Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:

Größe: px
Ab Seite anzeigen:

Download "Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:"

Transkript

1 Inhaltsverzeichnis: Übungsaufgaben zu Kapitel Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe 112 (Klausuraufgabe Sommersemester 2004)... 4 Aufgabe Aufgabe Aufgabe Aufgabe 116 (Klausuraufgabe Sommersemester 2008)... 5 Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Übungsaufgaben zu Kapitel 5 Aufgabe 101 Bei der Herstellung von Schokoladentafeln interessiert a) das durchschnittliche Abfüllgewicht einer Tafel Schokolade. b) die Varianz des Gewichtes einer Schokoladentafel. c) der Anteil p der Schokoladentafeln unter 100 g. Aus diesem Grund wird aus der laufenden Produktion die folgende Stichprobe für Abfüllgewichte gezogen: 100, 97, 101, 96, 98, 102, 96, 100, 101, 98 Berechnen Sie einen Schätzer für die gefragten Größen aus der Stichprobe. Aufgaben zur Vorlesung Statistik Kapitel 5 Seite 1 von 8

2 Aufgabe 102 Bei der Herstellung von Schokoladentafeln sei das Verpackungsgewicht X normalverteilt mit Standardabweichung σ = 2 g. Der Sollwert der Tafeln liegt bei 100 g. Der Hersteller möchte weder haben, dass µ < 100 g (dann müsste er Reklamationen der Verbraucher befürchten), noch dass µ > 100 g (unnötige Verschwendung und damit finanzielle Verluste). Eine Stichprobe vom Umfang n = 10 ergibt ein arithmetisches Mittel von x = 98,9 g. a) In einem ersten Schritt soll davon ausgegangen werden, dass der unbekannte Erwartungswert gleich dem Sollwert 100g ist. Welche Hypothesen müssen aufgestellt werden? b) Legen Sie unter der Annahme, dass die Hypothese H 0 zutrifft, einen symmetrischen Zufallsstreubereich um µ = 100 g fest, in dem x mit einer Wahrscheinlichkeit von 95 % liegt. c) Kann die Hypothese µ = 100 g bei der vorgegebenen Stichprobe verworfen werden? d) Wie groß ist die Wahrscheinlichkeit die Hypothese µ = 100 g zu verwerfen, obwohl sie tatsächlich zutrifft? e) Wie lauten Nullhypothese H 0, Alternativhypothese H 1, Zufallsstreubereich und Ablehnungsbereich, wenn der Hersteller überprüfen will, ob der Erwartungswert der Schokoladentafeln größer oder gleich 100 g ist? f) Kann an der Nullhypothese µ 100g bei der vorliegenden Stichprobe festgehalten werden? Aufgabe 103 Bei der Fertigung eines bestimmten Typs von Wellen ist die Länge einer Welle (in mm) normalverteilt mit Varianz σ 2 = 0, 02. Die Längenmessung bei 20 Wellen ergab folgende Werte: 1-mal 239,65 1-mal 239,85 3-mal 239,90 6-mal 240,00 3-mal 240,10 2-mal 240,15 1-mal 240,20 1-mal 240,25 2-mal 240,30 Lässt sich bei Signifikanzniveau α = 0, 05 eine Abweichung vom Sollwert 240 mm nachweisen? Aufgabe 104 Ein Drehautomat fertigt Bolzen. Es ist bekannt, dass der Durchmesser der von dem Automaten gefertigten Bolzen (gemessen in mm) normalverteilt ist mit Varianz σ 2 = 0,26. Eine Stichprobe von 500 Bolzen ergab einen mittleren Durchmesser von x = 54,03 mm. Aufgaben zur Vorlesung Statistik Kapitel 5 Seite 2 von 8

