Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck.

Größe: px
Ab Seite anzeigen:

Download "Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck."

Transkript

1 Bruchzahlen Zeichne Rechtecke von cm Länge und cm Breite. Dieses Rechteck soll Ganzes ( G) darstellen. Hinweis: a.) Färbe ; ; ; ; ; ; 6 b.) Färbe ; ; ; ; ; ; 6 von diesem Rechteck. von diesem Rechteck. ; ; ; sind Brüche oder Bruchzahlen. Jeder Bruch besteht aus zwei natürlichen Zahlen, von denen sich eine über dem so genannten Bruchstrich und eine unter dem Bruchstrich befindet. Jede dieser bei- den Zahlen hat eine bestimmte Bedeutung. ein Halbes: (ein Ganzes Halbe) G : ein Viertel: (ein Ganzes Viertel) G : ein Drittel: (ein Ganzes Drittel) G : ein Sechstel: 6 (ein Ganzes 6 Sechstel) G : 6 6 ein Achtel: (ein Ganzes Achtel) G : ein Zwölftel: (ein Ganzes Zwölftel) G : ein Vierundzwanzigstel: (ein Ganzes Vzstel) G : Seite von 6

2 MERKE:.) Eine Bruchzahl besteht aus: Zähler (natürliche Zahl) Nenner (natürliche Zahl).) Ist der Zähler eines Bruches Teile ein Ganzes zerlegt wird. ; ; ; usw., so gibt der Nenner an, in wie viele gleich große.) Je größer der Nenner eines solchen Bruches ist, desto kleiner sind die Teile, die man erhält. Teile G in Teile (Nenner), färbe davon (Zähler). Teile G in Teile (Nenner), färbe davon (Zähler). 6 Teile G in 6 Teile (Nenner), färbe davon (Zähler). Teile G in Teile (Nenner), färbe davon (Zähler). Teile G in Teile (Nenner), färbe davon (Zähler). Teile G in Teile (Nenner), färbe davon (Zähler). Teile G in Teile (Nenner), färbe davon (Zähler). Seite von 6

3 MERKE:.) Der Nenner eines Bruches gibt an, in wie viele gleich große Teile ein Ganzes zerlegt wird..) Der Zähler eines Bruches gibt an, wie viele solcher Teile genommen werden sollen. Stelle den Bruch ; a.) an einem geeigneten Rechteck und b.) an einer geeigneten Strecke dar. zu a.) ( mögliches Beispiel): zu b.) ( mögliches Beispiel) Seite von 6

4 Gemischte Schreibweise Zeichne Rechtecke von cm Länge und cm Breite. Dieses Rechteck soll Ganzes ( G) darstellen. zu a.) a.) Färbe ; ; b.) Färbe ; ; von diesem Rechteck. von diesem Rechteck. Ganzes Rechteck Viertel Ganze Rechtecke Viertel Ganze Rechtecke Viertel zu b.) Ganzes + Viertel + Ganze + Viertel + Ganze + Viertel + Seite von 6

5 Umwandlung: Unechter Bruch Gemischte Schreibweise.) Unechter Bruch Gemischte Schreibweise: Wie viele Ganze sind in den folgenden Brüchen enthalten, und welcher Bruchteil bleibt übrig? 6 ; ; ; ; ; 6 0 G 6 G ; ; ; ; ; ) Gemischte Schreibweise Unechter Bruch: Verwandle folgende Brüche aus der gemischten Schreibweise in unechte Brüche: ; ; ; ; ; 0 G + G + G + G G G G + G + G G G G Seite von 6

