Zur Behandlung der Multiplikation. Konzept der Kernaufgaben bei der Multiplikation

Größe: px
Ab Seite anzeigen:

Download "Zur Behandlung der Multiplikation. Konzept der Kernaufgaben bei der Multiplikation"

Transkript

1 Zur Behandlung der Multiplikation Konzept der Kernaufgaben bei der Multiplikation

2 Wiederholung: Schriftliche Subtraktion Dana spart für ein neues Fahrrad, das 237 kostet. Sie hat schon 119. Dana rechnet aus, wie viel Geld ihr noch fehlt. Ergänzen mit Erweitern: Einer plus wie viel sind 7 Einer geht nicht, damit ich die Teilaufgabe lösen kann, muss ich 10 Einer hinzufügen. Jetzt kann ich rechnen: 9 Einer plus 8 Einer sind 17 Einer, schreibe 8. Da ich beim Minuenden 10 Einer hinzugetan habe, muss ich auch beim Subtrahenden 10 hinzufügen, diese jedoch als einen Zehner ( Merkeins ). 2 Zehner plus 1 Zehner sind 3 Zehner, schreibe 1. 1 Hunderter plus 1 Hunderter sind 2 Hunderter, schreibe 1.

3 Wiederholung: Schriftliche Subtraktion Ergänzen mit Erweitern Vorteile Technik kann gut veranschaulicht werden Technik kann gut auf das Subtrahieren mehrerer Subtrahenden übertragen werden Nachteile wirkliches Verständnis für die Übertragstechnik ist schwierig selbstständiges Entdecken des Übertragsverfahrens gelingt kaum in der Kurzschreibweise wird das Wesen der Übertragstechnik nicht mehr deutlich beide Zahlenwerte werden verändert für Sachaufgaben problematisch

4 Wiederholung: Schriftliche Subtraktion

5 Wiederholung: Schriftliche Subtraktion

6 Wiederholung: Schriftliche Subtraktion Abziehen mit Entbündeln ndeln Vorteile Umformungen werden nur im Minuenden vorgenommen, Zahlenwert bleibt erhalten gute Veranschaulichung Technik kann von Schülern selbst entdeckt werden Kernidee (Entbündeln) ist einsichtig Abziehen bietet Vorteile bei der Sprechweise Nachteile Subtraktionen mit mehreren Subtrahenden: nur mit Zwischenlösung durch die Addition der Subtrahenden möglich Aufgaben mit Nullen im Minuenden erfordern mehrfaches entbündeln z.b

7 Strategien zur Lösung L von Multiplikations- aufgaben vor der Behandlung der Operation Arbeit mit Material, das vollständig ausgezählt wird rhythmisches Zählen in gleich großen Teilabschnitten, 1, 2, 3, 4 5, 6, 7, 8 9, 10, 11, 12 kann bei kleineren Teilabschnitten z.t. gleich in ein strukturiertes Zählen überführt werden: 2, 4, 6, 8 wiederholtes Addieren gleicher Summanden: multiplikatives Rechnen Kind kennt Multiplikationsaufgabe mit Lösung

8 Grundvorstellungen der Multiplikation zeitlich-sukzessive Handlungen (dynamischer Aspekt) Beispiel: Mama geht dreimal zum Schrank und holt jeweils 2 Tassen heraus. räumlich-simultane Anordnungen (statischer Aspekt) Beispiel: Auf dem Tisch stehen 3 Teller mit jeweils 2 Stückchen Kuchen. kombinatorische Aufgaben Beispiel: Thomas hat 4 T-Shirts und 2 Jeanshosen. Wie oft kann er sich unterschiedlich anziehen?

9 Zu welcher multiplikativen Grundvorstellung gehört das jeweilige Beispiel? Die Lehrerin hat einen Beutel mit Würfeln mitgebracht. Johannes darf 3 Mal hineingreifen und jeweils 2 Würfel herausnehmen. Alexander hat 2 unterschiedliche Zugmaschinen und 4 verschiedenfarbige Anhänger. Wie viele Trucks kann er zusammenbauen? Auf dem Tisch stehen 3 Teller. Auf jedem Teller liegen 2 Brötchen. Die Lehrer bittet die Schüler: Lege 3 gelbe Plättchen in eine Reihe. Lege dann 3 rote Plättchen darunter. Wie viele Plättchen hast du gelegt?

10 Zu welcher multiplikativen Grundvorstellung gehört das jeweilige Beispiel? Am Neujahrsmorgen Treffen Herr und Frau Müller Familie Meier mit ihren beiden Kindern. Wie oft wünschen sie sich Prosit Neujahr? Du hast ein rotes und ein grünes Dreieck und 4 verschiedenfarbige Rechtecke. Wie viele Häuser (aus je einem Rechteck und Dreieck bestehend) kannst du bauen? Zu einer Packung Fruchtzwerge gehören 3 Mal zwei verschiedene Sorten, nämlich Erdbeere, Aprikose und Banane.

