Zur Behandlung der Multiplikation. Konzept der Kernaufgaben bei der Multiplikation

Größe: px
Ab Seite anzeigen:

Download "Zur Behandlung der Multiplikation. Konzept der Kernaufgaben bei der Multiplikation"

Transkript

1 Zur Behandlung der Multiplikation Konzept der Kernaufgaben bei der Multiplikation

2 Wiederholung: Schriftliche Subtraktion Dana spart für ein neues Fahrrad, das 237 kostet. Sie hat schon 119. Dana rechnet aus, wie viel Geld ihr noch fehlt. Ergänzen mit Erweitern: Einer plus wie viel sind 7 Einer geht nicht, damit ich die Teilaufgabe lösen kann, muss ich 10 Einer hinzufügen. Jetzt kann ich rechnen: 9 Einer plus 8 Einer sind 17 Einer, schreibe 8. Da ich beim Minuenden 10 Einer hinzugetan habe, muss ich auch beim Subtrahenden 10 hinzufügen, diese jedoch als einen Zehner ( Merkeins ). 2 Zehner plus 1 Zehner sind 3 Zehner, schreibe 1. 1 Hunderter plus 1 Hunderter sind 2 Hunderter, schreibe 1.

3 Wiederholung: Schriftliche Subtraktion Ergänzen mit Erweitern Vorteile Technik kann gut veranschaulicht werden Technik kann gut auf das Subtrahieren mehrerer Subtrahenden übertragen werden Nachteile wirkliches Verständnis für die Übertragstechnik ist schwierig selbstständiges Entdecken des Übertragsverfahrens gelingt kaum in der Kurzschreibweise wird das Wesen der Übertragstechnik nicht mehr deutlich beide Zahlenwerte werden verändert für Sachaufgaben problematisch

4 Wiederholung: Schriftliche Subtraktion

5 Wiederholung: Schriftliche Subtraktion

6 Wiederholung: Schriftliche Subtraktion Abziehen mit Entbündeln ndeln Vorteile Umformungen werden nur im Minuenden vorgenommen, Zahlenwert bleibt erhalten gute Veranschaulichung Technik kann von Schülern selbst entdeckt werden Kernidee (Entbündeln) ist einsichtig Abziehen bietet Vorteile bei der Sprechweise Nachteile Subtraktionen mit mehreren Subtrahenden: nur mit Zwischenlösung durch die Addition der Subtrahenden möglich Aufgaben mit Nullen im Minuenden erfordern mehrfaches entbündeln z.b

7 Strategien zur Lösung L von Multiplikations- aufgaben vor der Behandlung der Operation Arbeit mit Material, das vollständig ausgezählt wird rhythmisches Zählen in gleich großen Teilabschnitten, 1, 2, 3, 4 5, 6, 7, 8 9, 10, 11, 12 kann bei kleineren Teilabschnitten z.t. gleich in ein strukturiertes Zählen überführt werden: 2, 4, 6, 8 wiederholtes Addieren gleicher Summanden: multiplikatives Rechnen Kind kennt Multiplikationsaufgabe mit Lösung

8 Grundvorstellungen der Multiplikation zeitlich-sukzessive Handlungen (dynamischer Aspekt) Beispiel: Mama geht dreimal zum Schrank und holt jeweils 2 Tassen heraus. räumlich-simultane Anordnungen (statischer Aspekt) Beispiel: Auf dem Tisch stehen 3 Teller mit jeweils 2 Stückchen Kuchen. kombinatorische Aufgaben Beispiel: Thomas hat 4 T-Shirts und 2 Jeanshosen. Wie oft kann er sich unterschiedlich anziehen?

9 Zu welcher multiplikativen Grundvorstellung gehört das jeweilige Beispiel? Die Lehrerin hat einen Beutel mit Würfeln mitgebracht. Johannes darf 3 Mal hineingreifen und jeweils 2 Würfel herausnehmen. Alexander hat 2 unterschiedliche Zugmaschinen und 4 verschiedenfarbige Anhänger. Wie viele Trucks kann er zusammenbauen? Auf dem Tisch stehen 3 Teller. Auf jedem Teller liegen 2 Brötchen. Die Lehrer bittet die Schüler: Lege 3 gelbe Plättchen in eine Reihe. Lege dann 3 rote Plättchen darunter. Wie viele Plättchen hast du gelegt?

10 Zu welcher multiplikativen Grundvorstellung gehört das jeweilige Beispiel? Am Neujahrsmorgen Treffen Herr und Frau Müller Familie Meier mit ihren beiden Kindern. Wie oft wünschen sie sich Prosit Neujahr? Du hast ein rotes und ein grünes Dreieck und 4 verschiedenfarbige Rechtecke. Wie viele Häuser (aus je einem Rechteck und Dreieck bestehend) kannst du bauen? Zu einer Packung Fruchtzwerge gehören 3 Mal zwei verschiedene Sorten, nämlich Erdbeere, Aprikose und Banane.