6 Einteilung der Brüche.) Echte Brüche: Brüche, bei denen der Zähler kleiner als der Nenner ist, bezeichnet man als echte Brüche. Echte Brüche sind: ; ; ; ; ; 6 0 Für diese Brüche gibt es keine andere Schreibweise..) Unechte Brüche: Brüche, bei denen der Zähler größer als der Nenner ist, bezeichnet man als unechte Brüche. Unechte Brüche sind: 0 ; ; ; ; ; 6 0 Alle unechten Brüche lassen sich in gemischte Brüche umwandeln..) Gemischte Brüche: Brüche, die aus einer natürlichen Zahl und einem echten Bruch bestehen, bezeichnet man als gemischte Brüche. Gemischte Brüche sind: ; ; ; ; ; 6 0 Alle gemischten Brüche lassen sich in unechte Brüche umwandeln..) Scheinbrüche: Brüche, bei denen der Zähler ein Vielfaches des Nenners ist, bezeichnet man als Scheinbrüche. Scheinbrüche sind: 0 60 ; ; ; ; ; 6 0 Alle Scheinbrüche lassen sich in eine natürliche Zahl umwandeln. Seite 6 von 6

7 Einteilung der Brüche.) a.) Ordne die folgenden Brüche untereinander in die richtige Spalte der unteren Tabelle ein: ; ; ; ; ; ; ; ; 0 6 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 6 0 b.) Wandle alle Brüche, die sich auch in einer anderen Darstellung schreiben lassen, in der Tabelle um. Echte Brüche Unechte Brüche Gemischte Brüche Scheinbrüche gem.bruch unechter B. natürl.zahl Seite von 6

8 Einteilung der Brüche (Lösung).) a.) Ordne die folgenden Brüche untereinander in die richtige Spalte der unteren Tabelle ein: ; ; ; ; ; ; ; ; 0 6 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 6 0 b.) Wandle alle Brüche, die sich auch in einer anderen Darstellung schreiben lassen, in der Tabelle um. Echte Brüche Unechte Brüche Gemischte Brüche Scheinbrüche gem.bruch unechter B. natürl.zahl () () 0 6 () (6) 6 ( 6) () () Seite von 6

9 Brüche als Divisionsaufgaben Aufgaben:.) Äpfel sollen gerecht unter Kindern verteilt werden. Wie viel erhält jedes Kind?. Kind. Kind. Kind. Kind Jedes Kind erhält erst einmal ganze Äpfel: : Der übrig gebliebene Apfel wird nun in gleich große Teile aufgeteilt: Jedes Kind erhält noch einmal Apfel. Also insgesamt: + Apfel. Dafür lässt sich auch folgende Divisionsaufgabe schreiben: Äpfel : Äpfel Äpfel.) Mädchen wollen sich Tafeln Schokolade teilen. Wie viel erhält jede?. Kind. Kind. Kind Kind. Kind. Kind : Jedes Kind erhält der Tafeln Schokolade..) Drei Mädchen wollen sich Tafeln Schokolade teilen. : Jede erhält Tafeln Schokolade..) Fünf Jungen wollen sich Pizzen teilen. : Jede erhält Pizza. Seite von 6

10 Berechne:.) :.) :.) :. ) 00 : : 0 + ( : ) 0 + : + (: ) + : + ( : ) : + (: ) + MERKE: Den Quotienten zweier natürlicher Zahlen kann man auch als Bruch schreiben: : oder : : Dabei wird der Dividend zum Zähler des Bruches und der Divisor zum Nenner des Bruches. Dividend : Divisor Dividend (Zähler) Divisor (Nenner) Brüche mit Maßeinheiten Wandle in eine kleinere Maßeinheit um:.) Liter l v on l (G) von 000 ml : 000 ml 00 ml 00 ml.) Stunde h von h (G) von 60 min : 60 min min min.) Schulstunde sh von sh (G ) von min : min min 0 min.) Meter m von m (G) von 00 cm : 00 cm 0 cm 0 cm.) Tonnen t von t (G) von 000 g 000 g g g : Seite 0 von 6