11 Welche Rechengesetze sind hier veranschaulicht? Verdopplung

12 Welche Rechengesetze sind hier veranschaulicht?

13 Konzept der Kernaufgaben bei der Multiplikation Ziel: Grundaufgaben (GA) der Multiplikation erarbeiten, üben und zum Können ausbilden (Ziel: GA der Mult./ Div. bis zum Ende von Kl. 3 als Rechenfertigkeit) Konzept des Arbeitens mit Kernaufgaben der Multiplikation fördert das Kennen und Nutzen heuristischer Strategien, in denen Rechengesetze stecken Welche Aufgaben gehören zu den Kernaufgaben? Quadratzahlen (Malaufgaben m. gl. Faktor) rot Verdopplungsaufgaben mit mal 2 blau Malaufgaben mit mal 1 und mal 10 grüner Rand Aufgaben mit mal 5 gelb

14 Konzept der Kernaufgaben bei der Multiplikation von den Königsaufgaben ausgehend sind Wege und Varianten zu erschließen, um sich andere Malaufgaben zu erarbeiten (Strategie ist wichtig Wie kann ich mir helfen, wenn ich 7 * 8 nicht weiß?) Beispiel: 7 * 8 7 * 7 = 49, bei 7 * 8 fehlt noch 1 * 7, also müssen noch 7 hinzukommen, sind insgesamt 56 (7 * (7 + 1)) 7 * 8 5 * 8 = 40 und 2 * 8 = 16, sind gesamt 56 7 * 8 = (5 + 2) * 8 (Distributivgesetz)

15 Entdeckungen an der 1 x 1 - Tafel Beziehungen zwischen Malreihen Nenne deinem Nachbarn die Ergebnisse der Dreierreihe (schräge Reihe mit 3). Dein Partner soll sie aufschreiben. Nennt und schreibt nun die Ergebnisse der Sechserreihe auf. Was stellt ihr fest? Addition von Schrägen Wenn du nun die Ergebnisse der Dreier- und der Sechserreihe addierst, was stellst du fest?

16 Entdeckungen an der 1 x 1 - Tafel Nachbaraufgaben Suche dir 4 Felder heraus, die einen gemeinsamen Punkt haben (4 Spitzen stoßen in einem Punkt zusammen). Schreibe die Aufgaben und die Ergebnisse so auf, wie sie in den Feldern angeordnet sind. Addiere die Aufgabenlösungen, die nebeneinander stehen sowie die, die untereinander stehen. Was stellst du fest?

17 In welcher Reihenfolge werden die Malaufgaben behandelt? Malaufgaben mit 1, 2, 5 und 10 (s. Zahlenbuch 2, S. 54) leichte Reihen, Kernaufgaben (Malaufgaben mit 1 sind trivial, weil 1 neutrales Element bei der Multiplikation ist) Malaufgaben mit 3, 6 und 9 (s. Zahlenbuch 2, S. 56) von der Dreierreihe kommt man durch Verdopplung zur Sechser, Addition von Dreier- und Sechserreihe führen zur Neunerreihe Malaufgaben mit 4 und 8 (s. Zahlenbuch 2, S. 60) Verdopplung Malaufgabe mit 7 kein Bezug, deshalb schwierigste und letzte Malreihe

3. Rechnen mit natürlichen Zahlen

3. Rechnen mit natürlichen Zahlen 3. Rechnen mit natürlichen Zahlen 3.1 Inhaltliches Verstehen von Rechenoperationen 3.2 Die Grundaufgaben: Das 1+1 und 1x1 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.4 Die schriftlichen

Mehr

Bereich: Zahlen und Operationen. Schwerpunkt: Flexibles Rechnen. Zeit/ Stufe

Bereich: Zahlen und Operationen. Schwerpunkt: Flexibles Rechnen. Zeit/ Stufe Schwerpunkt: Flexibles Rechnen Thema Kompetenz Kenntnisse/ Fertigkeiten/ Voraussetzungen, um die Kompetenz zu erlangen - Flexibles Rechnen (Addition, Subtraktion, Multiplikation, Division) - nutzen aufgabenbezogen

Mehr

Didaktik der Grundschulmathematik 4.1

Didaktik der Grundschulmathematik 4.1 Didaktik der Grundschulmathematik 4.1 Didaktik der Grundschulmathematik Didaktik der Grundschulmathematik 4.2 Inhaltsverzeichnis Didaktik der Grundschulmathematik 1 Anschauungsmittel 2 Aufbau des Zahlbegriffs

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens 1 Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

Ein Rechenspiel auf der Hunderter-Tafel. Reinhold Wittig

Ein Rechenspiel auf der Hunderter-Tafel. Reinhold Wittig Ein Rechenspiel auf der Hunderter-Tafel Reinhold Wittig Ein Rechenspiel auf der Hunderter-Tafel für 2 Spieler ab 8 Jahren Autor Reinhold Wittig Inhalt 1 Spielbrett (Hunderter-Tafel) 1 transparente Maske

Mehr

Einmaleins-Tabelle ausfüllen

Einmaleins-Tabelle ausfüllen Einmaleins-Tabelle ausfüllen M0124 FRAGE Kannst du in die leere Einmaleins-Tabelle alle Ergebnisse eintragen? ZIEL über das Einmaleins geläufig verfügen MATERIAL Einmaleins-Tabelle (leer), Schreibzeug,

Mehr

Box. Mathematik 2. Begleitheft mit. 20 Kopiervorlagen zur Lernstandskontrolle. Beschreibung der Übungsschwerpunkte. Beobachtungsbogen.

Box. Mathematik 2. Begleitheft mit. 20 Kopiervorlagen zur Lernstandskontrolle. Beschreibung der Übungsschwerpunkte. Beobachtungsbogen. Box Mathematik 2 Begleitheft mit 20 Kopiervorlagen zur Lernstandskontrolle Beschreibung der Übungsschwerpunkte Beobachtungsbogen Lernbegleiter -Box Mathematik 2 Inhalt des Begleitheftes Zur Konzeption

Mehr

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1 1 1 Vorbetrachtungen Wie könnte eine Codierung von Zeichen im Computer realisiert werden? Der Computer arbeitet mit elektrischem Strom, d. h. er kann lediglich zwischen den beiden Zuständen Strom an und

Mehr

Geld wechseln kann als Visualisierung des Zehnerübergangs dienen. Die Zwischengrössen (CHF 2.-, 5.-, 20.-, 50.-) weglassen.

