Zuordnungen. 2 x g: y = x + 2 h: y = x 1 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Zuordnungen. 2 x g: y = x + 2 h: y = x 1 4"

Transkript

1 Zuordnungen Bei Zuordnungen wird jedem vorgegebenen Wert aus einem Bereich ein Wert aus einem anderen Bereich zugeordnet. Zuordnungen können z.b. durch Wertetabellen, Diagramme oder Rechenvorschriften gegeben sein. Ordne die Graphen bis 4 den folgenden Zuordnungen zu. a. Zeit Wasserstand an der Küste b. Alter eines Menschen Körpergröße c. Brenndauer Höhe einer Kerze d. Zeit Wert eines Autos in 4 In einer Bakterienkultur verdoppelt sich die Anzahl der Bakterien in jeder Stunde. Zu Beginn der Messung zählt man 50 Bakterien. Lege für die Zuordnung Stunden Anzahl der Bakterien eine Tabelle für sechs Stunden an und zeichne den dazugehörigen Graphen. Lies am Graphen ab, wie viele Bakterien es vermutlich nach,5 Stunden nach 4,5 Stunden gibt. Zeichne die Graphen der folgenden Zuordnungen: f: y =. x g: y = x + h: y = x a. Lies die Temperatur (die Niederschlagsmenge) ab und stelle eine Wertetabelle auf. b. Welche Vorteile hat die gezeichnete Kurve gegenüber einer Wertetabelle?

2 5 Was versteht man unter einer proportionalen (antiproportionalen) Zuordnung? Beschreibe an einem Beispiel die charakteristischen Eigenschaften, gib die Zuordnungsvorschrift an und zeichne einen Graphen mit Hilfe einer Wertetabelle. 6 Zur Bestimmung des Siedepunktes wird eine Flüssigkeit erhitzt. Dabei werden folgende Messwerte ermittelt: Zeit in min Temperatur in o C a. Begründe, warum es sich um eine lineare Zuordnung handelt. b. Welche Temperatur hat die Flüssigkeit nach 9 min (,5 min)? c. Bestimme die Gleichung, mit der man die Temperatur zu einem beliebigen Zeitpunkt berechnen kann. d. Zeichne einen Graphen der Zuordnung. 7 Ein Passagierflugzeug geht aus einer Höhe von 9500m in den gleichmäßigen Sinkflug über. In den ersten beiden Minuten zusammen verliert es 700m an Höhe. a. Um welchen Zuordnungstyp handelt es sich bei der Zuordnung Zeit Flughöhe? Begründe. b. Welche Höhe hat das Flugzeug 6 min (4 min, 6,5 min) nach Beginn des Sinkfluges? c. Mit welcher Gleichung kann man die Flughöhe zu einer beliebigen Zeit nach Beginn des Sinkfluges ermitteln? d. Zeichne den Graphen der Zuordnung. 8 Bei einer Zuordnung x y lassen sich die y-werte mit y = x + 5 berechnen. 6 4 Liegen die Punkte A(4/), B(-7/8) und C 4 auf dem Graphen der Zuordnung? 7 7

3 Lösungen a 4 b c d Zeit in Stunden Bakterienanzahl Nach,5 Stunden sind es ca. 00 Bakterien und nach 4,5 Stunden sind es ca. 50 Bakterien. g h f 4 a. Monat Jan Feb Mrz Apr Mai Jun Jul Aug Sep Okt Nov Dez 0 C -, -, 0,6,7 8,6,0,, 9,8 5,8, -, mm b. Beim Graphen kann man Zwischenwerte direkt ablesen. Zudem lässt sich der Verlauf der Temperatur besser überblicken. 5 Proportionale Zuordnung: Die Verhältnisse (Quotienten) einander zugeordneter Größen sind stets gleich. Wird eine Größe verdoppelt (verdreifacht, ), so verdoppelt (verdreifacht, ) sich auch die andere Größe. Wird eine Größe halbiert (gedrittelt, ), so halbiert (drittelt, ) sich auch die andere Größe. Zuordnungsvorschrift: x m. x oder y = m. x Beispiel: y =,5. x Wertetabelle: x y - -,5 0,5 4,5