11 MERKE: Wendet man einen Bruch auf eine Maßeinheit an, so muss man folgendes beachten: Der Zähler des Bruches ist der Mal-Operator. Der Nenner des Bruches ist der Durch-Operator. Liter bedeutet also: Teile die nächst mögliche kleinere Maßeinheit durch und multipliziere dieses Ergebnis mit : : Liter von 000 ml 000 ml 00 ml 00 ml Zähler Mal Operator( ) Nenner Durch Operator(:) : Gemischte Schreibweise bei Maßeinheiten Was bedeutet:.) m.) l.) kg 0 m + m 00 cm + cm cm, m l + l 000 ml + 00 ml 00 ml, l kg + kg g + 00 g 00 g, kg.) h h + h 0 min+ min min h min Seite von 6

12 Brüche und ihre Eigenschaften.) Wandle die folgenden Brüche in unechte, gemischte Brüche oder in eine natürliche Zahl um: 0 6 a.) b.) c.) d.) e.) f.) g.) h.) i.) j.) k.) l.) m.) n.) o.) p.) q.) r.) s.) t.) u.) v.) 6.) Verwandle in die nächst kleinere Einheit: a.) kg b.) Liter c.) cm d.) d e.) h f.) km 6 g.) ha h.) g i.) h j.) t k.) min l.) d m.) 6 n.) a o.) dm p.) w q.) g r.) sh 0.) Gib die Ergebnisse der folgenden Divisionsaufgaben mit Hilfe eines gemischten Bruches an: a.) : b.) : c.) : d.) 00 : e.) : 6 f.) : g.) 0 : h.) 6 : i.) : j.) : k.) 6 : l.) : m.) : n.) : o.) :.) Markiere den Bruch in den folgenden Figuren:.) Färbe stets den Teil, der angegeben ist: 6 Seite von 6

13 Brüche und ihre Eigenschaften (Lösungen).) Wandle die folgenden Brüche in unechte, gemischte Brüche oder in eine natürliche Zahl um: 0 a.) 6 b.) c.) d.) e.) f.) g.) h.) 6 6 i.) j.) k.) l.) m.) n.) o.) p.) q.) r.) s.) 0 t.) u.) v.) 6 6.) Verwandle in die nächst kleinere Einheit: a.) 00 g b.) ml c.) mm d.) h e.) min f.) 0 m g.) 0 a h.) 6 mg i.) 6 min j.) 00 kg k.) 0 s l.) 06 h m.) 60 C n.) 6 m o.) cm p.) d q.) 60 mg r.) 0 min.) Gib die Ergebnisse der folgenden Divisionsaufgaben mit Hilfe eines gemischten Bruches an: a.) b.) c.) 0 d.) e.) f.) g.) h.) i.) 6 j.) 0 k.) l.) 6 m.) n.) o.).) Markiere den Bruch in den folgenden Figuren:.) Färbe stets den Teil, der angegeben ist: 6 Seite von 6

14 Bruchteile von beliebigen Größen ( Grundaufgaben).) Bestimmen eines Teils von einer Größe Ein neu geplanter Autobahnabschnitt ist 0 Kilometer lang. Im ersten Bauabschnitt sollen, im zweiten Bauabschnitt und im letzten Bauabschnitt des ganzen Autobahnabschnitts fertig gestellt werden. a.) b.) Veranschauliche die einzelnen Bauabschnitte mit Hilfe einer Zeichnung. Wie viele Kilometer sind die einzelnen Bauabschnitte jeweils lang? zu a.) 0 km ( Ganzes) km km km km km km km. Abschnitt. Abschnitt. Abschnitt zu b.) von 0 km : 0 km : km 0 km von 0 km 0 km von 0 km :0 km : km 60 km von 0 km 60 km von 0 km : 0 km : km km von 0 km km Seite von 6