Geld wechseln kann als Visualisierung des Zehnerübergangs dienen. Die Zwischengrössen (CHF 2.-, 5.-, 20.-, 50.-) weglassen. E2 Rechnungen verstehen plus minus Verständnisaufbau Geld wechseln Geld wechseln kann als Visualisierung des Zehnerübergangs dienen. Die Zwischengrössen (CHF 2.-, 5.-, 20.-, 50.-) weglassen. Ich bezahle

Mehr

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen.

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen. Essen und Trinken Teilen und Zusammenfügen Vertiefen Brüche im Alltag zu Aufgabe Schulbuch, Seite 06 Schokoladenstücke Schokoladentafeln haben unterschiedlich viele Stückchen. a) Till will von jeder Tafel

Mehr

Weiter im Einmaleins. 100 nur das Schaf schaut noch verwundert. bellt der Dackel Heinz. pfeift das Murmeltier. Panda kann sich freu'n.

Weiter im Einmaleins. 100 nur das Schaf schaut noch verwundert. bellt der Dackel Heinz. pfeift das Murmeltier. Panda kann sich freu'n. Weiter im Einmaleins bellt der Dackel Heinz. pfeift das Murmeltier. Panda kann sich freu'n. Grabi kann das Jumbo frisst sie Biene Maja schlecht seh'n. und entspannt sich. rechnet fleißig. das Huhn meint

Mehr

Didaktik der Zahlbereichserweiterungen

Didaktik der Zahlbereichserweiterungen 3.1 vom Hofe, R.; Hattermann, M. (2014): Zugänge zu negativen Zahlen. mathematik lehren 183, S. 2-7 Jürgen Roth Didaktik der Zahlbereichserweiterungen Modul 5: Fachdidaktische Bereiche 3.2 Inhaltsverzeichnis

Mehr

Mathe-Übersicht INHALTSVERZEICHNIS

Mathe-Übersicht INHALTSVERZEICHNIS S. 1/13 Mathe-Übersicht V. 1.1 2004-2012 by Klaus-G. Coracino, Nachhilfe in Berlin, www.coracino.de Hallo, Mathe-Übersicht Diese Datei enthält verschiedene Themen, deren Überschriften im INHALTSVERZEICHNIS

Mehr

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden?

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? Aufgaben zur Kombinatorik, Nr. 1 1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? 2.) Jemand hat 10 verschiedene Bonbons

Mehr

Alles oder Nichts. Auseinandersetzung mit der Größe Geld im Rahmen mathematischer Früherziehung. Referentin: Kathrin Schnorbusch

Alles oder Nichts. Auseinandersetzung mit der Größe Geld im Rahmen mathematischer Früherziehung. Referentin: Kathrin Schnorbusch Alles oder Nichts Auseinandersetzung mit der Größe Geld im Rahmen mathematischer Früherziehung Referentin: Kathrin Schnorbusch Mathematik im Kindergarten Mathematics, you know, is the gate of science,

Mehr

Binär- und Hexadezimal-Zahl Arithmetik.

Binär- und Hexadezimal-Zahl Arithmetik. Binär- und Hexadezimal-Zahl Arithmetik. Prof. Dr. Dörte Haftendorn, MuPAD 4, http://haftendorn.uni-lueneburg.de Aug.06 Automatische Übersetzung aus MuPAD 3.11, 24.04.02 Version vom 12.10.05 Web: http://haftendorn.uni-lueneburg.de

Mehr

1/2. Matherad. Kopiervorlagen. Nina Fiedel-Gellenbeck Alma Tamborini

1/2. Matherad. Kopiervorlagen. Nina Fiedel-Gellenbeck Alma Tamborini 1/2 Matherad Kopiervorlagen Nina Fiedel-Gellenbeck Alma Tamborini 1. Auflage 1 5 4 3 2 1 17 16 15 14 13 Alle Drucke dieser Auflage sind unverändert und können im Unterricht nebeneinander verwendet werden.

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr

Inhalt. 01 Lehrplanübersicht 02 Sequenzkarte Terme Sequenzkarte Gleichungen

Inhalt. 01 Lehrplanübersicht 02 Sequenzkarte Terme Sequenzkarte Gleichungen Inhalt Seminarbuch 37 Wie war das doch gleich wieder? Seminarbuch 38 Wir lösen Gleichungen - Lösungsmodelle 1 Seminarbuch 39 Lösungsmodelle 2 Seminarbuch 40 Lösungsmodelle 3 Seminarbuch 41 Rechenregeln

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl

Mehr

GLEICH WEIT WEG. Aufgabe. Das ist ein Ausschnitt aus der Tausenderreihe:

GLEICH WEIT WEG. Aufgabe. Das ist ein Ausschnitt aus der Tausenderreihe: GLEICH WEIT WEG Thema: Sich orientieren und operieren an der Tausenderreihe Klasse: 3. Klasse (Zahlenbuch nach S. 26-27) Dauer: 3-4 Lektionen Material: Tausenderreihe, Arbeitsblatt, evt. Plättchen Bearbeitung:

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

Werkstatt Multiplikation Posten: 8-Bit Multiplikation. Informationsblatt für die Lehrkraft. 8-Bit Multiplikation

Werkstatt Multiplikation Posten: 8-Bit Multiplikation. Informationsblatt für die Lehrkraft. 8-Bit Multiplikation Informationsblatt für die Lehrkraft 8-Bit Multiplikation Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: 8-Bit Multiplikation (im Binärsystem) Mittelschule, technische

Mehr

Arbeitsblatt 2 - für leistungsstärkere Kinder Aufgabe 1 fördert die Lesekompetenz. Aufgabe 2 regt zum eigenständigen Verfassen eines Briefes an.

