mathematik 2 für ET. Vektoren in R n und C n. Addition von Vektoren Multiplikation von Vektor und Skalar. Der Nullvektor 0 = Mathematik 2 für ET # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit Das Lernen mit Lernkarten funktioniert

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Homogenität Assoziativgesetz A (B 1 + B 2 ) = A B 1 + A B 2 Distributivgesetz 1 (A 1 + A 2 ) B = A 1 B + A 2 B Distributivgesetz 2

Homogenität Assoziativgesetz A (B 1 + B 2 ) = A B 1 + A B 2 Distributivgesetz 1 (A 1 + A 2 ) B = A 1 B + A 2 B Distributivgesetz 2 1. Formatbedingungen der Matrixoperationen Die Addition (Subtraktion) A ± B verlangt gleiches Format der Operanden A und B. Das Ergebnis hat das Format der Operanden. Skalarmultiplikation λa: Es gibt keine

Mehr

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Kapitel 3 Lineare Gleichungssysteme 3.1. Einleitung Beispiel 1 3 Kinder haben eingekauft. Franz hat 4 Lakritzen, 2 Schokoriegel und 5 Kaugummis

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme KAPITEL 2 Lineare Gleichungssysteme Lernziele dieses Abschnitts sind: Begrie: Matrix, Vektor spezielle Matrix, transponierte Matrix, inverse Matrix nur fur quadratische Matrizen erklart, Determinante,

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Kapitel V. Determinanten

Kapitel V. Determinanten Kapitel V. Determinanten Inhalt: 16. Definition und Eigenschaften der Determinante 17. Anwendung auf lineare Gleichungssysteme 18. Determinante eines Endomorphismus Lineare Algebra, Teil I 28. Januar 2011

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

Diagonalisieren. Nikolai Nowaczyk Lars Wallenborn

Diagonalisieren. Nikolai Nowaczyk  Lars Wallenborn Diagonalisieren Nikolai Nowaczyk http://mathniknode/ Lars Wallenborn http://wwwwallenbornnet/ 16-18 März 01 Inhaltsverzeichnis 1 Matrizen 1 11 Einschub: Invertierbarkeit

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben / Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix

5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix 5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix Jörn Loviscach Versionsstand: 20. März 2012, 16:02 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Mathematische Formeln für Wirtschaftswissenschaftler

Mathematische Formeln für Wirtschaftswissenschaftler Mathematische Formeln für Wirtschaftswissenschaftler Fred Böker Institut für Statistik und Ökonometrie Georg-August-Universität Göttingen Platz der Göttinger Sieben 5 D-37073 Göttingen Tel 0551-394604

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

1 Rechnen mit 2 2 Matrizen

1 Rechnen mit 2 2 Matrizen 1 Rechnen mit 2 2 Matrizen 11 Produkt Wir berechnen das allgemeine Produkt von A = Für das Produkt gilt AB = a11 a 12 a 21 a 22 a11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12

Mehr

8 Lineare Abbildungen

8 Lineare Abbildungen 80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt

Mehr

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11 Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)

Mehr

Quadratische Matrizen Inverse und Determinante

Quadratische Matrizen Inverse und Determinante Kapitel 2 Quadratische Matrizen Inverse und Determinante In diesem Abschnitt sei A M(n, n) stets eine quadratische n n Matrix. Für nicht-quadratische Matrizen ergeben die folgenden Betrachtungen keinen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Mathematik II für Bauwesen. Ivan Izmestiev

Mathematik II für Bauwesen. Ivan Izmestiev Mathematik II für Bauwesen Ivan Izmestiev TU Darmstadt, SS 01 Inhaltsverzeichnis 1 Lineare Algebra 1 1 Lineare Gleichungssysteme und Matrizen............. 1 1.1 Matrizen........................... 1 1.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eine Familie von Gleichungen der Form a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2............ a m1 x 1 + a m2 x 2 +... + a mn x n = b m

Mehr

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich Lineare Algebra U Stammbach Professor an der ETH-Zürich I Vektorräume Kapitel I Vektorräume 1 I1 Lineare Gleichungssysteme 1 I2 Beispiele von Vektorräumen 7 I3 Definition eines Vektorraumes 8 I4 Linearkombinationen,

Mehr