3 Testen Sie mit diesen Daten die Nullhypothese H 0 : µ = 55 auf dem Signifikanzniveau α =1%. Aufgabe 105 In einem chemischen Prozess wird über eine Dosiervorrichtung ein bestimmter Stoff zugeführt. Die Stoffmenge war dabei in der Vergangenheit normalverteilt mit Erwartungswert 100 g und Standardabweichung 2 g. Der Produktionsleiter meint, dass die Maschine neu adjustiert werden muss, da sie in jüngster Zeit im Mittel zu große Mengen zuführt. Er lässt 10-mal die zugeführten Stoffmengen nachwiegen und erhält die folgenden Werte (in g) gemeldet: 99,7 102,6 99,3 100,4 100,5 102,2 105,5 98,2 102,6 102,7 a) Überprüfen Sie die Behauptung des Produktionsleiters mit einem geeigneten Test zum Signifikanzniveau 5 %. (Gehen Sie dabei davon aus, dass sich die Standardabweichung nicht geändert hat.) b) Wie wäre die Testentscheidung ausgefallen, wenn das Signifikanzniveau 1 % betragen hätte? Aufgabe 106 a) Eine Maschine füllt Zucker in Packungen. Die Füllmengen seien normalverteilt; die 2 = Maschinengenauigkeit betrage σ 15. Eine konkrete Stichprobe ergab folgende 15 Messwerte (in g): Weicht der Erwartungswert µ der Füllmengen der Maschine signifikant von 1000 g ab? (Signifikanzniveau α = 0, 05.) b) Bei einer anderen Zuckerabfüllmaschine ergab sich bei einer Stichprobe vom Umfang 100 ein arithmetischer Mittelwert x =1001, 11 [g]. Auch hier seien die Füllmengen normalverteilt mit Varianz σ 2 = 15. Auf dem Signifikanzniveau α = 5 % ist zu überprüfen, ob die mittlere Füllmenge größer als 1000 g ist. Aufgabe 107 Eine Maschine füllt Limonade in 0,33-Liter-Dosen. Eine Stichprobe vom Umfang n = 10 ergab folgende Füllmengen (in ml): Lässt sich auf Basis dieser Stichprobe zum Signifikanzniveau 1 % ein Unterschreiten der Sollfüllmenge bestätigen? Gehen Sie von der Annahme aus, dass die Füllmengen unabhängig normalverteilt sind. Aufgaben zur Vorlesung Statistik Kapitel 5 Seite 3 von 8

4 Aufgabe 108 Die Zugfestigkeit [in N] der Drähte zweier Hersteller soll verglichen werden. Es wurden daher die Zugfestigkeitswerte von je 8 Drahtstücken gemessen. Folgende Werte ergaben sich: Hersteller A: Hersteller B: Sind die Drähte der beiden Hersteller gleich zugfest? Führen Sie einen geeigneten Signifikanztest zum Signifikanzniveau 5% durch unter der Annahme, dass die Zugfestigkeit beider Hersteller normalverteilt ist mit gleicher Standardabweichung σ. Aufgabe 109 Bei der Analyse zweier Produktvarianten ergaben sich über 8 Wochen hinweg die folgenden Verkaufszahlen. Variante A: Variante B: Wenn die Verkaufszahlen als normalverteilt angenommen werden: Bedeutet das, dass die Variante A signifikant höhere wöchentliche Verkaufszahlen aufweist, oder liegen die Unterschiede noch in dem vom Zufall bedingten Rahmen? (Wählen Sie als Signifikanzniveau 5 %.) Aufgabe 110 In einer Gemeinde hatte eine Partei in der Vergangenheit einen Stimmenanteil von 30 %. Bei der letzten Umfrage haben sich allerdings nur 32 von 120 befragten Personen für diese Partei ausgesprochen. Spricht das (bei Signifikanzniveau α = 0, 01) für eine Änderung des Stimmenanteils? Aufgabe 111 Der Benzinverbrauch eines neuen Kraftfahrzeuges soll getestet werden. Für 8 untersuchte Fahrzeuge ergeben sich folgende Messwerte in Liter / 100 km: 3,8 3,4 3,5 4,1 3,7 4,0 3,5 3,7 a) Untersuchen Sie mit einem geeigneten statistischen Test, ob behauptet werden kann, der Verbrauch liege unter 4,2 Liter / 100 km. b) Unter welcher zusätzlichen Annahme haben Sie den Test durchgeführt? Aufgabe 112 (Klausuraufgabe Sommersemester 2004) An einer Hochschule wurde in zwei Kursen die gleiche Klausur geschrieben. Es ergaben sich folgende Werte: Kurs A: Anzahl der Teilnehmer 39 arithmetischer Mittelwert der erzielten Punktzahlen 39,6667 empirische Standardabweichung der Punktzahlen 8,4809 Aufgaben zur Vorlesung Statistik Kapitel 5 Seite 4 von 8