Arbeitsblatt 2 - für leistungsstärkere Kinder Aufgabe 1 fördert die Lesekompetenz. Aufgabe 2 regt zum eigenständigen Verfassen eines Briefes an. Liebe Lehrerin, lieber Lehrer, dieses Unterrichtsmaterial ist speziell auf die Boardstory und das Buch "Die Olchis: Ein Drachenfest für Feuerstuhl" von Erhard Dietl ausgelegt. Die Arbeitsblätter unterstützen

Mehr

Einmaleins einmal anders

Einmaleins einmal anders Seite 1 von 80 Einmaleins einmal anders oder: Das muss man eben nicht nur auswendig lernen Autor: Fohringer Gabriele Akademielehrgang: LernberaterIn Mathematik Themensteller: Mag. Michael Gaidoschik Litschau,

Mehr

Didaktisierung der Lernplakatserie Znam 100 niemieckich słów Ich kenne 100 deutsche Wörter Plakat KLASSE

Didaktisierung der Lernplakatserie Znam 100 niemieckich słów Ich kenne 100 deutsche Wörter Plakat KLASSE Didaktisierung des Lernplakats KLASSE 1. LERNZIELE Die Lerner können neue Wörter verstehen nach einem Wort fragen, sie nicht kennen (Wie heißt auf Deutsch?) einen Text global verstehen und neue Wörter

Mehr

DOWNLOAD. Den sicheren Umgang mit Geld üben. Arbeitsblätter für Schüler mit geistiger Behinderung. Ulrike Löffler Isabel Schick

DOWNLOAD. Den sicheren Umgang mit Geld üben. Arbeitsblätter für Schüler mit geistiger Behinderung. Ulrike Löffler Isabel Schick DOWNLOAD Ulrike Löffler Isabel Schick Den sicheren Umgang mit Geld üben Arbeitsblätter für Schüler mit geistiger Behinderung Downloadauszug aus dem Originaltitel: Thema: Dezimale Schreibweise von Geldbeträgen

Mehr

Wenn 6 + 6 gleich 12 ergibt, dann gibt 7 + 6 = 13 Aufgabenbeziehungen an der Einspluseinstafel erkennen und nutzen ein langer Weg

Wenn 6 + 6 gleich 12 ergibt, dann gibt 7 + 6 = 13 Aufgabenbeziehungen an der Einspluseinstafel erkennen und nutzen ein langer Weg Haus 3: Umgang mit Rechenschwierigkeiten, Modul 3.1 Wenn 6 + 6 gleich 12 ergibt, dann gibt 7 + 6 = 13 Aufgabenbeziehungen an der Einspluseinstafel erkennen und nutzen ein langer Weg Mit Nachbaraufgaben

Mehr

Mathematik-Dossier 6 Die Welt der ganzen Zahlen (angepasst an das Lehrmittel Mathematik 1)

Mathematik-Dossier 6 Die Welt der ganzen Zahlen (angepasst an das Lehrmittel Mathematik 1) Name: Mathematik-Dossier 6 Die Welt der ganzen Zahlen (angepasst an das Lehrmittel Mathematik ) Inhalt: Zahlengerade, Zahl und Gegenzahl Ordnung von ganzen Zahlen Zahlenpaare Das rechtwinklige Koordinatensystem

Mehr

Die Bruchrechnung in der Lerntherapie. von Johanna Sielemann

Die Bruchrechnung in der Lerntherapie. von Johanna Sielemann Die Bruchrechnung in der Lerntherapie von Johanna Sielemann 1 1 EINLEITUNG 3 2 BRUCHZAHLASPEKTE 4 2.1 Teil eines Ganzen 4 2.2 Teil mehrerer Ganzer 5 2.3 Anteil 5 2.4 Mögliche Schwierigkeiten 5 3 SCHREIBWEISEN

Mehr

3 Berechnungen und Variablen

3 Berechnungen und Variablen 3 Berechnungen und Variablen Du hast Python installiert und weißt, wie man die Python-Shell startet. Jetzt kannst Du etwas damit machen. Wir fangen mit ein paar einfachen Berechnungen an und wenden uns

Mehr

EINMALEINS BEZIEHUNGSREICH

EINMALEINS BEZIEHUNGSREICH EINMALEINS BEZIEHUNGSREICH Thema: Übung des kleinen Einmaleins; operative Beziehungen erkunden Stufe: ab 2. Schuljahr Dauer: 2 bis 3 Lektionen Materialien: Kleine Einmaleinstafeln (ohne Farben), Punktefelder

Mehr

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen)

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen) Maristengymnasium Fürstenzell zuletzt geändert am 0.0.00 Aufgaben zur Kombinatorik (mit Lösungen) 0.. Wieviele Möglichkeiten gibt es für Kinder, sich auf einen Schlitten zu setzen, wenn ihn nur davon steuern

Mehr

M ATHEMATIK Klasse 3. Stoffverteilungsplan Sachsen. Der Zahlenraum bis 1000 (S. 14 25)

M ATHEMATIK Klasse 3. Stoffverteilungsplan Sachsen. Der Zahlenraum bis 1000 (S. 14 25) M ATHEMATIK Klasse 3 Stoffverteilungsplan Sachsen Duden Mathematik 3 Lehrplan: Lernziele / Inhalte Der (S. 14 25) Entwickeln von Zahlvorstellungen/Orientieren im Schätzen und zählen, Zählstrategien, Anzahl

Mehr

C:\WINNT\System32 ist der Pfad der zur Datei calc.exe führt. Diese Datei enthält das Rechner - Programm. Klicke jetzt auf Abbrechen.