15 MERKE: Die Rechenanweisung: von 0 km bedeutet:.) Dividiere 0 km durch..) Multipliziere das Ergebnis () mit. oder:.) Multipliziere 0 km mit..) Dividiere das Ergebnis (0) durch. Der Zähler des Bruches ist also der Mal-Operator, der Nenner des Bruches der Durch-Operator. Mal Operator() Durch Operator() : : : Das Ganze Ergebnis.) Bestimmen des Ganzen Wegen einer Grippeerkrankung fehlen Schüler einer Klasse, das sind genau der Klasse. Wie viele Schüler gehören zu der Klasse? (Das Ganze) x Operator : (Ergebnis) : (Das Ganze) 0 6 (Ergebnis) Die Klasse zählt insgesamt 0 Schüler. Gegenoperator MERKE:.) Der Bruchoperator von macht das rückgängig, was der Bruchoperator von bewirkt hat..) Man nennt den Gegenoperator (Kehrwert) zu von..) Der Gegenoperator (Kehrwert) wird immer dann benutzt, wenn das Ganze (Anfangswert) gesucht ist. Seite von 6

16 .) Bestimmen des Bruchteils Jonas hat von 6 Aufgaben richtig gelöst. Welchen Bruchteil aller Aufgaben hat er richtig? :y x 6 : 6 : 6 : MERKE: Um den richtigen Bruchoperator bestimmen zu können, muss man eine Zahl finden, die sowohl im Anfangswert als auch im Endwert enthalten ist. Diese gemeinsam enthaltene Zahl soll dabei möglichst groß sein. Beispiele dazu: Welcher beste Bruchoperator führt den Anfangswert in den Endwert über? :y x.) :y x.) :y x.) 6 0 :y x.)0 0 : : 6 : : :y x :.) Übersicht über die drei Grundaufgaben: Gesucht ist der Endwert (das Ergebnis): Bruchoperator.) Anfangswert (Das Ganze) Endwert (Erge bnis) Beispiel: Wie viel sind von 0 : 0 Gesucht ist der Anfangswert (das Ganze): Bruchoperator.) Anfangswert (Das Ganze) Endwert (Ergebnis) Gegenoperator Endwert (Ergebnis) Anfangswert (Das Ganze) Beispiel: Von welchem Betrag sind : x 0 Gesucht ist der Bruchoperator: Bruchoperator.) Anfangswert (Das Ganze) Endwert (Ergebnis) Anfangswert ( Das Ganze) Zwischenwert : Nenner Zähler Endwert (Ergebnis) Beispiel: Welcher Bruchteil sind 0 von : : 0 0 Seite 6 von 6

17 Das Ganze - Operator - Gegenoperator.) Bestimme jeweils den Wert des Platzhalters. a.) j.) b.) 6 k.) 6 d.) 0 60 l.) 00 e.) 6 m.) g.) n.) h.) 0 0 o.) 0 i.) 6 p.) 66.) Bestimme den (Bruch-) Anteil; versuche jeweils den besten Bruch zu finden: a.) min von 60 min c.) h von h b.) cm von 0 cm d.) 6 g von 00 g.) Selina hat von ihrem Opa 60 zu Weihnachten erhalten. Davon spart sie für die Skiferien. a.) Wie viel Euro spart sie für die Skiferien? b.) Wie viel Euro bleiben ihr übrig? c.) Wie heißt der Bruchteil für die Euro, die ihr übrig bleiben?.) Landwirt Pflüger besitzt ha Wald. Das sind seiner gesamten Nutzfläche. a.) Über wie viel Hektar Nutzfläche verfügt Landwirt Pflüger insgesamt? b.) Wie viel m sind das? c.) Auf seiner Nutzfläche pflanzt Landwirt Pflüger Kartoffeln an. Wie viel Hektar und wie viel m sind das? Seite von 6