11 Welche Rechengesetze sind hier veranschaulicht? Verdopplung

12 Welche Rechengesetze sind hier veranschaulicht?

13 Konzept der Kernaufgaben bei der Multiplikation Ziel: Grundaufgaben (GA) der Multiplikation erarbeiten, üben und zum Können ausbilden (Ziel: GA der Mult./ Div. bis zum Ende von Kl. 3 als Rechenfertigkeit) Konzept des Arbeitens mit Kernaufgaben der Multiplikation fördert das Kennen und Nutzen heuristischer Strategien, in denen Rechengesetze stecken Welche Aufgaben gehören zu den Kernaufgaben? Quadratzahlen (Malaufgaben m. gl. Faktor) rot Verdopplungsaufgaben mit mal 2 blau Malaufgaben mit mal 1 und mal 10 grüner Rand Aufgaben mit mal 5 gelb

14 Konzept der Kernaufgaben bei der Multiplikation von den Königsaufgaben ausgehend sind Wege und Varianten zu erschließen, um sich andere Malaufgaben zu erarbeiten (Strategie ist wichtig Wie kann ich mir helfen, wenn ich 7 * 8 nicht weiß?) Beispiel: 7 * 8 7 * 7 = 49, bei 7 * 8 fehlt noch 1 * 7, also müssen noch 7 hinzukommen, sind insgesamt 56 (7 * (7 + 1)) 7 * 8 5 * 8 = 40 und 2 * 8 = 16, sind gesamt 56 7 * 8 = (5 + 2) * 8 (Distributivgesetz)

15 Entdeckungen an der 1 x 1 - Tafel Beziehungen zwischen Malreihen Nenne deinem Nachbarn die Ergebnisse der Dreierreihe (schräge Reihe mit 3). Dein Partner soll sie aufschreiben. Nennt und schreibt nun die Ergebnisse der Sechserreihe auf. Was stellt ihr fest? Addition von Schrägen Wenn du nun die Ergebnisse der Dreier- und der Sechserreihe addierst, was stellst du fest?

16 Entdeckungen an der 1 x 1 - Tafel Nachbaraufgaben Suche dir 4 Felder heraus, die einen gemeinsamen Punkt haben (4 Spitzen stoßen in einem Punkt zusammen). Schreibe die Aufgaben und die Ergebnisse so auf, wie sie in den Feldern angeordnet sind. Addiere die Aufgabenlösungen, die nebeneinander stehen sowie die, die untereinander stehen. Was stellst du fest?

17 In welcher Reihenfolge werden die Malaufgaben behandelt? Malaufgaben mit 1, 2, 5 und 10 (s. Zahlenbuch 2, S. 54) leichte Reihen, Kernaufgaben (Malaufgaben mit 1 sind trivial, weil 1 neutrales Element bei der Multiplikation ist) Malaufgaben mit 3, 6 und 9 (s. Zahlenbuch 2, S. 56) von der Dreierreihe kommt man durch Verdopplung zur Sechser, Addition von Dreier- und Sechserreihe führen zur Neunerreihe Malaufgaben mit 4 und 8 (s. Zahlenbuch 2, S. 60) Verdopplung Malaufgabe mit 7 kein Bezug, deshalb schwierigste und letzte Malreihe

Zur Behandlung der Division. Klassifikationstypen und heuristische Strategien

Zur Behandlung der Division. Klassifikationstypen und heuristische Strategien Zur Behandlung der Division Klassifikationstypen und heuristische Strategien Wiederholung: Erkennen der Operation und des Klassifikationstypes Am Inselsberg ist ein neuer Skilift in Betrieb genommen worden.

Mehr

3. Rechnen mit natürlichen Zahlen

3. Rechnen mit natürlichen Zahlen 3. Rechnen mit natürlichen Zahlen 3.1 Inhaltliches Verstehen von Rechenoperationen 3.2 Die Grundaufgaben: Das 1+1 und 1x1 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.4 Die schriftlichen

Mehr

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3

Mehr

Das schriftliche Verfahren der Subtraktion. Didaktische Positionen

Das schriftliche Verfahren der Subtraktion. Didaktische Positionen Das schriftliche Verfahren der Subtraktion Didaktische Positionen Welchem Klassifikationstyp der Subtraktion ist die jeweilige Aufgabe zuzuordnen? Zur Klasse 3 a gehören 36 Kinder. Heute führen sie ein

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

Bereich: Zahlen und Operationen. Schwerpunkt: Flexibles Rechnen. Zeit/ Stufe

Bereich: Zahlen und Operationen. Schwerpunkt: Flexibles Rechnen. Zeit/ Stufe Schwerpunkt: Flexibles Rechnen Thema Kompetenz Kenntnisse/ Fertigkeiten/ Voraussetzungen, um die Kompetenz zu erlangen - Flexibles Rechnen (Addition, Subtraktion, Multiplikation, Division) - nutzen aufgabenbezogen

Mehr

ZUR OPERATION MULTIPLIKATION. Halbschriftliches und schriftliches Rechnen

ZUR OPERATION MULTIPLIKATION. Halbschriftliches und schriftliches Rechnen ZUR OPERATION MULTIPLIKATION Halbschriftliches und schriftliches Rechnen WIEDERHOLUNG Welche Mal-Aufgaben gehören zu den Kernaufgaben? In welcher Reihenfolge werden die Malaufgaben behandelt? Welche Begründungen