C:\WINNT\System32 ist der Pfad der zur Datei calc.exe führt. Diese Datei enthält das Rechner - Programm. Klicke jetzt auf Abbrechen. . Das Programm- Icon Auf dem Desktop deines Computers siehst du Symbolbildchen (Icons), z.b. das Icon des Programms Rechner : Klicke mit der rechten Maustaste auf das Icon: Du siehst dann folgendes Bild:

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Was will ich, was passt zu mir?

Was will ich, was passt zu mir? Was will ich, was passt zu mir? Sie haben sich schon oft Gedanken darüber gemacht, wie es weitergehen soll. Was das Richtige für Sie wäre. Welches Studium, welcher Beruf zu Ihnen passt. Haben Sie Lust,

Mehr

Fitmacher - Energie in Lebensmitteln

Fitmacher - Energie in Lebensmitteln Fitmacher - Energie in Lebensmitteln Welches Essen hält mich gesund und fit? Das Wichtigste auf einen Blick Ideenbörse für den Unterricht Wissen Rechercheaufgabe Erzähl-/Schreibanlass Welches Essen hält

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

von Marsha J. Falco amigo-spiele.de/04713

von Marsha J. Falco amigo-spiele.de/04713 von Marsha J. Falco amigo-spiele.de/04713 Das Würfelspiel zum beliebten Klassiker! Spieler: 2 4 Personen Alter: ab 8 Jahren Dauer: ca. 35 Minuten Form 42 SET-Würfel 1 Spielplan 1 Stoffbeutel Inhalt Anzahl

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung a.: Du bearbeitest die Aufgabe in Einzelarbeit. Lies dir die Aufgabe genau durch und überlege dir einen Lösungsansatz. Danach versuche eine Lösung zu erarbeiten. Für diese Phase hast du 10 Minuten Zeit.

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopfrechentrainer - Ideenkiste fürs tägliche Üben

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopfrechentrainer - Ideenkiste fürs tägliche Üben Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: - Ideenkiste fürs tägliche Üben Das komplette Material finden Sie hier: Download bei School-Scout.de Inhalt Seite Vorwort 5-7 1 2

Mehr

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden.

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden. Multiplikation Die schriftliche Multiplikation ist etwas schwieriger als die Addition. Zum einen setzt sie das kleine Einmaleins voraus, zum anderen sind die Überträge, die zu merken sind und häufig in

Mehr

4 Didaktische Prinzipien des Mathematikunterrichts

4 Didaktische Prinzipien des Mathematikunterrichts 4 Didaktische Prinzipien des Mathematikunterrichts Didaktische Prinzipien sind (wie alle Prinzipien) keine starren Handlungsanweisungen oder Rezepte, sie sind Vorschläge, Anregungen und Strukturierungshilfen.

Mehr

A Lösungswege kennenlernen B Verschiedene Lösungswege C Rechnen mit Größen D Aufgaben zu Klassenarbeiten

A Lösungswege kennenlernen B Verschiedene Lösungswege C Rechnen mit Größen D Aufgaben zu Klassenarbeiten Inhalt A B C D Lösungswege kennenlernen 1 Grundrechenarten anwenden 6 2 Zuordnungen von Größen 8 3 Einführung in die Schlussrechnung 10 4 Übersicht über die Schlussrechnung 23 Probearbeiten A bis F 24

Mehr

Beobachtung des Lösungsweges. beim Rechnen in der Grundschule HANDREICHUNG. Behörde für Bildung und Sport der Freien und Hansestadt Hamburg

Beobachtung des Lösungsweges. beim Rechnen in der Grundschule HANDREICHUNG. Behörde für Bildung und Sport der Freien und Hansestadt Hamburg Beobachtung des Lösungsweges beim Rechnen in der Grundschule HANDREICHUNG Behörde für Bildung und Sport der Freien und Hansestadt Hamburg Sehr geehrte Kolleginnen und Kollegen, das Fachreferat Mathematik

Mehr

5.6 Strukturiertes Üben

5.6 Strukturiertes Üben 184 5.5.3 Zusammenfassung 5.6 Strukturiertes Üben 185 5.6 Strukturiertes Üben 1.) Etwas vereinfacht gesagt, ließen sich im Unterricht solche Schüler beobachten, die geschicktes Vorgehen häufig selbst entwickelten

Mehr

Didaktisierung der Lernplakatserie Znam 100 niemieckich słów Ich kenne 100 deutsche Wörter Plakat KÜCHE

Didaktisierung der Lernplakatserie Znam 100 niemieckich słów Ich kenne 100 deutsche Wörter Plakat KÜCHE Didaktisierung des Lernplakats KÜCHE 1. LERNZIELE Die Lerner können Verwandte Wörter in der polnischen und deutschen Sprachen verstehen Unterschiede in der Aussprache der neuen Wörter heraushören und nachsprechen

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Prof. Dr. Hartmut Spiegel Rohfassung einer Ablaufbeschreibung des Interviews mit Jana

Prof. Dr. Hartmut Spiegel Rohfassung einer Ablaufbeschreibung des Interviews mit Jana Ich frage Jana: "Weißt du denn, wie weit du zählen kannst?" Sie antwortet: "bis 200." Ich sage: "Fang einfach mal an". Sie zählt von 1 bis 35 so schnell, wie man überhaupt nur zählen kann. Bei 35 unterbreche

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Das Zahlenbuch 2. Begleitband. Ernst Klett Verlag Stuttgart Leipzig. von Erich Ch. Wittmann und Gerhard N. Müller. mathe 2000

Das Zahlenbuch 2. Begleitband. Ernst Klett Verlag Stuttgart Leipzig. von Erich Ch. Wittmann und Gerhard N. Müller. mathe 2000 mathe 000 Das Zahlenbuch Begleitband von rich Ch. Wittmann und Gerhard N. Müller rnst Klett Verlag Stuttgart Leipzig Inhalt Vorwort... Inhaltsverzeichnis des Schülerbuchs... rste Orientierung... 6 Differenzierung...