18 Das Ganze - Operator Gegenoperator (Lösungen).) Bestimme jeweils den Wert des Platzhalters. a.) j.) b.) 6 k.) 6 6 d.) 0 60 l.) 0 00 e.) 6 m.) g.) 0 n.) h.) 0 0 o.) 0 i.) 6 p.) 66.) Bestimme den (Bruch-) Anteil; versuche jeweils den besten Bruch zu finden: a.) min von 60 min c.) h von h b.) cm von 0 cm d.) 6 g von 00 g zu.) : a.) von 60 : 60 6 b.) 60 6 c.) von 60 : : 60 6 zu.) a.) : ha : ha ha ha b. ) ha m c.) : ha ha 0 ha Seite von 6

19 Gleichheit von Brüchen (Erweitern und Kürzen) Aufgabe : Zeichne Rechtecke mit jeweils cm Länge und cm Breite. Vergleiche dann die Brüche ; und 6 mit Hilfe dieser Rechtecke. Was stellst du fest? 6 Aufgabe : Anke hat zum Geburtstag bekommen. Vergleiche die Brüche 6 0 ; und. von : : 0 von 0 6 von : : von 0 0 von 0 0 von : : 0 0 MERKE: Die Brüche ; und (Aufgabe ) und die Brüche ; und Anwendung auf das Ganze (Rechteck, ) das gleiche Ergebnis erzielen. (Aufgabe ) sind wertgleich, da sie bei Wie erhält man nun wertgleiche Brüche? Bilde Brüche, die zu dem Bruch wertgleich sind. Erweiterungszahl Erweitern eines Bruches! (mit den Zahlen, und 6) Seite von 6

20 MERKE: Man erhält wertgleiche Brüche, in dem man Zähler und Nenner mit der gleichen natürlichen Zahl (Erweiterungszahl) multipliziert. Diesen Vorgang nennt man Erweitern von Brüchen. Man kann durch das Erweitern unendlich viele wertgleiche Brüche herstellen. Bilde Brüche, die zu dem Bruch wertgleich sind. 6 6 Kürzen eines Bruches! (mit den Zahlen, und 6) Kürzungszahl Welche Bedeutung besitzt dabei der Bruch? ist der letzte Bruch in der Kürzungskette. Man bezeichnet des Bruches. als die Grunddarstellung MERKE: Man erhält wertgleiche Brüche, in dem man Zähler und Nenner mit der gleichen natürlichen Zahl (Kürzungszahl) dividiert. Diesen Vorgang nennt man Kürzen von Brüchen. Ein Bruch, der sich nicht mehr kürzen lässt, bezeichnet man als Stammbruch oder die Grunddarstellung des Bruches. Seite 0 von 6

21 Grundaufgaben zum Erweitern.) Erweitere den Bruch nacheinander mit den Erweiterungszahlen,,,, 6: 6.) Erweitere die Brüche ; ; ; 6 ; so, dass a.) der Nenner 0 ist; b.) der Zähler 0 ist. 0 0 Gib jeweils die Erweiterungszahl über dem Gleichheitszeichen () an! a.) Nenner 0: b.) Zähler 0: ) Setze für die passende Zahl ein. Gib auch die Erweiterungszahl über dem Gleichheitszeichen an: a.) b.) c.) d.) e.) ) Erweitere die Brüche so, dass sie dann () einen gemeinsamen Nenner haben; () einen gemeinsamen Zähler haben: () gemeinsamer Nenner: a.) ; b.) ; c.) ; ; 0 6 () gemeinsamer Zähler: a.) ; b.) ; c.) ; ; 0 6.) Erweitere die Brüche; sie sollen einen möglichst kleinen gemeinsamen Nenner haben: a.) ; ; b.) ; ; ; 6 6 c.) ; ; ; d.) ; ; ; ; 0 0 0!! Wenn du alle Aufgaben gelöst hast, klebe bitte dieses Arbeitsblatt in dein Merkheft ein!! Seite von 6