Mehr

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

Datum Kursbeschreibung und Inhalte der Förderung Ziele Kinder

Datum Kursbeschreibung und Inhalte der Förderung Ziele Kinder Förderkurs im Schuljahr 2016/17 VS Großarl Förderkurs: Mathematik (Festigung und Förderung der mathematischen Basiskompetenzen, Festigung der Grundrechnungsarten, Sachaufgaben verstehen und lösen, Training

Mehr

Algebra in den Jahrgangsstufen 5 bis 8. Lerninhalte Natürliche Zahlen. Lernziele Natürliche Zahlen. Didaktik der Algebra und Gleichungslehre

Algebra in den Jahrgangsstufen 5 bis 8. Lerninhalte Natürliche Zahlen. Lernziele Natürliche Zahlen. Didaktik der Algebra und Gleichungslehre Didaktik der Algebra und Gleichungslehre Algebra in den Jahrgangsstufen 5 bis 8 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Sommersemester 2008 Vollrath: Algebra in der Sekundarstufe

Mehr

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Rechengesetze 1. Rechengesetze für natürliche Zahlen Es geht um

Mehr

Didaktik der Grundschulmathematik 4.1

Didaktik der Grundschulmathematik 4.1 Didaktik der Grundschulmathematik 4.1 Didaktik der Grundschulmathematik Didaktik der Grundschulmathematik 4.2 Inhaltsverzeichnis Didaktik der Grundschulmathematik 1 Anschauungsmittel 2 Aufbau des Zahlbegriffs

Mehr

Zählen. 1) Gegenstände im Kinderzimmer zählen und mit Strichen darstellen.

Zählen. 1) Gegenstände im Kinderzimmer zählen und mit Strichen darstellen. Zählen ) Gegenstände im Kinderzimmer zählen und mit Strichen darstellen. Immer! Wie viele Möglichkeiten findest du? Vergleiche mit anderen Kindern. Vier zerlegen ) Vierer-Muster erfinden. Gefundene Möglichkeiten

Mehr

Erarbeitung der Operation Subtraktion. Mündliches und halbschriftliches Rechnen

Erarbeitung der Operation Subtraktion. Mündliches und halbschriftliches Rechnen Erarbeitung der Operation Subtraktion Mündliches und halbschriftliches Rechnen Übung / Wiederholung Lösen Sie folgende Aufgaben. Veranschaulichen Sie den Rechenweg, indem Sie Plättchen in einem Abakus

Mehr

Arithmetik in der Grundschule Di Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens 1 Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden

Mehr

Automatisieren von Strategien, nicht von Einzelfakten!

Automatisieren von Strategien, nicht von Einzelfakten! Automatisierendes Üben mit "rechenschwachen" Kindern: Automatisieren von Strategien, nicht von Einzelfakten! 20. Symposion mathe 2000 Dortmund, 18. September 2010 Michael Gaidoschik, Wien michael.gaidoschik@chello.at

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

DOWNLOAD VORSCHAU. Einfache Würfelspiele Zahlenraum bis 100. zur Vollversion. Motivierend und schnell einsetzbar. Ruth Hölken

DOWNLOAD VORSCHAU. Einfache Würfelspiele Zahlenraum bis 100. zur Vollversion. Motivierend und schnell einsetzbar. Ruth Hölken DOWNLOAD Ruth Hölken Einfache Würfelspiele für den Zahlenraum bis Motivierend und schnell einsetzbar Downloadauszug aus dem Originaltitel: Rechen-Craps Addition, Konzentration 2 Sechser-Würfel, 1 Spielvorlage

Mehr

Weiter im Einmaleins. 100 nur das Schaf schaut noch verwundert. bellt der Dackel Heinz. pfeift das Murmeltier. Panda kann sich freu'n.

Weiter im Einmaleins. 100 nur das Schaf schaut noch verwundert. bellt der Dackel Heinz. pfeift das Murmeltier. Panda kann sich freu'n. Weiter im Einmaleins bellt der Dackel Heinz. pfeift das Murmeltier. Panda kann sich freu'n. Grabi kann das Jumbo frisst sie Biene Maja schlecht seh'n. und entspannt sich. rechnet fleißig. das Huhn meint

Mehr

Vorlesung zur Arithmetik 2011 V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik 2011 V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik 2011 V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Einmaleins-Tabelle ausfüllen

Einmaleins-Tabelle ausfüllen Einmaleins-Tabelle ausfüllen M0124 FRAGE Kannst du in die leere Einmaleins-Tabelle alle Ergebnisse eintragen? ZIEL über das Einmaleins geläufig verfügen MATERIAL Einmaleins-Tabelle (leer), Schreibzeug,

Mehr

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik Gut.Besser.FiT Klasse Das musst du wissen! Mathematik Von Grundschullehrern EMPFOHLEN Entspricht den Lehrplänen Das musst du wissen! Mathematik Klasse von Andrea Essers Illustrationen von Guido Wandrey