Mehr

Wurzeln, Potenzen, reelle Zahlen

Wurzeln, Potenzen, reelle Zahlen 1. Zahlenpartner Wurzeln, Potenzen, reelle Zahlen Wie lassen sich die Zahlen auf dem oberen und unteren Notizzettel einander sinnvoll zuordnen? Quelle: Schnittpunkt 9 (1995) Variationen: (a) einfachere

Mehr

Rechentrainer 4. Schroedel. Herausgegeben von Prof. Dr. Hans-Dieter Rinkens Kurt Hönisch Gerhild Träger

Rechentrainer 4. Schroedel. Herausgegeben von Prof. Dr. Hans-Dieter Rinkens Kurt Hönisch Gerhild Träger Rechentrainer Herausgegeben von Prof. Dr. Hans-Dieter Rinkens Kurt Hönisch Gerhild Träger Erarbeitet von Nadine Franke-Binder, Kurt Hönisch, Claudia Neuburg, Kerstin Peiker, Dr. Thomas Rottmann, Michaela

Mehr

Beispiellektionen. Geometrische Grundformen. Gestaltung und Musik. Fach. Klasse. Ziele Soziale Ziele

Beispiellektionen. Geometrische Grundformen. Gestaltung und Musik. Fach. Klasse. Ziele Soziale Ziele Geometrische Grundformen Fach Gestaltung und Musik Klasse 1 2 3 4 5 6 7 8 9 Ziele Soziale Ziele Gemeinsam ein Bild aus einfachen geometrischen Formen entstehen lassen. Inhaltliche Ziele Geometrische Formen

Mehr

Aufgaben zu Stellenwertsystemen

Aufgaben zu Stellenwertsystemen Aufgaben zu Stellenwertsystemen Aufgabe 1 a) Zähle im Dualsystem von 1 bis 16! b) Die Zahl 32 wird durch (100000) 2 dargestellt. Zähle im Dualsystem von 33 bis 48! Zähle schriftlich! Aufgabe 2 Wandle die

Mehr

Information in einem Computer ist ein

Information in einem Computer ist ein 4 Arithmetik Die in den vorhergehenden Kapiteln vorgestellten Schaltungen haben ausschließlich einfache, Boole sche Signale verarbeitet. In diesem Kapitel wird nun erklärt, wie Prozessoren mit Zahlen umgehen.

Mehr

Etoys für Einsteiger

Etoys für Einsteiger Etoys für Einsteiger Esther Mietzsch (nach einem Vorbild von Rita Freudenberg) März 2010 www.squeakland.org www.squeak.de Starten von Etoys 1. Du steckst Deinen USB Stick in die USB Schnittstelle am Computer.

Mehr

Simplex-Umformung für Dummies

Simplex-Umformung für Dummies Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

Beim stummen "h" musst du immer auf den Selbstlaut achten. Wird der Selbstlaut lang gesprochen, so gilt folgende Regel:

Beim stummen h musst du immer auf den Selbstlaut achten. Wird der Selbstlaut lang gesprochen, so gilt folgende Regel: Das stumme "h" Beim stummen "h" musst du immer auf den Selbstlaut achten. Wird der Selbstlaut lang gesprochen, so gilt folgende Regel: Das stumme "h" steht meistens vor l, m, n, r. z. B. fehlen, nehmen,

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Systematische Unterrichtsplanung

Systematische Unterrichtsplanung Allgemeine Situationsanalyse aus entwicklungspsychologischer Literatur zu entnehmen (Schenk-Danzinger, L.: Entwicklungspsychologie. Wien: ÖBV, 2006, S. 200-248) Ereignishafte Situationsanalyse Das Schreiben

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

Trotzdem deshalb denn

Trotzdem deshalb denn Ein Spiel für 3 bis 5 Schülerinnen und Schüler Dauer: ca. 30 Minuten Kopiervorlage zu deutsch.com 2, Lektion 23A, A4 bis A7 Hinweise für Lehrerinnen und Lehrer: Mit diesem Spiel üben die Schülerinnen und

Mehr

DOWNLOAD. Lernstation: Verkehrszeichen. Differenzierte Materialien zur Verkehrserziehung

DOWNLOAD. Lernstation: Verkehrszeichen. Differenzierte Materialien zur Verkehrserziehung DOWNLOAD Christine Schub Lernstation: Verkehrszeichen Differenzierte Materialien zur Verkehrserziehung Christine Schub Downloadauszug aus dem Originaltitel: Bergedorfer Unterrichtsideen 2. 4. Klasse Lernstationen

Mehr

Unterrichtseinheit 5.1

Unterrichtseinheit 5.1 Unterrichtseinheit 5.1 1 Unterrichtseinheit 5.1 Ca. 1 Schulstunde Aufgabenart Mathematischer Inhalt Materialien Zielsetzungen Handy-Tarife Handy-Tarife Validierungsaufgabe: eine vorgegebene Lösung validieren

Mehr

3 FORMELN. 3.1. Formeln erzeugen

3 FORMELN. 3.1. Formeln erzeugen Formeln Excel effektiv 3 FORMELN 3.1. Formeln erzeugen Übungen: Quittung... 136 Kalkulation... 138 Bestellung... 128 Kassenbuch.. 132 Aufmaß... 152 Zum Berechnen verwendet Excel Formeln. Diese sind in

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Als aktiver Partner mit mindestens 2 direkt gesponserten aktiven Mitgliedern hast Du nun verschiedene Möglichkeiten Provisionen zu verdienen.