5 Kurs B: Anzahl der Teilnehmer 33 arithmetischer Mittelwert der erzielten Punktzahlen 34,2222 empirische Standardabweichung der Punktzahlen 10,1386 a) Kann man mit diesen Daten nachweisen, dass die mittlere Punktzahl in Kurs A größer ist als in Kurs B? Führen Sie zur Beantwortung dieser Frage einen geeigneten Test zum Signifikanzniveau α = 5 % durch. b) Welche statistischen Annahmen liegen dem von Ihnen durchgeführten Test zugrunde? Aufgabe 113 Bei der Massenproduktion eines Artikels treten immer wieder unbrauchbare Stücke auf. Der Produzent versichert, dass ihr Anteil p nicht mehr als 2 % beträgt. Eine Stichprobe vom Umfang n = 5000 ergab 120 unbrauchbare Artikel. Formulieren Sie H 0 und H 1. Kann man H 0 zum Niveau α = 0,05 ablehnen? Zum Niveau α = 0,01? Aufgabe 114 Dem Hersteller eines Waschmittels wird von einer Verbraucherorganisation vorgeworfen 3-kg Packungen in den Handel zu bringen, deren Inhalt wesentlich unter dem Nenngewicht liegt. Der Hersteller bestreitet dies. Zur Überprüfung kauft die Verbraucherorganisation 25 Packungen und stellt jeweils deren Nettogewicht fest. Dabei ergibt sich ein arithmetisches Mittel von x = 2, 96 kg und eine empirische Varianz von s 2 = 0,01 kg 2. Welchen Stichprobentest sollte die Verbraucherorganisation bei einer Irrtumswahrscheinlichkeit von 1 % aufstellen? Wie lautet das Testergebnis? Aufgabe 115 Es sei X eine normalverteilte Zufallsvariable mit bekannter Varianz σ 2 = 20 (also X ~ N( µ,20) ). Es sollen zweiseitige (= nach oben und unten beschränkte) Intervalle berechnet werden. a) Es ist µ = 1000 bekannt. In welchem Intervall liegt das arithmetische Mittel x einer Stichprobe vom Umfang 10 mit Wahrscheinlichkeit 95 %? b) µ ist nicht bekannt. Aber angenommen, es wäre µ = 1000 (Nullhypothese H 0 ), in welchem Intervall liegen dann die Mittelwerte x aus Stichproben vom Umfang n = 10 mit Wahrscheinlichkeit 95 %? c) µ ist nicht bekannt. Bei einer Stichprobe vom Umfang n = 10 ergab sich x = 998,74. In welchem Intervall könnte µ liegen? Aufgabe 116 (Klausuraufgabe Sommersemester 2008) Ein Hersteller von Kühlschränken hofft, durch eine technische Verbesserung den Energieverbrauch reduziert zu haben. Bei einer Stichprobe von 10 Geräten der alten Technik wurde folgender Energieverbrauch gemessen (jeweils in kwh/jahr): Aufgaben zur Vorlesung Statistik Kapitel 5 Seite 5 von 8

6 Bei einer Stichprobe von 8 Geräten mit der verbesserten Technik wurden folgende Werte gemessen: a) Überprüfen Sie mit einem geeigneten Test zum Signifikanzniveau 0,05, ob die technische Verbesserung tatsächlich den Energieverbrauch verringert hat. Gehen Sie dabei davon aus, dass die Messwerte Realisierungen unabhängiger Normalverteilungen sind und dass sich die Varianz der Normalverteilung durch die technische Verbesserung nicht geändert hat. b) Kann man auf Basis dieser Daten bei Signifikanzniveau 0,05 sogar behaupten, der Energieverbrauch habe sich um 10 kwh/jahr verringert? Begründen Sie Ihre Antwort. Aufgabe 117 Die Wirkstoffmenge [in mg] bei einem Medikament sei normalverteilt. Eine Stichprobe vom Umfang n = 10 ergab die Werte 51,3 49,9 49,0 50,1 50,7 50,0 51,4 49,5 48,1 48,9 a) Berechnen Sie den zweiseitigen 99 %-Vertrauensbereich für die mittlere Wirkstoffmenge. b) Berechnen Sie die beiden einseitigen 99 %-Vertrauensbereiche für die mittlere Wirkstoffmenge. c) Für welche Fragestellungen verwendet man welchen der drei Vertrauensbereiche? Aufgabe 118 Bei einer Umfrage unter 1000 (repräsentativ ausgewählten) Personen gaben 71 an, bei der nächsten Wahl für die Partei X stimmen zu wollen. Wie groß ist der Stimmenanteil p, den die Partei bei der Wahl erzielen wird, bei Vertrauenswahrscheinlichkeit 99 % mindestens? Aufgabe 119 Ein Drehautomat fertigt Bolzen. Es ist bekannt, dass der Durchmesser der von dem Automaten gefertigten Bolzen (gemessen in mm) normalverteilt ist mit Varianz σ 2 = 0,26. Eine Stichprobe von 100 Bolzen ergab einen mittleren Durchmesser von x = 54,55 mm. a) Berechnen Sie den zweiseitigen 99%-Vertrauensbereich für den unbekannten Erwartungswert µ der Bolzendurchmesser. b) Berechnen Sie die beiden einseitigen 99%-Vertrauensbereiche für den unbekannten Erwartungswert µ der Bolzendurchmesser. Aufgaben zur Vorlesung Statistik Kapitel 5 Seite 6 von 8