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr

MT2 jahresplanung Stoffverteilung zum Mathetiger

MT2 jahresplanung Stoffverteilung zum Mathetiger MATHE IGER 2 MT2 jahresplanung Stoffverteilung zum Mathetiger 2 Inhalt Mathetiger Seite Tigertrainer Seite Unterrichtswoche Kopiervorlage Folien 1 Übung und Wiederholung Zahlen zerlegen Sachaufgaben mit

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: 1; 2; 3; 4; Nimmt man auch die 0 hinzu, schreibt man: 0; 1; 2; 3; 4; Zahlenstrahl Je weiter rechts eine Zahl

Mehr

Geld wechseln kann als Visualisierung des Zehnerübergangs dienen. Die Zwischengrössen (CHF 2.-, 5.-, 20.-, 50.-) weglassen.

Geld wechseln kann als Visualisierung des Zehnerübergangs dienen. Die Zwischengrössen (CHF 2.-, 5.-, 20.-, 50.-) weglassen. E2 Rechnungen verstehen plus minus Verständnisaufbau Geld wechseln Geld wechseln kann als Visualisierung des Zehnerübergangs dienen. Die Zwischengrössen (CHF 2.-, 5.-, 20.-, 50.-) weglassen. Ich bezahle

Mehr

Ein Rechenspiel auf der Hunderter-Tafel. Reinhold Wittig

Ein Rechenspiel auf der Hunderter-Tafel. Reinhold Wittig Ein Rechenspiel auf der Hunderter-Tafel Reinhold Wittig Ein Rechenspiel auf der Hunderter-Tafel für 2 Spieler ab 8 Jahren Autor Reinhold Wittig Inhalt 1 Spielbrett (Hunderter-Tafel) 1 transparente Maske

Mehr

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1 1 1 Vorbetrachtungen Wie könnte eine Codierung von Zeichen im Computer realisiert werden? Der Computer arbeitet mit elektrischem Strom, d. h. er kann lediglich zwischen den beiden Zuständen Strom an und

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Tägliches 5-Minuten-Training Kopfrechnen Grundschule: Routine durch Übung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Tägliches 5-Minuten-Training Kopfrechnen Grundschule: Routine durch Übung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Tägliches 5-Minuten-Training Kopfrechnen Grundschule: Routine durch Übung Das komplette Material finden Sie hier: School-Scout.de

Mehr

Eingangsdiagnostik: Klasse 3 KV 1

Eingangsdiagnostik: Klasse 3 KV 1 Eingangsdiagnostik: Klasse KV Z E Z E Z E + 80 + 7 + Verbinde. 6 7 67 79 80 98 9 8 75 V Z N V Z N VZ Z NZ 9 70 90 5 7 60 89 00 0 Rechne. 7 + 5 + 0 9 8 7 0 + 8 + 7 68 5 + 9 + 56 5 9 9 5 Rechne. Schreibe

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Arithmetik in der Grundschule Di Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

Fachspezifische Themenvorschläge für das Quartalspraktikum

Fachspezifische Themenvorschläge für das Quartalspraktikum Fachspezifische Themenvorschläge für das Quartalspraktikum Liste zuhanden der Praxislehrpersonen mit Vorschlägen zur Auftragserteilung an die Studierenden Mathematik 2. Klasse A: Rechenstrategien Addition

Mehr

WELT DER ZAHL Schuljahr 2

WELT DER ZAHL Schuljahr 2 Kapitel 1: Wiederholung und Vertiefung Seiten 4 13 Übungen mit dem Zahlen- ABC Addieren und Subtrahieren Aufgabe und Umkehraufgabe Gleichungen und Ungleichungen, Variable Sachrechnen; Rechengeschichten

Mehr

Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen?

Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen? Modulabschlussprüfung ALGEBRA / GEOMETRIE Lösungsvorschläge zu den Klausuraufgaben Aufgabe 1: Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen? Im

Mehr

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1 Vergleichsarbeiten in 3. Grundschulklassen Mathematik Aufgabenheft 1 Name: Klasse: Herausgeber: Projekt VERA (Vergleichsarbeiten in 3. Grundschulklassen) Universität Koblenz-Landau Campus Landau Fortstraße

Mehr

Zahlenbuch Klasse 2. Umsetzung der prozessbezogenen Kompetenzen (Lehrplan NRW 2008) im Arbeitsplan Mathematik Klasse 2 (chronologisch geordnet)

Zahlenbuch Klasse 2. Umsetzung der prozessbezogenen Kompetenzen (Lehrplan NRW 2008) im Arbeitsplan Mathematik Klasse 2 (chronologisch geordnet) Zahlenbuch Klasse 2 Umsetzung der prozessbezogenen (Lehrplan NRW 2008) im Arbeitsplan Mathematik Klasse 2 (chronologisch geordnet) 1 ZB S. 7 Zahlenmauern/ ZB S. 8 Einspluseins-Tafel/ ZB S. 9 Einsminuseins-Tafel/

Mehr

2. Negative Dualzahlen darstellen

2. Negative Dualzahlen darstellen 2.1 Subtraktion von Dualzahlen 2.1.1 Direkte Subtraktion (Tafelrechnung) siehe ARCOR T0IF Nachteil dieser Methode: Diese Form der Subtraktion kann nur sehr schwer von einer Elektronik (CPU) durchgeführt

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr

Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen

Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen Sommersemester 2016 Didaktik der Grundschulmathematik Di, 12-14 Uhr, HS 1 I Zahlen und Operationen V 1 12.04. Arithmetik in der Grundschule V 2 19.04. Die Entwicklung mathematischer Kompetenzen V 3 26.04.