4 Graphische Darstellung Alle Punkte liegen auf einer Geraden, die durch den Schnittpunkt der Koordinatenachsen verläuft. Antiproportionale Zuordnung Die Produkte einander zugeordneter Zahlen sind gleich. Wird eine vorgegebene Größe verdoppelt (verdreifacht, ), so halbiert (drittelt, ) sich die andere Größe. Wird eine vorgegebene Größe halbiert (gedrittelt, ), so verdoppelt (verdreifacht, ) sich die andere Größe. Zuordnungsvorschrift: Beispiel: y = x x x k oder y = x k Wertetabelle: x y -0, ,5 Graphische Darstellung Die Punkte liegen auf einer Kurve (Hyperbel), die sich für x-werte nahe Null an die y-achse und für sehr große und sehr kleine x-werte an die x-achse anschmiegt. 6 a. In jeweils gleichen Zeitintervallen steigt die Temperatur um den gleichen Betrag an. b. Nach 9 min beträgt die Temperatur 8 0 C, nach,5 min 44,5 0 C. c. x : Zeit in min y: Temperatur in 0 C y = 7x + 0 d. 7 a. Da die Flughöhe gleichmäßig abnimmt, ist die Zuordnung linear. b m (4600 m; 75 m) c. x: Zeit in min y: Flughöhe in m y = - 50x

5 d. 8 Ein Punkt liegt genau dann auf dem Graphen der Zuordnung, wenn seine Koordinaten die Gleichung der Zuordnung erfüllen. A(4/) = Der Punkt A liegt auf dem Graphen der Zuordnung. B(-7/8) 8 ( 7) + 5 Der Punkt B liegt nicht auf dem Graphen der Zuordnung C 4 4 = Der Punkt C liegt auf dem Graphen der Zuordnung.

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

Lernkontrolle Relationen, Funktionen, lineare Funktionen

Lernkontrolle Relationen, Funktionen, lineare Funktionen Lernkontrolle Relationen, Funktionen, lineare Funktionen A 1) Im folgenden Diagramm bedeuten A, B, C, D jeweils die Kinder einer Familie; die Pfeile drücken die Relation "hat als Schwester" aus. a) Wie

Mehr

Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt.

Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt. FrauOelschlägel Mathematik8 Lineare Funktionen Ü Datum 1. Die Punkte A 0 4 und liegen auf der Geraden h. und Q8,5,5 B10 0 liegen auf der Geraden g, die Punkte P 0,5 11 Bestimme durch Rechnung die Funktionsgleichungen

Mehr

4.1. Aufgaben zu linearen Funktionen

4.1. Aufgaben zu linearen Funktionen .. Aufgaben zu linearen Funktionen Aufgabe : Koordinatensystem a) Gib die Koordinaten der Punkte P - P 8 in dem rechts abgebildeten Koordinatensystem an. b) Markiere die Punkte A( ); B( ); C( ); D( );

Mehr

Grundwissen Mathematik Klasse 8

Grundwissen Mathematik Klasse 8 Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)

Mehr

5 10 Preis (in Euro) 0,50

5 10 Preis (in Euro) 0,50 Deine Ziele: Du kannst den Begriff "direkte Proportionalität" erklären. Du kannst überprüfen, ob eine Zuordnung direkt proportional ist. Du kannst direkt proportionale Zuordnungen im Koordinatensystem

Mehr

Station 1: Zuordnungen

Station 1: Zuordnungen Andreas Marth Inhaltsverzeichnis Station 1: Zuordnungen...1 Station 2a: Kartenhäuser...2 Station 2b: Papier falten...3 Station 3: Flächeninhalt eines Rechtecks...4 Station 4: Niederschlagsmengen in Leipzig...5

Mehr

Aufgabensammlung zum Üben Blatt 1

Aufgabensammlung zum Üben Blatt 1 Aufgabensammlung zum Üben Blatt 1 Seite 1 Lineare Funktionen ohne Parameter: 1. Die Gerade g ist durch die Punkte A ( 3 4 ) und B( 2 1 ) festgelegt, die Gerade h durch die Punkte C ( 5 3 ) und D ( -2-2

Mehr

a) Von welcher Art ist die Zuordnung : Anzahl der Tage mögliche Ausgaben pro Tag?

a) Von welcher Art ist die Zuordnung : Anzahl der Tage mögliche Ausgaben pro Tag? Aufgaben zum Grundwissen ================================================================== I. Proportionale und umgekehrt proportionale Zuordnungen 1. Von welcher Art können die durch die Tabellen gegebenen

Mehr

SieglindeFürst Direktes und indirektes Verhältnis

SieglindeFürst Direktes und indirektes Verhältnis SieglindeFürst Direktes und indirektes Verhältnis Funktionen Direktes und indirektes Verhältnis Inhalte Textbeispiele Darstellungsmöglichkeiten für direktes und indirektes Verhältnis Ziele Erkennen des

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind.