7 Aufgabe 120 Eine Maschine füllt Zucker in Packungen. Beim Nachwiegen von 20 Packungen ergaben sich folgende Werte (in g): 2-mal 996,5 1-mal mal 997,5 1-mal mal 998,5 4-mal mal mal 1000,5 1-mal mal 1002,5 1-mal mal 1004 Die Füllmengen können als normalverteilt angesehen werden. Bestimmen Sie den zweiseitigen Vertrauensbereich für die mittlere Füllmenge der Maschine zum Vertrauensniveau 1 α = 0, 95. Aufgabe 121 Bei einem in der Entwicklung befindlichen neuen Motortyp wurde ein wichtiges Konstruktionsmerkmal geändert. Es liegen die folgenden Messwerte für den Benzinverbrauch (in Liter pro 100 km) vor. Vor der Änderung: Nach der Änderung: a) Berechnen Sie ein zweiseitiges 99%-Vertrauensintervall für die Benzinersparnis, die die Konstruktionsänderung bewirkt hat. b) Welche Annahmen liegen Ihrer Rechnung aus a) zugrunde? Aufgabe 122 Aus einem laufenden Produktionsprozess wird eine Stichprobe von 800 Einheiten gezogen, um zur Vertrauenswahrscheinlichkeit 95 % einen Vertrauensbereich für die Ausschussquote p zu ermitteln. a) Die Stichprobe enthält 6 Ausschussstücke. Berechnen Sie einen zweiseitigen Vertrauensbereich für p. b) Die Stichprobe enthält 6 Ausschussstücke. Berechnen Sie einen einseitigen nach oben begrenzten Vertrauensbereich für p. c) Die Stichprobe enthält 6 Ausschussstücke. Berechnen Sie einen einseitigen nach unten begrenzten Vertrauensbereich für p. d) Die Stichprobe enthält 3 Ausschussstücke. Berechnen Sie einen zweiseitigen Vertrauensbereich für p. Aufgabe 123 Vier Maschinen füllen Zucker in 1000-g-Packungen. Die Füllmengen [in g] von 2 i Maschine i seien N ( µ, σ )-verteilt, dabei sei: i i 4,9 4,6 4,8 4,8 4,6 4,4 4,9 4,5 4,5 4,7 4,1 4,2 4,4 4,5 4,5 4,3 4,4 4,4 µ = mittlere Abfüllmenge der Maschine i; 2 σ i = Abfüllgenauigkeit der Maschine i. Aufgaben zur Vorlesung Statistik Kapitel 5 Seite 7 von 8