Mehr

Rechnen KONKRETE FÖRDERIDEEN. Kopiervorlagen zur Lernstandsdiagnose

Rechnen KONKRETE FÖRDERIDEEN. Kopiervorlagen zur Lernstandsdiagnose Denken und Rechnen KONKRETE FÖRDERIDEEN Kopiervorlagen zur Lernstandsdiagnose Erarbeitet von: Julia Hacker, Bielefeld Roswitha Lammel, Bielefeld Maria Wichmann, Ibbenbüren Inhaltsverzeichnis. Zahlen und

Mehr

Wie kann kann im Unterricht vorgegangen werden?

Wie kann kann im Unterricht vorgegangen werden? 1:1 richtig üben Die Division nimmt als eine der vier Grundrechenarten einen eher kleinen Stellenwert im Lehrplan der Mathematik ein. Trotzdem sollen den Kindern in der Grundschule auch Lerngelegenheiten

Mehr

3. Rechnen mit natürlichen Zahlen

3. Rechnen mit natürlichen Zahlen 3. Rechnen mit natürlichen Zahlen 3.1 Inhaltliches Verstehen von Rechenoperationen 3.2 Die Grundaufgaben: Das 1+1 und 1x1 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.4 Die schriftlichen

Mehr

Der Zauberer schaut sich den Turm an und schreibt eine Zahl auf seinen Notizzettel.

Der Zauberer schaut sich den Turm an und schreibt eine Zahl auf seinen Notizzettel. Der Würfelturm drei Spielwürfel Notizzettel und Stift Ein Kind baut aus den drei Spielwürfeln einen Turm. Der Zauberer schaut sich den Turm an und schreibt eine Zahl auf seinen Notizzettel. Das Kind wird

Mehr

Materialanhang. Materialverzeichnis. Nr.: M1- M... Bezeichnung Unterrichtsvorschlag

Materialanhang. Materialverzeichnis. Nr.: M1- M... Bezeichnung Unterrichtsvorschlag Materialanhang Materialverzeichnis Nr.: M1- M... Bezeichnung Unterrichtsvorschlag M1 Arbeitsmaterialien: Wendeplättchen, Zwanzigerfeld, Wendekarten M2 Plättchen werfen, Zahlenhäuser 1 M3 Addition in Alltagssituationen

Mehr

Kleines. Kleines MATHE-LEXIKON MATHE-LEXIKON. von. von

Kleines. Kleines MATHE-LEXIKON MATHE-LEXIKON. von. von Kleines Kleines MATHE-LEXIKON MATHE-LEXIKON von von Schriftliche Addition: Schriftliche Addition: Große Zahlen, die man nur schwer im Kopf rechnen kann, rechnest Du schriftlich. Dabei ist es sehr wichtig,

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

Box. Mathematik 2. Begleitheft mit. 20 Kopiervorlagen zur Lernstandskontrolle. Beschreibung der Übungsschwerpunkte. Beobachtungsbogen.

Box. Mathematik 2. Begleitheft mit. 20 Kopiervorlagen zur Lernstandskontrolle. Beschreibung der Übungsschwerpunkte. Beobachtungsbogen. Box Mathematik 2 Begleitheft mit 20 Kopiervorlagen zur Lernstandskontrolle Beschreibung der Übungsschwerpunkte Beobachtungsbogen Lernbegleiter -Box Mathematik 2 Inhalt des Begleitheftes Zur Konzeption

Mehr

Diagnoseaufgaben. egative Zahlen. Ganz In mit Ganztag mehr Zukunft. Das neue Ganztagsgymnasium NRW. TU Dortmund

Diagnoseaufgaben. egative Zahlen. Ganz In mit Ganztag mehr Zukunft. Das neue Ganztagsgymnasium NRW. TU Dortmund aufgaben egative Zahlen Ganz In mit Ganztag mehr Zukunft. Das neue Ganztagsgymnasium NRW. TU Dortmund 1 Kann ich beschreiben, was das Minus vor einer Zahl bedeutet? a) Erkläre, was die beiden meinen. Welche

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

Mathe-Übersicht INHALTSVERZEICHNIS

Mathe-Übersicht INHALTSVERZEICHNIS S. 1/13 Mathe-Übersicht V. 1.1 2004-2012 by Klaus-G. Coracino, Nachhilfe in Berlin, www.coracino.de Hallo, Mathe-Übersicht Diese Datei enthält verschiedene Themen, deren Überschriften im INHALTSVERZEICHNIS

Mehr

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden.