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. Funktionen Station 1 Bestimmung der Steigung einer Geraden durch zwei Punkte Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. m = f(x 2 ) f(x 1 )

Mehr

Mathematik - Arbeitsblatt Lineare Funktionen

Mathematik - Arbeitsblatt Lineare Funktionen Mathematik - Arbeitsblatt Lineare Funktionen 1.(a) Welche der drei roten Graphen gehört zur Funktion == +5? Wie lautet die Funktionsgleichung des blauen Graphen? Bestimme rechnerisch die Nullstelle des

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

2.2 Funktionen 1.Grades

2.2 Funktionen 1.Grades . Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis Was ist eine Funktion.Grades? Die Steigung einer Geraden. Die Definition der Steigung.................................... Die Berechnung

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,2)

1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,2) Vermischte Übungen (1) Verschiebung der Normalparabel 1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,). In der Abbildung

Mehr

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion :

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion : Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x, D = R, heißt Quadratfunktion. Wertetabelle : x 0 0,5 1 3 4 0,5 1

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Funktionen in der Mathematik

Funktionen in der Mathematik R. Brinkmann http://brinkmann-du.de Seite 05.0.008 Funktionen in der Mathematik Bei der mathematischen Betrachtung natürlicher, technischer oder auch alltäglicher Vorgänge hängt der Wert einer Größe oft

Mehr

144 8 Zuordnungen und Modelle

144 8 Zuordnungen und Modelle 8 Zuordnungen und Modelle Sebastian beobachtet mit großem Interesse das Wetter. Auf dem Balkon hat er einen Regenmesser angebracht. Jeden Morgen liest er den Niederschlag des vergangenen Tages ab. 5Millimeter

Mehr

Exponentielles Wachstum und Logarithmus

Exponentielles Wachstum und Logarithmus Eigenschaften der Exponentialfunktionen Die Funktion nennt man Exponentialfunktion mit der Basis a. Ist neben der Potenz noch ein Faktor im Funktionsterm vorhanden, spricht man von einer allgemeinen Exponentialfunktion:

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Erstellen Sie eine Wertetabelle für die Graphen der Funktionen, und zeichnen Sie den Graphen.

Erstellen Sie eine Wertetabelle für die Graphen der Funktionen, und zeichnen Sie den Graphen. Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Lineare Funktionen 1. Erstellen Sie

Mehr

Mathematik Nachhilfe: Aufgaben zu linearen Funktionen, Teil 2

Mathematik Nachhilfe: Aufgaben zu linearen Funktionen, Teil 2 Mathematik Nachhilfe Blog Mathe so einfach wie möglich erklärt Mathematik Nachhilfe: Aufgaben zu linearen Funktionen, Teil 2 Veröffentlicht am 3. September 2016 Neuigkeiten aus dem Mathe Unterricht Tim

Mehr

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche Unsere Übungshefte sind für alle Schülerinnen und Schüler, die keine Lust auf 300-seitige

Mehr

1 Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an.

1 Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an. Teste dich! - (/6) Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an. 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Gemeinsamkeiten: Beide

Mehr

6 Bestimmung linearer Funktionen

6 Bestimmung linearer Funktionen 1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1

Mehr

Gleichsetzungsverfahren

Gleichsetzungsverfahren Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse.

Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse. Geraden Eine Gerade wird durch eine Gleichung der Form y = mÿx + b bzw. f(x) = mÿx + b beschrieben. Die Schreibweise f(x) = wird teils erst in der Oberstufe verwendet. b ist der y- Achsenabschnitt, d.h.

Mehr

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung Lineare Funktionen Eine kurze Wiederholung Mathematik Einführungsphase Eine lineare Funktion ist zunächst einmal eine Funktion, d.h. eine eindeutige Zuordnung, bei der jedem x-wert aus einem Definitionsbereich

Mehr

Proportionalität und Antiproportionalität

Proportionalität und Antiproportionalität Proportionalität und Antiproportionalität 1 In diesem Kapitel»Je mehr desto mehr«und»je mehr desto weniger«zuordnungsvorschriften verstehen Darstellungsformen von Proportionalität und Antiproportionalität

Mehr

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale

Mehr

Generated by Foxit PDF Creator Foxit Software

Generated by Foxit PDF Creator Foxit Software 3.Jan 2011-10.Jul 2011 Dienstag, 11. Januar 2011 Donnerstag, 13. Januar 2011 Dienstag, 18. Januar 2011 Montag, 7. Februar 2011 Montag, 14. Februar 2011 Samstag, 26. Februar 2011 Donnerstag, 3. März 2011

Mehr

Lösungen lineare Funktionen

Lösungen lineare Funktionen lineare Funktionen Lösungen 1 Lösungen lineare Funktionen Schnittpunkt gegeben bestimme Funktionsvorschrift. Flächeninhalt von eingeschlossenem Dreieck berechnen. Schnittwinkel gegeben, berechne Steigung.