8 Maschine 1: Gegeben: µ 1 = 1004, 9 g, σ 1 = 4 [g²] Wie groß ist die Wahrscheinlichkeit, dass eine Packung weniger als 1000 g enthält? Maschine 2: Gegeben: µ 2 = 1003, 7 g, σ 2 = 4 [g²] Welche Füllmenge erreichen 99 % der Packungen mindestens? Maschine 3: µ 3 ist unbekannt. Eine Stichprobe vom Umfang n = 100 lieferte x = 1001,3 g. Kann man damit nachweisen, dass µ 3 > 1000 g gilt? Maschine 4: µ 4 ist unbekannt. Eine Stichprobe vom Umfang n = 100 lieferte x = 1002,5 g. Gesucht ist ein nach unten begrenztes Intervall, das das unbekannte µ 4 enthält. a) Was ist bei Maschine 1, 2, 3, 4 jeweils gesucht? b) Bei manchen der Maschinen kann man das, was gesucht ist, noch nicht ausrechnen; es fehlen noch Angaben. b1) Bei welchen der vier Fragen fehlen noch Angaben? b2) Welche Angaben fehlen? c) Führen Sie die Rechnungen durch. 2 Aufgabe 124 Eine Gruppe G 1 von n 1 =100 Versuchspersonen wird mit einem neuen Medikament behandelt, welches den Blutdruck senken soll. Eine Vergleichsgruppe G 2 mit ebenfalls n 2 =102 Personen wird nicht behandelt und dient nur zur Kontrolle. Es wurde bei allen Personen der Blutdruck in mmhg gemessen. Folgende Werte wurden daraus errechnet (in mmhg): x = 114,84 ; x = 122, 13; s = 10, 5 ; s = 10, Kann man aus diesem Versuch schließen, dass das Medikament tatsächlich die beabsichtigte Wirkung hat, oder beruht der kleinere Durchschnitt in G 1 auf Zufall, weil eben zufällig viele Personen mit ohnehin niedrigem Blutdruck in G 1 gelangt sind? Man wähle 1-α = 0,99 Aufgabe 125 Bei einer Umfrage unter 500 Wahlberechtigten wird gefragt: Welche Partei würden Sie wählen, wenn am Sonntag Wahl wäre?. Von den 500 ausgewählten Personen geben 60 an, dass sie die Partei XY wählen. Zwischen welchen Prozentzahlen bewegt sich mit einer Wahrscheinlichkeit von 95% der tatsächliche Stimmenanteil der Partei XY? 2 Aufgaben zur Vorlesung Statistik Kapitel 5 Seite 8 von 8

Klausur: Einführung in die Statistik

Klausur: Einführung in die Statistik 1 Lösungen immer unter die jeweiligen Aufgaben schreiben. Bei Platzmangel auf die Rückseite schreiben (dann Nummer der bearbeiteten Aufgabe mit anmerken!!!). Lösungen, die nicht auf den Aufgabenblättern

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

1 Von den Ereignissen U und V eines Zufallsexperiments kennt man die Eigenschaften (1) bis (3) :

1 Von den Ereignissen U und V eines Zufallsexperiments kennt man die Eigenschaften (1) bis (3) : Prof. Dr. E. Mammen SEMINAR FÜR STATISTIK Prof. Dr. H. Stenger UNIVERSITÄT MANNHEIM Vierstündige Klausur in statistischer Methodenlehre 9. Juli 003; 8:30 - :30 Zulässige Hilfsmittel: keine, insbesondere

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

Nachhilfe: Wahrscheinlichkeitsrechnung Aufgaben. Aufgaben deren Lösungsansatz zu einer Vierfelder-Tafel oder einem Baumdiagramm führt.

Nachhilfe: Wahrscheinlichkeitsrechnung Aufgaben. Aufgaben deren Lösungsansatz zu einer Vierfelder-Tafel oder einem Baumdiagramm führt. deren Lösungsansatz zu einer Vierfelder-Tafel oder einem Baumdiagramm führt. 3.1.1 In einer Klasse mit 30 LT haben 19 LT ein Notebook und 40% der LT sind männlich. Genau fünf männliche LT haben kein Notebook.

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Der Provider möchte möglichst vermeiden, dass die Werbekampagne auf Grund des Testergebnisses irrtümlich unterlassen wird.

Der Provider möchte möglichst vermeiden, dass die Werbekampagne auf Grund des Testergebnisses irrtümlich unterlassen wird. Hypothesentest ================================================================== 1. Ein Internetprovider möchte im Fichtelgebirge eine Werbekampagne durchführen, da er vermutet, dass dort höchstens 40%

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Statistik-Übungsaufgaben

Statistik-Übungsaufgaben Statistik-Übungsaufgaben 1) Bei der Produktion eine Massenartikels sind erfahrungsgemäß 20 % aller gefertigten Erzeugnisse unbrauchbar. Es wird eine Stichprobe vom Umfang n =1000 entnommen. Wie groß ist