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 1 Grundwissen Rechenarten Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 418 + 2 987 = 3 405 + 2 987 418 Umkehraufgabe 3 405 Summe Ergebnis der Summe 2 987

Mehr

Bei Stufe 3 liegen die Aufgabenstellungen im Zahlbereich Einer, Zehner, Hunderter. Karten 1 4 ohne Umtauschen. Karten 5 20 mit Umtauschen

Bei Stufe 3 liegen die Aufgabenstellungen im Zahlbereich Einer, Zehner, Hunderter. Karten 1 4 ohne Umtauschen. Karten 5 20 mit Umtauschen Montessori Markenspiel Pädagogik Die Grundrechenarten bis 9999 Markenspiel Insgesamt sind 3 Stufen verfügbar. Die Aufgabenstellungen bei Stufe 1 liegen im Zahlbereich Einer und Zehner. Bei den Ergebnissen

Mehr

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule Zahlbereichserweiterungen in der Hauptschule Didaktik der Zahlbereiche 4 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Wintersemester 2006/07 Natürliche Zahlen, : Klasse 5 positive

Mehr

Eingangsdiagnostik: Klasse 3 KV 1

Eingangsdiagnostik: Klasse 3 KV 1 Eingangsdiagnostik: Klasse KV Z E Z E Z E 80 + 7 = Verbinde. 6 7 67 79 80 98 9 8 75 V Z N V Z N VZ Z NZ 9 70 90 5 7 60 89 00 0 Rechne. 7 + = 5 + 0 = 9 8 = 7 0 = + 8 = + 7 = = 68 = 5 + 9 = + 56 = 5 9 =

Mehr

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4

Mehr

Rechendreiecke Ich erkenne einfache Formen aus der Umwelt, beschreibe und benenne sie: Rechteck, Dreieck, Kreis, Quadrat

Rechendreiecke Ich erkenne einfache Formen aus der Umwelt, beschreibe und benenne sie: Rechteck, Dreieck, Kreis, Quadrat Mathematik 1. Klasse EBENE UND RAUM Gegenstandsmengen zählen, vergleichen und Ich orientiere und positioniere mich im Raum (links, rechts, oben, unten) und bewege mich zielorientiert. Zahlenraum 20/30

Mehr

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Klasse 9. Zahlenraum Mengen Vergleiche. Addition. Subtraktion. Multiplikation

Klasse 9. Zahlenraum Mengen Vergleiche. Addition. Subtraktion. Multiplikation Klasse 9 Maximalplan Kurs A Minimalplan Kurs B Zahlenbereich bis 10.000/100.000 (B) und 1.000.000 (A) - Grundrechenarten Bis 1.000.000 erarbeiten; Zahlenhaus, Stellentafel, Zahlenhaus, Stellentafel, Grundrechnen

Mehr

Modul 5.3: Vom halbschriftlichen zum schriftlichen Rechnen! Teil 1: Aufgezeigt am Beispiel der Addition und Subtraktion

Modul 5.3: Vom halbschriftlichen zum schriftlichen Rechnen! Teil 1: Aufgezeigt am Beispiel der Addition und Subtraktion Haus 5: Fortbildungsmaterial Individuelles und gemeinsames Lernen Modul 5.3: Vom halbschriftlichen zum schriftlichen Rechnen! Teil 1: Aufgezeigt am Beispiel der Addition und Subtraktion September 2010

Mehr

Multiplikation. 1. Lernziele

Multiplikation. 1. Lernziele Multiplikation 1. Lernziele Die Teilnehmer/-innen verstehen die Multiplikation im Sinne einer wiederholten Addition. Die Teilnehmer/-innen haben die Ergebnisse der Kernaufgaben des kleinen Einmaleins gedächtnismäßig

Mehr

Didaktik der Arithmetik Subtraktionsverfahren

Didaktik der Arithmetik Subtraktionsverfahren 7.2) Subtraktion Didaktik der Arithmetik Subtraktionsverfahren Vorlesung: Lernen und Anwenden von Arithmetik Universität Münster Vorkenntnisse von Schulanfängern: Im Vergleich zur Addition sind die Vorkenntnisse

Mehr

Rechenbausteine. Training. Herausgegeben von Stephan Hußmann Susanne Prediger Bärbel Barzel Timo Leuders

Rechenbausteine. Training. Herausgegeben von Stephan Hußmann Susanne Prediger Bärbel Barzel Timo Leuders Rechenbausteine Training Herausgegeben von Stephan Hußmann Susanne Prediger Bärbel Barzel Timo Leuders 2 A B C D E F G H I J K L M N O Inhaltsverzeichnis THEMA 1 Zahlen und Rechnungen lesen und darstellen

Mehr

Rationale Zahlen. Weniger als Nichts? Ist Null nichts?