Mehr

Wahlfach Mathematik: Funktionen

Wahlfach Mathematik: Funktionen Wahlfach Mathematik: Funktionen In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-wert)

Mehr

Ü b u n g s a r b e i t z u m T h e m a. Z u o r d n u n g e n

Ü b u n g s a r b e i t z u m T h e m a. Z u o r d n u n g e n Ü b u n g s a r b e i t z u m T h e m a Z u o r d n u n g e n Aufgabe 1 Vervollständige die folgenden Tabellen a) x 4 12 3 30 8 20 y 15 5 6 0,5 40 9 b) x 21 56 98 371 105 24,5 y 3 8 19 23 3,5 12 Welche

Mehr

Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.

Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann. Begleitmaterial zum Modul Bruchgleichungen Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.. Führe eine entsprechende Konstruktion selbst

Mehr

Thüringer Kultusministerium

Thüringer Kultusministerium Prüfungstag: Mittwoch, den 07. Juni 2000 Prüfungsbeginn: 8.00 Uhr Thüringer Kultusministerium Realschulabschluss Schuljahr 1999/2000 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer

Mehr

Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport

Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport Ministerium für Bildung, Jugend und Sport Prüfung am Ende der Jahrgangsstufe 10 Schriftliche Prüfung Schuljahr: 014/015 Schulform: Allgemeine Arbeitshinweise Die Prüfungszeit beträgt 135 Minuten. Jede

Mehr

Übungsaufgaben zur Linearen Funktion

Übungsaufgaben zur Linearen Funktion Übungsaufgaben zur Linearen Funktion Aufgabe 1 Bestimmen Sie den Schnittpunkt der beiden Geraden mit den Funktionsgleichungen f 1 (x) = 3x + 7 und f (x) = x 13! Aufgabe Bestimmen Sie den Schnittpunkt der

Mehr

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte

Mehr

3 Die Menge Q der rationalen Zahlen

3 Die Menge Q der rationalen Zahlen 1 3 Die Menge Q der rationalen Zahlen Rationale Zahlen Seite 25 1. a) A +7,5 C b) A +1,5 C c) A -0,25 C d) A -3,5 C e) A -12 C B +7,25 C C +6,5 C D +5,75 C E +4,5 C f) A -25,25 C B -26,25 C C -26,75 C

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle.

Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle. Klasse Art Schwierigkeit Mathematisches Schema Nr. 9 Üben xx Quadratische Funktion 1 Skizziere den Graphen der durch y = 0,5 x 2 + x - 4 gegebenen quadratischen Funktion. Bestimme dazu die Nullstellen,

Mehr

Lineare Funktionen Auftrag 1: Bearbeitung mit dem GTR (grafikfähigen Taschenrechner)

Lineare Funktionen Auftrag 1: Bearbeitung mit dem GTR (grafikfähigen Taschenrechner) Lineare Funktionen Auftrag : Ein Wasserwerk verlangt von seinen Kunden jährlich eine Grundgebühr von,0. Für einen m³ Wasser muss man 0,80 und zudem 0,0 Kanalgebühren bezahlen. a) Notiere eine passende

Mehr

Dauer Richtung Bemerkung ca. 0:03 Adlershof, Karl-Ziegler-Str. barrierefrei Fahrradmitnahme möglich

Dauer Richtung Bemerkung ca. 0:03 Adlershof, Karl-Ziegler-Str. barrierefrei Fahrradmitnahme möglich t 61 ca. 0:03 Adlershof, Karl-Ziegler-Str. barrierefrei Fahrradmitnahme möglich v Montag - Freitag Samstag Sonntag* 05 30 50 06 10 30 51 07 11 31 51 08 11 31 51 49 49 09 11 31 51 09 29 50 09 29 49 10 11

Mehr

Funktionen. 1.1 Wiederholung

Funktionen. 1.1 Wiederholung Technische Zusammenhänge werden meist in Form von Funktionen mathematisch erfasst. Kennt man die Eigenschaften verschiedener Funktionstpen, lässt sich im Anwendungsfall das Arbeiten mit diesen erleichtern.

Mehr

Thema aus dem Bereich Analysis Funktionen 1.Grades

Thema aus dem Bereich Analysis Funktionen 1.Grades Thema aus dem Bereich Analysis -. Funktionen.Grades Inhaltsverzeichnis Einführung in den Funktionsbegriff Der Funktionsgraph und die Wertetabelle Was ist eine Funktion.Grades? Die Steigung einer Geraden

Mehr

Monat Datum Veranstaltung Veranstalter Mietkosten Bestätigung Vertrag Bezahlt

Monat Datum Veranstaltung Veranstalter Mietkosten Bestätigung Vertrag Bezahlt Monat Datum Veranstaltung Veranstalter Mietkosten Bestätigung Vertrag Bezahlt Januar Mi, 01.Jan.14 Do, 02.Jan.14 Fr, 03.Jan.14 Sa, 04.Jan.14 So, 05.Jan.14 Mo, 06.Jan.14 Di, 07.Jan.14 Mi, 08.Jan.14 Do,