Als aktiver Partner mit mindestens 2 direkt gesponserten aktiven Mitgliedern hast Du nun verschiedene Möglichkeiten Provisionen zu verdienen. Liebe Lavylites Partner/Innen Als aktiver Partner mit mindestens 2 direkt gesponserten aktiven Mitgliedern hast Du nun verschiedene Möglichkeiten Provisionen zu verdienen. Beginnen wir mit dem Startbonus:

Mehr

Erarbeitung nicht-zählender Rechenstrategien

Erarbeitung nicht-zählender Rechenstrategien Erarbeitung nicht-zählender Rechenstrategien Entspricht das Ihren Erfahrungen? "Wird zählendes Rechnen verfestigt, stellt es eine Sackgasse dar, aus der die Schüler im 2. oder im 3. Schuljahr kaum mehr

Mehr

-Förderbox Mathematik Zahlenraum bis 10 / bis 20

-Förderbox Mathematik Zahlenraum bis 10 / bis 20 -Förderbox Mathematik Zahlenraum bis / bis 0. Lernstandskontrollen. Lernstandskontrollen mit Lösungen. Kompetenzübersicht. Lerner-Mini. Faltanleitung zum Lerner-Mini LOGICO-Förderbox Mathematik Zahlenraum

Mehr

Roulette. Impressum. Die Spielregeln. Baden-Württembergische Spielbanken GmbH & Co. KG

Roulette. Impressum. Die Spielregeln. Baden-Württembergische Spielbanken GmbH & Co. KG Baden-Württembergische Spielbanken GmbH & Co. KG Spielbank Baden-Baden Kaiserallee 1 76530 Baden-Baden Telefon 072 21/30 24-0 Fax 072 21/30 24-110 info@casino-baden-baden.de Spielbank Konstanz Seestraße

Mehr

Deutsche Schule Tokyo Yokohama. Federmäppchen Anzahl Farbe. Allgemein Anzahl Farbe. Deutsch Anzahl Farbe. Mathematik Anzahl Farbe

Deutsche Schule Tokyo Yokohama. Federmäppchen Anzahl Farbe. Allgemein Anzahl Farbe. Deutsch Anzahl Farbe. Mathematik Anzahl Farbe Klasse: Materialliste Federmäppchen Füller oder Pilot Frixion Ball (Pilot Frixion Ball 7 mm, Links- und Rechtshänderfüller beachten) Füllerpatronen oder Pilot Frixion Ball - Minen (Pilot Frixion Ball 7

Mehr

Sparen Lehrerinformation

Sparen Lehrerinformation Lehrerinformation 1/7 Arbeitsauftrag Ziel Material Sozialform Die Schülerinnen und Schüler lesen einen Text zum Thema und Banken. Sie beantworten dazu Fragen auf einem Arbeitsblatt und formulieren selbst

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Sophie Friedrich, Nicholas Höllermeier, Martin Schwaighofer 11. Juni 2012 Inhaltsverzeichnis Einleitung Motivation Mathematische Definitionen Wiederholung Gruppe Ring Gruppenhomomorphisums

Mehr

Einführende Informationen zur Lernplattform schulbistum.de. Realschule St. Martin Sendenhorst. Musterfrau, Eva Klasse 11a

Einführende Informationen zur Lernplattform schulbistum.de. Realschule St. Martin Sendenhorst. Musterfrau, Eva Klasse 11a Einführende Informationen zur Lernplattform schulbistum.de Realschule St. Martin Sendenhorst Musterfrau, Eva Klasse 11a Stand: August 2014 2 Hier sind Deine persönlichen Zugangsdaten zur Lernplattform

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Tablet statt Tafel? - Einsatz neuer Medien im Unterricht

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Tablet statt Tafel? - Einsatz neuer Medien im Unterricht Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Tablet statt? - Einsatz neuer Medien im Unterricht Das komplette Material finden Sie hier: School-Scout.de Titel: Tablet statt? Einsatz

Mehr

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192.

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192. Binäres und dezimales Zahlensystem Ziel In diesem ersten Schritt geht es darum, die grundlegende Umrechnung aus dem Dezimalsystem in das Binärsystem zu verstehen. Zusätzlich wird auch die andere Richtung,

Mehr

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck.

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck. Bruchzahlen Zeichne Rechtecke von cm Länge und cm Breite. Dieses Rechteck soll Ganzes ( G) darstellen. Hinweis: a.) Färbe ; ; ; ; ; ; 6 b.) Färbe ; ; ; ; ; ; 6 von diesem Rechteck. von diesem Rechteck.

Mehr

Abenteuer Ernährung. Dein Frühstück

Abenteuer Ernährung. Dein Frühstück Im Film siehst du, was Rezzan und Florian morgens frühstücken. Was frühstückst du? Schreibe die Getränke und Nahrungsmittel auf und untersuche, welche Nährstoffe darin enthalten sind. Male in die Kreise

Mehr

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000

Mehr

Forscherhefte und Mathematikkonferenzen

Forscherhefte und Mathematikkonferenzen Inhaltsübersicht Inhaltsübersicht Vorwort 4 Leitgedanken zum Konzept 7 Mathematische Inhalte erforschen und verstehen 7 Komplexe Lernumgebung für alle Kinder 10 Über Mathematik mit anderen und vor anderen

Mehr

Das SMART Diplom. Auf den folgenden Seiten finden Sie das Ausbildungsskript für unser Modul SMART Board Diplom.