Mehr

Testen von Hypothesen bei gesuchtem Annahmebereich - Übungen

Testen von Hypothesen bei gesuchtem Annahmebereich - Übungen Mathias Russ, MK 19.04.2007 Hypothesentest_Ueb_Alpha.mcd Testen von Hypothesen bei gesuchtem Annahmebereich - Übungen (7) Wieder der Schulschwänzer Von einem Schüler wird behauptet, dass er (mindestens)

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2010/2011. Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2010/2011. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2010/2011 Aufgabe 1 Nach einer

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

12.1 Wie funktioniert ein Signifikanztest?

12.1 Wie funktioniert ein Signifikanztest? Sedlmeier & Renkewitz Kapitel 12 Signifikanztests 12.1 Wie funktioniert ein Signifikanztest? Zentrales Ergebnis eine Signifikanztests: Wie wahrscheinlich war es unter der Bedingung dass H0 gilt, diesen

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Übungen zur Vorlesung Induktive Statistik Bedingte Wahrscheinlichkeiten

Übungen zur Vorlesung Induktive Statistik Bedingte Wahrscheinlichkeiten Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@dvz.fh-koeln.de Aufgabe 3.1 Übungen zur Vorlesung Induktive Statistik Bedingte Wahrscheinlichkeiten

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

27. Statistische Tests für Parameter. Was ist ein statistischer Test?

27. Statistische Tests für Parameter. Was ist ein statistischer Test? 27. Statistische Tests für Parameter Wenn du eine weise Antwort verlangst, musst du vernünftig fragen Was ist ein statistischer Test? Ein statistischen Test ist ein Verfahren, welches ausgehend von Stichproben

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

an, anderfalls wird sie verworfen. Bestimmen Sie den Fehler 1. und 2. Art. Bestimmen Sie zu obigem Beispiel jeweils den Anahmebereich a 0; 1;...

an, anderfalls wird sie verworfen. Bestimmen Sie den Fehler 1. und 2. Art. Bestimmen Sie zu obigem Beispiel jeweils den Anahmebereich a 0; 1;... Hypothesentest ================================================================== Fehler 1. und 2.Art Ein Pilzsammler findet einen Pilz der giftig sein könnte. a) Welchen Fehler kann er bei der Überprüfung

Mehr

Prof. Dr. Günter Hellmig. Aufgabenskript Induktive Statistik

Prof. Dr. Günter Hellmig. Aufgabenskript Induktive Statistik rof. Dr. Günter Hellmig Aufgabenskript Induktive Statistik Inhalt:.Kombinatorik: Variation und Kombination, jeweils ohne Wiederholung 2.Rechnen mit Wahrscheinlichkeiten: Additions- und Multiplikationssätze

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Klausur in Statistik VWA Essen

Klausur in Statistik VWA Essen Prof. Dr. Peter von der Lippe Klausur in Statistik VWA Essen neue Regelung (verkürzter Stoff) Bitte schreiben Sie hier Ihren Namen auf das Deckblatt. Bitte neben dieser Aufgabenstellung keine weitere Blätter

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

Kaufhaus-Aufgabe. aus Abiturprüfung Bayern LK (abgeändert)

Kaufhaus-Aufgabe. aus Abiturprüfung Bayern LK (abgeändert) Kaufhaus-Aufgabe aus Abiturprüfung Bayern LK (abgeändert) 5. a) Ein Kunde eines Kaufhauses benutzt mit einer Wahrscheinlichkeit von 75% die hauseigene Tiefgarage. Mit einer Wahrscheinlichkeit von 40% bleibt

Mehr

B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!

B 2.  Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!! Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden

Mehr

Übungsaufgaben. Wahrscheinlichkeitsrechnung und Schließende Statistik SS 2004

Übungsaufgaben. Wahrscheinlichkeitsrechnung und Schließende Statistik SS 2004 Übungsaufgaben Wahrscheinlichkeitsrechnung und Schließende Statistik SS 2004 Dr. H. Grunert Franzstraße 49, 06406 Bernburg Tel. 03471-626493, Fax 03471-626496 Email: grunert @ mws-bbg.de I. Wahrscheinlichkeitsrechnung

Mehr

Einfache statistische Testverfahren

Einfache statistische Testverfahren Einfache statistische Testverfahren Johannes Hain Lehrstuhl für Mathematik VIII (Statistik) 1/29 Hypothesentesten: Allgemeine Situation Im Folgenden wird die statistische Vorgehensweise zur Durchführung