Mehr

Arbeitsblatt Mathematik

Arbeitsblatt Mathematik Teste dich! - (/6) Schreibe mithilfe von Potenzen. a) ( 5) ( 5) ( 5) ( 5) b) a a a a a a b b b c) r r r r 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Berechne ohne Taschenrechner. a) 9 0 5 b)

Mehr

WM.3.1 Die Polynomfunktion 1. Grades

WM.3.1 Die Polynomfunktion 1. Grades WM.3.1 Die Polynomfunktion 1. Grades Wenn zwischen den Elementen zweier Mengen D und W eine eindeutige Zuordnungsvorschrift vorliegt, dann ist damit eine Funktion definiert (s. Abb1.), Abb1. wobei D als

Mehr

Einführung in die linearen Funktionen. Autor: Benedikt Menne

Einführung in die linearen Funktionen. Autor: Benedikt Menne Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung

Mehr

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert.

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert. Lineare Funktionen - Term - Grundwissen Woran erkennt man, ob ein Funktionsterm zu einer Linearen Funktion gehört? oder Wie kann der Funktionsterm einer Linearen Funktion aussehen? Der Funktionsterm einer

Mehr

Inhaltsverzeichnis - Lösungen

Inhaltsverzeichnis - Lösungen Lösungen Inhaltsverzeichnis - Lösungen Station 1: Zuordnungen...1 Station 2a: Kartenhäuser...2 Station 2b: Papier falten...3 Station 3: Flächeninhalt eines Rechtecks...4 Station 4: Niederschlagsmengen

Mehr

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:... Name MB 7 LU Nr nhaltliche Allg. Buch Arbeitsheft AB V* So klein! - So gross! MB 7 LU 1 V* nhaltliche Allg. Buch Arbeitsheft AB mir verschiedene Masseinheiten vorstellen (Längen, Gewicht, Hohlmasse, )

Mehr

Vergleichsklausur 2006 für Jahrgangsstufe 11

Vergleichsklausur 2006 für Jahrgangsstufe 11 Vergleichsklausur 2006 für Jahrgangsstufe Termin: 3.05.2006, 3. und 4. Stunde reine Arbeitszeit: 90 min Jeder Schüler muss drei Aufgaben bearbeiten. Die. Aufgabe und 2. Aufgabe (Analysis) sind verpflichtende

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2014 REALSCHULABSCHLUSS MATHEMATIK. Pflichtteil 2 und Wahlpflichtteil. Arbeitszeit: 160 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2014 REALSCHULABSCHLUSS MATHEMATIK. Pflichtteil 2 und Wahlpflichtteil. Arbeitszeit: 160 Minuten Pflichtteil 2 und Wahlpflichtteil Arbeitszeit: 160 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Kreuzen Sie die Wahlpflichtaufgabe, die bewertet werden soll, an. Wahlpflichtaufgabe

Mehr

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Lineare Funktionen. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Lineare Funktionen. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel: DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunden Mathematik 8 8. Klasse: auszug aus dem Originaltitel: Gehört der Punkt zum Funktionsgraph?. Betrachte die Funktion y = x +. Gehört der Punkt P(/5)

Mehr

Lineare Funktionen. Danach will er sich eine Tabelle anlegen, um einen Überblick der Kosten für mehrere Stunden zu erhalten:

Lineare Funktionen. Danach will er sich eine Tabelle anlegen, um einen Überblick der Kosten für mehrere Stunden zu erhalten: Lineare Funktionen Einleitung: Jan besitzt eine Playstation von der er weiß, dass sie einen Stromverbrauch von 00 Watt hat. Der Stromversorger seiner Stadt berechnet 0, pro Kilowattstunde (kwh). Jan überlegt

Mehr

Exponentialgleichungen und -funktionen

Exponentialgleichungen und -funktionen Eponentialgleichungen und -funktionen Eigenschaften der Eponentialfunktionen 3 C,D Funktionsgraphen zuordnen Ordnen Sie den folgenden Funktionen ihre Graphen zu (einer ist nicht gezeichnet) und erklären

Mehr

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner . Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können

Mehr

Januar 2016. Deadline und Abrechnungsdetails. Zeichnungen. Rücknahmen. Deadline CET. Deadline CET. Valuta Titellieferung. Valuta Geldüberweisung

Januar 2016. Deadline und Abrechnungsdetails. Zeichnungen. Rücknahmen. Deadline CET. Deadline CET. Valuta Titellieferung. Valuta Geldüberweisung und sdetails Januar 2016 CH0017403509 1'740'350 Reichmuth Himalaja CHF 25. Jan 16 12.00 25. Jan 16 1) 29. Jan 16 17. Feb 16 1. Feb 16 3) CH0017403574 1'740'357 Reichmuth Himalaja EUR 25. Jan 16 12.00 25.