Rationale Zahlen. Weniger als Nichts? Ist Null nichts? Rationale Zahlen Weniger als Nichts? Ist Null nichts? Oft kann es sinnvoll sein, Werte anzugeben die kleiner sind als Null. Solche Werte werden mit negativen Zahlen beschrieben, die durch ein Minus als

Mehr

Vorschlag einer Jahresplanung zu Das Zahlenbuch 2

Vorschlag einer Jahresplanung zu Das Zahlenbuch 2 Vorschlag einer Jahresplanung zu Das Zahlenbuch 2 Zeitliche 2 Wochen Wiederholung und Ausblick Vorschau auf das Schuljahr 4, 5 Rechnen in anderen Ländern 6, 7 3 Leerformate 1 und 2 Einspluseins-Tafel,

Mehr

Klasse Fach Lehrplan Zeit 8 Deutsch 8.2.3 Zugang zu literarischen Texten finden 1 UE. Spaghetti für zwei von Federica de Cesco

Klasse Fach Lehrplan Zeit 8 Deutsch 8.2.3 Zugang zu literarischen Texten finden 1 UE. Spaghetti für zwei von Federica de Cesco Klasse Fach Lehrplan Zeit 8 Deutsch 8.2.3 Zugang zu literarischen Texten finden 1 UE Stundenthema Spaghetti für zwei von Federica de Cesco Vorbereitung In der vorherigen Unterrichtseinheit wurde die Kurzgeschichte

Mehr

Lernzirkel Grundrechenarten und Terme Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21

Lernzirkel Grundrechenarten und Terme Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21 Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6 8

Mehr

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Inhalt 1 Natürliche Zahlen 2 Addition und Subtraktion natürlicher Zahlen 3 Multiplikation und Division natürlicher Zahlen

Inhalt 1 Natürliche Zahlen 2 Addition und Subtraktion natürlicher Zahlen 3 Multiplikation und Division natürlicher Zahlen Inhalt 1 Natürliche Zahlen 1.1 Der Zahlbegriff... 6 1.2 Das Zehnersystem... 7 1.3 Andere Stellenwertsysteme... 8 1.4 Römische Zahlen... 10 1.5 Große Zahlen... 11 1.6 Runden... 13 1.7 Rechnen mit Einheiten...

Mehr

3. Zeitraumbezogenes Curriculum 3.1. Sommer-Herbst

3. Zeitraumbezogenes Curriculum 3.1. Sommer-Herbst 3. Zeitraumbezogenes Curriculum 3.1. Sommer-Herbst Hauptkompetenzbereich Inhalt - Wiederholung - Rechnen im Zahlenraum 20 - Zahlen bis 100 (1) Erwartete inhaltliche und prozessbezogene* Kompetenzen nach

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil

fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.1 Brüche Brüche beschreiben Bruchteile bzw. Anteile (s. auch 6.10) Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Prozentschreibweise Anteile werden häufig in Prozent

Mehr

Themenkreise der Klasse 5

Themenkreise der Klasse 5 Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.

Mehr

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik Gut.Besser.FiT Klasse Das musst du wissen! Mathematik Von Grundschullehrern EMPFOHLEN Entspricht den Lehrplänen Das musst du wissen! Mathematik Klasse von Andrea Essers Illustrationen von Guido Wandrey

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl

Mehr

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden.

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden. Multiplikation Die schriftliche Multiplikation ist etwas schwieriger als die Addition. Zum einen setzt sie das kleine Einmaleins voraus, zum anderen sind die Überträge, die zu merken sind und häufig in

Mehr

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch PHBern, Institut für Weiterbildung Weltistrasse 40, CH-3006 Bern T +41 31 309 27 11, F +41 31 309 27 99 weiterbildung.phbern.ch, info-iwb@phbern.ch Fachteam Mathematik Hinweise zu den Quartalsplanungen

Mehr

Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c

Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6

Mehr

Vorschlag einer Jahresplanung zu Das Zahlenbuch 2

Vorschlag einer Jahresplanung zu Das Zahlenbuch 2 Vorschlag einer Jahresplanung zu Das Zahlenbuch 2 Inhaltsbereich 2 7 Wiederholung und Ausblick Vorschau auf das Schuljahr 4, 5 Rechnen in anderen Ländern 6, 7 3 Leerformate 1 und 2 6: AK 2.1.2 7: AK 2.1.2

Mehr

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1 Zahlenwinkel: Forscherkarte 1 alleine Tipp 1 Lege die Ziffern von 1 bis 9 so in den Zahlenwinkel, dass jeder Arm des Zahlenwinkels zusammengezählt das gleiche Ergebnis ergibt! Finde möglichst viele verschiedene

Mehr

Jahresplanung zu Die Mathe-Forscher/innen 1 Schulbuch-Nr

Jahresplanung zu Die Mathe-Forscher/innen 1 Schulbuch-Nr Jahresplanung zu Die Mathe-Forscher/innen 1 Schulbuch-Nr. 150087 Woche Überschrift Jahresplanung Themenbereich Inhalt Seite 1, 2, 3 Was du dieses Jahr lernst Genau schauen Pränumerik Visuelle Wahrnehmung

Mehr

Folgende drei Punkte erleichtern die Entwicklung der Rechenfertigkeit bei allen Lernenden