Mehr

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand 1 Fragestellung Methoden.1 Vergleich der Anzahlen. Vergleich

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Statistiktraining im Qualitätsmanagement

Statistiktraining im Qualitätsmanagement Gerhard Linß Statistiktraining im Qualitätsmanagement ISBN-0: -446-75- ISBN-: 978--446-75-4 Leserobe Weitere Informationen oder Bestellungen unter htt://www.hanser.de/978--446-75-4 sowie im Buchhandel

Mehr

Fragestellungen der Schließenden Statistik

Fragestellungen der Schließenden Statistik Fragestellungen der Schließenden Statistik Bisher: Teil I: Beschreibende Statistik Zusammenfassung von an GesamtheitM N {e,,e N } erhobenem Datensatz x,,x N durch Häufigkeitsverteilung und Kennzahlen für

Mehr

Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME):

Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME): Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME): MATRIKELNUMMER: Alte Prüfungsordnung/Neue Prüfungsordnung

Mehr

Marktforschung I. Marktforschung I 2

Marktforschung I. Marktforschung I 2 Marktforschung I Marktforschung I Einführung in die Testtheorie (Toporowski) Mathematische Grundlagen (Toporowski) Varianzanalyse (Toporowski) Regressionsanalyse (Boztuğ) Diskriminanzanalyse (Hammerschmidt)

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und β-fehler? Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Statistische Datenauswertung. Andreas Stoll Kantonsschule Olten

Statistische Datenauswertung. Andreas Stoll Kantonsschule Olten Statistische Datenauswertung Andreas Stoll Beschreibende vs. schliessende Statistik Wir unterscheiden grundsätzlich zwischen beschreibender (deskriptiver) und schliessender (induktiver) Statistik. Bei

Mehr

DEKLARIERTE WÄRMELEITFÄHIGKEIT VON DÄMMSTOFFEN EIN PFERDEFUSS BEI DER QUALITÄTSSICHERUNG H. Bangerter, berat. Ing.

DEKLARIERTE WÄRMELEITFÄHIGKEIT VON DÄMMSTOFFEN EIN PFERDEFUSS BEI DER QUALITÄTSSICHERUNG H. Bangerter, berat. Ing. DEKLARIERTE WÄRMELEITFÄHIGKEIT VON DÄMMSTOFFEN EIN PFERDEFUSS BEI DER QUALITÄTSSICHERUNG H. Bangerter, berat. Ing. usic/sia, Kloten Die wichtigste Eigenschaft eines Wärmedämmstoffs ist dessen Wärmeleitfähigkeit.

Mehr

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500 Aufgabe 1 Für die Securance-Versicherung liegen Ihnen die gemeinsamen absoluten Häugkeiten der Merkmale X: Schadenshöhe und Y : Versicherungsart für die letzten 500 gemeldeten Schäden vor. 1. Interpretieren

Mehr

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

Arbeitsblätter zum Fach. Sicherheitstechnik. Abschnitt: Zuverlässigkeit technischer Systeme

Arbeitsblätter zum Fach. Sicherheitstechnik. Abschnitt: Zuverlässigkeit technischer Systeme TU DRESDEN Institut für Verfahrenstechnik & Umwelttechnik Professur für Verfahrensautomatisierung Prof. Dr.-Ing. habil. Klöden Arbeitsblätter zum Fach Sicherheitstechnik Abschnitt: Zuverlässigkeit technischer

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/35 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Toleranzberechnung/-Simulation

Toleranzberechnung/-Simulation Summenhäufigkeit zufallsgeneriert Toleranzberechnung/-Simulation Einführung Das Ziel ist es die Auswirkung von vielen Einzeltoleranzen auf ein Funktionsmaß zu ermitteln. Bekanntlich ist das addieren der

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:..