Mehr

Inhalt. Lösungsstrategien. Zuordnungen und lineare Funktionen. Prozent- und Zinsrechnung. Text- und Sachaufgaben, Zahlenrätsel

Inhalt. Lösungsstrategien. Zuordnungen und lineare Funktionen. Prozent- und Zinsrechnung. Text- und Sachaufgaben, Zahlenrätsel Inhalt A Lösungsstrategien 1 Lösungsstrategien für Text- und Sachaufgaben 6 2 Lösungsstrategie für geometrische Sachaufgaben 11 3 Lösungsstrategie für einfache Gleichungen, lineare Gleichungssysteme und

Mehr

Zentrale Abschlussprüfung 10. Vergleichsarbeit Mathematik (A) Gesamtschule/Gymnasium

Zentrale Abschlussprüfung 10. Vergleichsarbeit Mathematik (A) Gesamtschule/Gymnasium Der Senator für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 (Gymnasiales Niveau für Gesamtschulen) Vergleichsarbeit 10 2007 Mathematik (A) Gesamtschule/ Teil 2 Taschenrechner

Mehr

Klimadiagramme lesen und zeichnen Arbeitsblatt

Klimadiagramme lesen und zeichnen Arbeitsblatt Lehrerinformation 1/9 Arbeitsauftrag Ziel Material Sozialform Die Sch werden mit den Bestandteilen des Klimadiagramms vertraut und lesen Informationen aus Klimadiagrammen heraus. Sie zeichnen selbst Informationen

Mehr

Mathematik I. Kantonale Vergleichsarbeit 2013/ Klasse Primarschule. Prüfungsnummer: Datum der Durchführung: 14. Januar 2014

Mathematik I. Kantonale Vergleichsarbeit 2013/ Klasse Primarschule. Prüfungsnummer: Datum der Durchführung: 14. Januar 2014 Volksschulamt Prüfungsnummer: (wird von der Lehrperson ausgefüllt) Kantonale Vergleichsarbeit 2013/2014 6. Klasse Primarschule Mathematik I Datum der Durchführung: 14. Januar 2014 Hinweise für Schülerinnen

Mehr

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche Unsere Übungshefte sind für alle Schülerinnen und Schüler, die keine Lust auf 3-seitige

Mehr

WADI 7/8 Aufgaben A17 Terme. Name: Klasse:

WADI 7/8 Aufgaben A17 Terme. Name: Klasse: WADI 7/8 Aufgaben A17 Terme 1 Berechne den Wert für x = -1,5. x x + x x + x 1000x c) 10. (10x) d) 100(x 2x) 2 Welche Terme sind äquivalent zu 4x? x + 2(x+1) 2 + 2x c) x + x+ x + x d) 2. (2 x) 3 Sind beim

Mehr

Chronologie Jan 02: Otto-Katalog Okt 04: Fingerabdrücke USA Dez 04: EU-Parlament und -Rat Jun 05: epass-kabinettsbeschluß Jul 05: Bundesratsbeschluß Aug 05: BioP2-Studie Nov 05: Einführung epass Forschungsprojekt

Mehr

1. Schulaufgabe aus der Mathematik Lösungshinweise

1. Schulaufgabe aus der Mathematik Lösungshinweise 1. Schulaufgabe aus der Mathematik Lösungshinweise Gruppe A (a) Sind Fahrzeit und Distanz direkt proportional so entspricht der doppelten Fahrzeit die doppelte Distanz, der dreifachen Fahrzeit die dreifache

Mehr

Kurstage Geprüfte(r) Technischer Fachwirt(-in) IHK

Kurstage Geprüfte(r) Technischer Fachwirt(-in) IHK Kurstage Geprüfte(r) Technischer Fachwirt(-in) IHK 18.10.2015 Sonntag WÜ 19.02.2016 Freitag WÜ Vertiefungstag 24.10.2015 Samstag WÜ 20.02.2016 Samstag WÜ Vertiefungstag 14.11.2015 Samstag WÜ 21.02.2016

Mehr

Externer Meilenstein. Manueller Sammelrollup Unterbrechung. Inaktiver Vorgang. Inaktiver Meilenstein Inaktiver Sammelvorgang