Folgende drei Punkte erleichtern die Entwicklung der Rechenfertigkeit bei allen Lernenden Folgende drei Punkte erleichtern die Entwicklung der Rechenfertigkeit bei allen Lernenden Bei allen Operationen gilt für größere Zahlen die gleiche Strategie: schrittweise rechnen Schreibweisen werden

Mehr

02 Zu Gast in Frankreich Complète les pyramides ZB3 S02 Nr. 2 identisch mit Nr. 2 im Buch

02 Zu Gast in Frankreich Complète les pyramides ZB3 S02 Nr. 2 identisch mit Nr. 2 im Buch LÜK Zahlenbuch 3 02 Zu Gast in Frankreich Complète les pyramides ZB3 S02 Nr. 2 identisch mit Nr. 2 im Buch 03 In der Türkei Zahlenfolgen ZB3 S03 Nr.2 identisch mit Nr. 2 im Buch Hesapla! ZB3 S03 Nr1 einige

Mehr

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen.

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen. Essen und Trinken Teilen und Zusammenfügen Vertiefen Brüche im Alltag zu Aufgabe Schulbuch, Seite 06 Schokoladenstücke Schokoladentafeln haben unterschiedlich viele Stückchen. a) Till will von jeder Tafel

Mehr

Einsatzplan: 588 Aufgaben im Zahlenraum bis Klasse Art ISBN EAN

Einsatzplan: 588 Aufgaben im Zahlenraum bis Klasse Art ISBN EAN Die 6 Programmblätter sind beidseitig bedruckt und jede der 12 Seiten ist in 49 Felder mit jeweils einer Aufgabenstellung eingeteilt. Dabei ist zu beachten, dass auf eine Aufgabe immer nur ein Plättchen

Mehr

GLEICH WEIT WEG. Aufgabe. Das ist ein Ausschnitt aus der Tausenderreihe:

GLEICH WEIT WEG. Aufgabe. Das ist ein Ausschnitt aus der Tausenderreihe: GLEICH WEIT WEG Thema: Sich orientieren und operieren an der Tausenderreihe Klasse: 3. Klasse (Zahlenbuch nach S. 26-27) Dauer: 3-4 Lektionen Material: Tausenderreihe, Arbeitsblatt, evt. Plättchen Bearbeitung:

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

DOWNLOAD VORSCHAU. Einfache Würfelspiele Zahlenraum bis 20. zur Vollversion. Motivierend und schnell einsetzbar. Ruth Hölken

DOWNLOAD VORSCHAU. Einfache Würfelspiele Zahlenraum bis 20. zur Vollversion. Motivierend und schnell einsetzbar. Ruth Hölken DOWNLOAD Ruth Hölken Einfache Würfelspiele für den Zahlenraum bis Motivierend und schnell einsetzbar Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen

Mehr

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen Mathematik Solothurn, 21. Mai 2012 1 Arithmetik 1.1 Natürliche Zahlen 1.1.1 Die Sch können natürliche Zahlen lesen und schreiben. S. 6/7 S.

Mehr

Ein kleiner Wegweiser durch das Buch

Ein kleiner Wegweiser durch das Buch Ein kleiner Wegweiser durch das Buch Erzählen/Sprechen/Beschreiben Male an! Verwende deine Buntstifte! Schreibe! Versuche, forsche und entdecke! Dein Lehrer/Deine Lehrerin hilft dir dabei! Für Blitzdenker!

Mehr

Binär- und Hexadezimal-Zahl Arithmetik.

Binär- und Hexadezimal-Zahl Arithmetik. Binär- und Hexadezimal-Zahl Arithmetik. Prof. Dr. Dörte Haftendorn, MuPAD 4, http://haftendorn.uni-lueneburg.de Aug.06 Automatische Übersetzung aus MuPAD 3.11, 24.04.02 Version vom 12.10.05 Web: http://haftendorn.uni-lueneburg.de

Mehr

Fachspezifische Themenvorschläge für das Quartalspraktikum

Fachspezifische Themenvorschläge für das Quartalspraktikum Fachspezifische Themenvorschläge für das Quartalspraktikum Liste zuhanden der Praxislehrpersonen mit Vorschlägen zur Auftragserteilung an die Studierenden Mathematik (3. Klasse) A. Rechenstrategien Addition

Mehr

-Förderbox Mathematik Zahlenraum bis 100

-Förderbox Mathematik Zahlenraum bis 100 -Förderbox Mathematik ahlenraum bis 100 1. Lernstandskontrollen 2. Lernstandskontrollen mit Lösungen 3. Kompetenzübersicht 4. Lerner-Mini 5. Faltanleitung zum Lerner-Mini A 1. Fülle die Tabelle aus. Strich-Punkt-

Mehr

(verschiedene Möglichkeiten)

(verschiedene Möglichkeiten) Hundertertafel Trage in die Hundertertafel folgende Zahlen ein. Male die Felder an: a) rot:,,,,,,,,,,,, b) gelb:,,,, c) grün:,,,,,,,,,,,, d) blau:,,,, Was entdeckst du? Die Buchstaben M, I, N, I ergeben

Mehr