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:.. Institut für Erziehungswissenschaft der Philipps-Universität Marburg Prof. Dr. Udo Kuckartz Arbeitsbereich Empirische Pädagogik/Methoden der Sozialforschung Wintersemester 004/005 KLAUSUR FEBRUAR 005 /

Mehr

Weiterbildungskurs Stochastik

Weiterbildungskurs Stochastik Hansruedi Künsch Seminar für Statistik Departement Mathematik, ETH Zürich 24. Juni 2009 Inhalt STATISTIK DER BINOMIALVERTEILUNG 1 STATISTIK DER BINOMIALVERTEILUNG 2 Fragestellungen Typische Fragestellungen

Mehr

Welch-Test. Welch-Test

Welch-Test. Welch-Test Welch-Test Welch-Test Test auf Lageunterschied zweier normalverteilter Grundgesamtheiten mit unbekannten Varianzen durch Vergleich der Mittelwerte zweier unabhängiger Zufallsstichproben. Beispiel Im Labor

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Abitur 2011 Mathematik GK Stochastik Aufgabe C1

Abitur 2011 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2011 Mathematik GK Stochastik Aufgabe C1 Bei der TOTO-13er-Wette (vgl. abgebildeten Ausschnitt aus einem Spielschein) wird auf den Spielausgang von 13 Fußballspielen

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 3 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik BeStat-1 (7 ) n = 400 Personen wurden gefragt, wie viele Stück eines

Mehr

LM2. WAHRSCHEINLICHKEITSRECHNUNG/STATISTIK

LM2. WAHRSCHEINLICHKEITSRECHNUNG/STATISTIK LM2. WAHRSCHEINLICHKEITSRECHNUNG/STATISTIK III. In einer Region haben 60 % der Haushalte einen Internetanschluss. Das Diagramm veranschaulicht die Anteile der Zugangsgeschwindigkeiten unter den Haushalten

Mehr

(1) Wie groß ist dann die Wahrscheinlichkeit, dass man beim Kauf eine Packung mit mindestens 1050g Füllmenge bekommt?

(1) Wie groß ist dann die Wahrscheinlichkeit, dass man beim Kauf eine Packung mit mindestens 1050g Füllmenge bekommt? 8A Zuckerfabrik An einer Abfüllmaschine in einer Zuckerfabrik werden mehrfach Stichproben genommen, um die Füllmengen der Kilopackungen zu kontrollieren. Dabei ergibt sich die realistische Annahme, dass

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende im Sommersemester 2012 Prof. Dr. H. Küchenhoff, J. Brandt, G. Schollmeyer, G. Walter Aufgabe 1 Betrachten

Mehr

Statistische Auswertung:

Statistische Auswertung: Statistische Auswertung: Die erhobenen Daten mittels der selbst erstellten Tests (Surfaufgaben) Statistics Punkte aus dem Punkte aus Surftheorietest Punkte aus dem dem und dem Surftheorietest max.14p.

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Kapitel 4 Seite 1 von 23 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Kapitel 4 Seite 1 von 23 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 4 3 Aufgabe 8 3 Aufgabe 9 3 Aufgabe 30 3 Aufgabe 31 3 Aufgabe 3 4 Aufgabe 33 4 Aufgabe 34 4 Aufgabe 35 4 Aufgabe 36 4 Aufgabe 37 4 Aufgabe 38 5 Aufgabe 39

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Wilcoxon-Rangsummen-Test

Wilcoxon-Rangsummen-Test Wilcoxon-Rangsummen-Test Theorie: Wilcoxon-Rangsummen-Test Der Wilcoxon-Rangsummen-Test prüft, ob sich die Verteilungen der Grundgesamtheiten zweier Stichproben bezüglich ihrer Lage unterscheiden. Ein

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Hamburg Mathematik Stochastik Übungsaufgabe 1 Grundlegendes Niveau

Hamburg Mathematik Stochastik Übungsaufgabe 1 Grundlegendes Niveau Hamburg Mathematik Stochastik Übungsaufgabe 1 Grundlegendes Niveau Thermoschalter Der Konzern Thermosicherheit stellt Thermoschalter in Massenproduktion her. Jeder Thermoschalter ist mit einer Wahrscheinlichkeit

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene

Mehr

Klausur Wirtschaftsmathematik Lösungshinweise

Klausur Wirtschaftsmathematik Lösungshinweise Klausur Wirtschaftsmathematik Lösungshinweise Prüfungsdatum: 27. Juni 2015 Prüfer: Etschberger Studiengang: Wirtschaftsingenieurwesen Aufgabe 1 16 Punkte Anton Arglos hat von seiner Großmutter 30 000 geschenkt

Mehr

Mögliche Fehler beim Testen

Mögliche Fehler beim Testen Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.

Mehr

Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5

Mehr