Externer Meilenstein. Manueller Sammelrollup Unterbrechung. Inaktiver Vorgang. Inaktiver Meilenstein Inaktiver Sammelvorgang Nr. Vorgasname Dauer Anfang Fertig stellen VorgWer 1 Kick Off 0 Tage Di 05.02.13 Di 05.02.13 Alle 2 Grobkonzept erstellen 20 Tage Di 05.02.13 Mo 04.03.131 CN 3 Vorauswahl Shopsysteme 21 Tage Di 05.02.13

Mehr

Kurstage Geprüfte(r) Technischer Fachwirt(-in) IHK

Kurstage Geprüfte(r) Technischer Fachwirt(-in) IHK Kurstage Geprüfte(r) Technischer Fachwirt(-in) IHK 06.10.2012 Samstag MD 15.02.2013 Freitag MD Vertiefungstag 20.10.2012 Samstag MD 16.02.2013 Samstag MD Vertiefungstag 03.11.2012 Samstag MD 17.02.2013

Mehr

Lösungen Kapitel A: Zuordnungen

Lösungen Kapitel A: Zuordnungen Windgeschwindigkeiten Lösungen Kapitel A: Zuordnungen Arbeitsblatt 01: Graphen einer Zuordnung 5 4 3 2 1 0 1 2 3 4 5 6 Tage Strandabschnitte 1 2 3 4 5 6 Muscheln 4,2 2,1 0,7 1,2 7,3 0,5 Arbeitsblatt 02:

Mehr

Vertiefung des Funktionsbegriffs. 1. Grundlagen Erläutern Sie folgende Fachbegriffe und Gleichungen:

Vertiefung des Funktionsbegriffs. 1. Grundlagen Erläutern Sie folgende Fachbegriffe und Gleichungen: Vertieung des s Lösungen 1. Grundlagen Erläutern Sie olgende Fachbegrie und Gleichungen: a) Variable: Platzhalter ür eine unbekannte Zahl b) Parameter: ein veränderliches Element ( beliebig, aber est )

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Lies die folgenden Seiten durch, bearbeite die Aufgaben und vergleiche mit den Lösungen.

Lies die folgenden Seiten durch, bearbeite die Aufgaben und vergleiche mit den Lösungen. -1- Selbst lernen: Einführung in den Graphikrechner TI-84 Plus Das Graphikmenü des TI84-Plus Lies die folgenden Seiten durch, bearbeite die Aufgaben und vergleiche mit den Lösungen. 1 Grundsätzliches Die

Mehr

Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten.

Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten. DIE ELLIPSE Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten. Die Ellipse besteht aus allen Punkten, für die die Summe der Abstände von zwei festen Punkten - den

Mehr

Aufgaben. zu Inhalten der 5. Klasse

Aufgaben. zu Inhalten der 5. Klasse Aufgaben zu Inhalten der 5. Klasse Universität Klagenfurt, Institut für Didaktik der Mathematik (AECC-M) September 2010 Zahlbereiche Es gibt Gleichungen, die (1) in Z, nicht aber in N, (2) in Q, nicht

Mehr

1.1 Direkte Proportionalität

1.1 Direkte Proportionalität Beziehungen zwischen Größen. Direkte Proportionalität Bei einer direkten Proportionalität wird dem doppelten, dreifachen,...wert der einen Größe x der doppelte, dreifache,... Wert der anderen Größe y zugeordnet.

Mehr

Bei Zuordnungen wird jedem Wert aus einem vorgegebenen Bereich ein Wert aus einem anderen Bereich zugeordnet.

Bei Zuordnungen wird jedem Wert aus einem vorgegebenen Bereich ein Wert aus einem anderen Bereich zugeordnet. Einleitung Bei Zuordnungen wird jedem Wert aus einem vorgegebenen Bereich ein Wert aus einem anderen Bereich zugeordnet. Zum Beispiel kann der vorgegebene Bereich "Vornamen Klasse 6" heißen und der andere

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

SWISS Verkehrszahlen Oktober 2007

SWISS Verkehrszahlen Oktober 2007 SWISS Verkehrszahlen Oktober 2007 SWISS Flüge im Oktober mit höherer Auslastung Die Flugzeuge von SWISS waren im vergangenen Monat mit einem durchschnittlichen Sitzladefaktor (SLF) von 82.7% besser ausgelastet

Mehr

Expertenpuzzle Quadratische Funktionen

Expertenpuzzle Quadratische Funktionen Phase 1 Lösung für die Expertengruppe I Im Folgenden sollen die in IR definierten Funktionen a : x x, b : x x 0,5, c : x x und d: x x 3 untersucht werden. Die Abbildung zeigt den Graphen G a von a, also

Mehr

Math-Champ M7 Klasse: Datum: Name:

Math-Champ M7 Klasse: Datum: Name: Math-Champ M7 Klasse: Datum: Name: 1) Die Abbildung zeigt den unvollständigen Schrägriss eines Würfels. Vervollständige die Figur richtig. Verwende dein Geo-Dreieck. 2) In der Grafik ist der Grundriss

Mehr

02 Vergleichen von Anteilen der Prozentbegriff

02 Vergleichen von Anteilen der Prozentbegriff Prozente 3 02 Vergleichen von Anteilen der Prozentbegriff A2 Stationenlauf Vergleichen von Anteilen Tragt die jeweiligen Ergebnisse in die nachfolgende Tabelle ein und vergleicht eure Vorgehensweisen beim

Mehr

Vorgang Unterbrechung In Arbeit. Meilenstein Sammelvorgang Projektsammelvorgang. Externe Vorgänge Externer Meilenstein Stichtag

Vorgang Unterbrechung In Arbeit. Meilenstein Sammelvorgang Projektsammelvorgang. Externe Vorgänge Externer Meilenstein Stichtag Nr. sname Dauer Anfang Ende Vorgänger Ressourcennamen 06. Jan '14 13. Jan '14 M D M D F S S M D M D F S S 1 AdA nach AEVO (IHK Vorbereitung) 10 Tage Mo 06.01.14 Fr 17.01.14 AdA nach AEVO (IHK Vorbereitung)

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

SWISS Verkehrszahlen Juli 2007

SWISS Verkehrszahlen Juli 2007 SWISS Verkehrszahlen Juli 2007 SWISS im Juli mit höherer Auslastung SWISS konnte ihre Auslastung im Juli weiter steigern: Der durchschnittliche Sitzladefaktor (SLF) lag bei 85% gegenüber 84.2% im Vorjahr.

Mehr

Exponentialfunktionen

Exponentialfunktionen Mathematik Buch / 3. Funktionen / Zuordnungen -288- Aufgabe: Exponentialfunktionen Eine Fläche ist zu Beginn der Baggerarbeiten 800 m 2 groß. Jede Woche schaffen die Bagger 550 m 2 neue Fläche dazu. Eine

Mehr

Mikro-Lernpfad: Direkte und indirekte Proportionalität. Kontrollblätter zu Direkt oder indirekt

Mikro-Lernpfad: Direkte und indirekte Proportionalität. Kontrollblätter zu Direkt oder indirekt Kontrollblätter zu Direkt oder indirekt Kontrollblatt Tanken1 Arbeite mit dem Applet und beantworte folgende Fragen: a) Fülle den Tank, indem du den blauen Punkt Tanken am Schieberegler bewegst. Beobachte

Mehr

F u n k t i o n e n Lineare Funktionen

F u n k t i o n e n Lineare Funktionen F u n k t i o n e n Lineare Funktionen Dieses Muster entstand aus der Drehung einer Geraden um einen kleinen Kreis. Dieser kleine Kreis dreht wiederum um einen grösseren Kreis. ADSL Internetanschlüsse

Mehr

Aufgaben zum Basiswissen 7. Klasse

Aufgaben zum Basiswissen 7. Klasse Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne

Mehr

Funktionaler Zusammenhang. Lehrplan Realschule

Funktionaler Zusammenhang. Lehrplan Realschule Funktionaler Bildungsstandards Lehrplan Realschule Die Schülerinnen und Schüler nutzen Funktionen als Mittel zur Beschreibung quantitativer Zusammenhänge, erkennen und beschreiben funktionale Zusammenhänge

Mehr

Zusammengesetzte Übungsaufgaben lineare Funktionen

Zusammengesetzte Übungsaufgaben lineare Funktionen Zusammengesetzte Übungsaufgaben lineare Funktionen Nr Aufgabe Lösung 1 Gegeben ist die Funktion g mit g ( x ) = 3 x + 9 a) Geben Sie die Steigung und den y- Achsenabschnitt an. (Begründung) c) Bestimmen

Mehr

Kurstage Geprüfte(r) Technischer Fachwirt(-in) IHK

Kurstage Geprüfte(r) Technischer Fachwirt(-in) IHK Kurstage Geprüfte(r) Technischer Fachwirt(-in) IHK 17.10.2015 Samstag N 19.02.2016 Freitag N Vertiefungstag 24.10.2015 Samstag N Reserve 1) 20.02.2016 Samstag N Vertiefungstag 25.10.2015 Sonntag N 21.02.2016

Mehr

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm

Mehr

Relationen / Lineare Funktionen

Relationen / Lineare Funktionen Relationen / Lineare Funktionen Relationen Werden Elemente aus einer Menge X durch eine Zuordnungsvorschrift anderen Elementen aus einer Menge Y zugeordnet, so wird durch diese Zuordnungsvorschrift eine

Mehr