Das SMART Diplom. Auf den folgenden Seiten finden Sie das Ausbildungsskript für unser Modul SMART Board Diplom. Das SMART Diplom Auf den folgenden Seiten finden Sie das Ausbildungsskript für unser Modul SMART Board Diplom. Ablauf des Projekts: 10 Unterrichtsstunden über 10 Schulwochen - 2 Lehrerinnen im Team - 6

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

1. Mündlich, im Plenum > Text/Geschichte/n zur Person entwerfen/imaginieren

1. Mündlich, im Plenum > Text/Geschichte/n zur Person entwerfen/imaginieren Bild an Tafel 1. Mündlich, im Plenum > Text/Geschichte/n zur Person entwerfen/imaginieren 2. Schreiben aufschreiben/zusammenfassen..., was im Plenum mündlich (zur Person, den Personen) zuvor besprochen

Mehr

1. Gruppen anlegen in Outlook 2003 1-4

1. Gruppen anlegen in Outlook 2003 1-4 Inhalt der Anleitung Seite 1. Gruppen anlegen in Outlook 2003 1-4 2. Serien anlegen in Outlook 2003 5-6 3. Serien anlegen in Outlook 2010 9 4. Ordner anlegen in Outlook 2003 u. 2010 10 5. Gruppen anlegen

Mehr

183.580, WS2012 Übungsgruppen: Mo., 22.10.

183.580, WS2012 Übungsgruppen: Mo., 22.10. VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A

Mehr

Der gelbe Weg. Gestaltungstechnik: Malen und kleben. Zeitaufwand: 4 Doppelstunden. Jahrgang: 6-8. Material:

Der gelbe Weg. Gestaltungstechnik: Malen und kleben. Zeitaufwand: 4 Doppelstunden. Jahrgang: 6-8. Material: Kurzbeschreibung: Entlang eines gelben Weges, der sich von einem zum nächsten Blatt fortsetzt, entwerfen die Schüler bunte Fantasiehäuser. Gestaltungstechnik: Malen und kleben Zeitaufwand: 4 Doppelstunden

Mehr

Demo: Mathe-CD. Prozentrechnung Zinsrechnung. Aufgabensammlung zum Üben- und Wiederholen. Datei Nr. 10570. Friedrich Buckel. Stand 28.

Demo: Mathe-CD. Prozentrechnung Zinsrechnung. Aufgabensammlung zum Üben- und Wiederholen. Datei Nr. 10570. Friedrich Buckel. Stand 28. Mathematik für Klasse 7 Prozentrechnung Zinsrechnung Aufgabensammlung zum Üben- und Wiederholen Datei Nr. 10570 Stand 28. März 2008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt Teil 1 17 Übungsaufgaben

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

So rechne ich! Diese Forschermittel können dir helfen! Rechne möglichst schlau!

So rechne ich! Diese Forschermittel können dir helfen! Rechne möglichst schlau! Rechne möglichst schlau! So rechne ich! Schreibe deine Rechenwege und Erklärungen so auf, dass andere Kinder sie verstehen können! Diese Forschermittel können dir helfen! Schreibe auf, wie du gerechnet

Mehr

Inhaltsverzeichnis: 1. Produktbeschreibung 1.1 Arbeitsweise

Inhaltsverzeichnis: 1. Produktbeschreibung 1.1 Arbeitsweise Inhaltsverzeichnis: 1. Produktbeschreibung 1.1 Arbeitsweise 2. Funktionen der Menüleiste 2.1 Erfassung / Bearbeitung Angebote Aufträge Lieferschein Rechnung Rechnungsbuch Begleitliste 2.2 Auswertungen

Mehr

Führen von blinden Mitarbeitern

Führen von blinden Mitarbeitern 125 Teamführung Führungskräfte sind heutzutage keine Vorgesetzten mehr, die anderen autoritär ihre Vorstellungen aufzwingen. Führung lebt von der wechselseitigen Information zwischen Führungskraft und

Mehr

Vergleichen Sie das Wohnzimmer auf dem Foto mit Ihrem eigenen Wohnzimmer. Benutzen Sie die Adjektive im Komparativ.

Vergleichen Sie das Wohnzimmer auf dem Foto mit Ihrem eigenen Wohnzimmer. Benutzen Sie die Adjektive im Komparativ. 8Lektion Renovieren A Die eigene Wohnung Vergleichen Sie das Wohnzimmer auf dem Foto mit Ihrem eigenen Wohnzimmer. Benutzen Sie die Adjektive im Komparativ. freundlich gemütlich hell klein modern ordentlich

Mehr

Deine Kinder Lars & Laura

Deine Kinder Lars & Laura Bitte Hör auf! Deine Kinder Lars & Laura Dieses Buch gehört: Dieses Buch ist von: DHS Deutsche Hauptstelle für Suchtfragen e. V. Westring 2, 59065 Hamm Tel. 02381/9015-0 Fax: 02381/9015-30 e-mail: info@dhs.de

Mehr

Zahlenmauern. Dr. Maria Koth. Ausgehend von dieser einfachen Bauvorschrift ergibt sich eine Vielzahl an möglichen Aufgabenstellungen.

Zahlenmauern. Dr. Maria Koth. Ausgehend von dieser einfachen Bauvorschrift ergibt sich eine Vielzahl an möglichen Aufgabenstellungen. Zahlenmauern Dr. Maria Koth Zahlenmauern sind nach einer einfachen Regel gebaut: In jedem Feld steht die Summe der beiden darunter stehenden Zahlen. Ausgehend von dieser einfachen Bauvorschrift ergibt

Mehr

Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2

Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2 - 5 - Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2 Frau X hat ein Angebot der Bank: Sie würde 5000 Euro erhalten und müsste

Mehr

Informatik-Sommercamp 2012. Mastermind mit dem Android SDK

Informatik-Sommercamp 2012. Mastermind mit dem Android SDK Mastermind mit dem Android SDK Übersicht Einführungen Mastermind und Strategien (Stefan) Eclipse und das ADT Plugin (Jan) GUI-Programmierung (Dominik) Mastermind und Strategien - Übersicht Mastermind Spielregeln

Mehr