22 .) Kürze den Bruch 6 Grundaufgaben zum Kürzen nacheinander mit den Kürzungszahlen,,,, : ) Kürze die Brüche ; ; ; ; schrittweise bis zur Grunddarstellung (Stammbruch): Gib jeweils die Kürzungszahl unter dem Gleichheitszeichen () an! a.) Grunddarstellung : b.) Grunddarstellung : 0 c.) 60 Grunddarstellung : 0 d.) 6 Grunddarstellung : e.) 0 Grunddarstellung : 0.) Setze für die passende Zahl ein. Gib auch die Kürzungszahl unter dem Gleichheitszeichen an: a.) b.) c.) d.) 0.) Kürze schrittweise bis zur Grunddarstellung: 6 a.) b.) 0 c.) d.) 0 6 e.) f.) g.) h.) 0 0 i.) j.) 00 0!! Wenn du alle Aufgaben gelöst hast, klebe bitte dieses Arbeitsblatt in dein Merkheft ein!! Seite von 6

23 Ordnen von Brüchen Zeichne -mal eine Strecke von 6 cm. zu a.) a.) Färbe und der Strecke. (Die Brüche besitzen den gleichen Nenner!) b.) Färbe und der Strecke. (Die Brüche besitzen den gleichen Zähler!) 6 Man erkennt: < denn < zu b.) Man erkennt: < denn Zwölftel < Se chstel 6 MERKE Bruchzahlen lassen sich leicht der Größe nach vergleichen, wenn sie a.) gleiche Nenner oder b.) gleiche Zähler besitzen: a.) Haben Brüche den gleichen Nenner, so ist derjenige kleiner (größer), der den kleineren (größeren) Zähler besitzt. b.) Haben Brüche den gleichen Zähler, so ist derjenige kleiner (größer), der den größeren (kleineren) Nenner besitzt. Ordne folgende Brüche nach der Größe. Beginne mit dem kleinsten Bruch. ; ; ; ; ; ; 0 0 Möglichkeit : Man wendet alle Brüche auf eine Einheit an, z.b. km 000 m: : : km 000 m m 6 m() km 000 m m m() :0 : km 000 m 00 m 00 m() km 000 m 0 m 0 m() 0 : : km 000 m 00 m 00 m() km 000 m 0 m 0 m(6) km 000 m : 00 m 00 m( ) 0 Seite von 6

24 Möglichkeit : Man versucht, alle Brüche auf den gleichen Nenner zu bringen, um dann die Zähler vergleichen zu können: < < < < < < < < < < < < 0 0 MERKE: Um Brüche, die verschiedene Nenner besitzen, in ihrer Größe vergleichen zu können, erweitert man sie auf einen möglichst kleinen gemeinsamen Nenner und vergleicht dann die Zähler. Den Vorgang, Brüche auf einen gleichen Nenner zu bringen, bezeichnet man als Brüche gleichnamig machen. Brüche auf dem Zahlenstrahl Entwicklung eines Zahlenstrahles, an dem man auch die Position von einigen Brüchen erkennen kann: Zwischen 0 und befinden sich alle echten Brüche Hinter der liegen alle unechten Brüche und gemischten Brüche MERKE:.) Alle echten Brüche liegen zwischen 0 und auf dem Zahlenstrahl..) Alle unechten und gemischten Brüche liegen hinter der auf dem Zahlenstrahl..) Alle Scheinbrüche liegen an der Stelle der natürlichern Zahlen. Seite von 6

25 Anordnung der Brüche auf dem Zahlenstrahl Welche Brüche werden durch die Pfeile am Zahlenstrahl dargestellt? Notiere für jeden Buchstaben den entsprechenden Bruch in der GRUNDDARSTELLUNG oder als GEMISCHTEN BRUCH..) 0 A B C D E F G H.) 0 A B C D E F G H.) 0 A B C D E F G H.) 0 A B C D E F G H.) 0 A B C D E F G H 6.) 0 A B C D E F G H.) 0 A B C D E F G H.) 0 ½ A B C D E F G H Seite von 6

26 Anordnung der Brüche auf dem Zahlenstrahl (Lösungen) zu.) A B C D 0 0 E F G H zu.) A B C D 6 E F G H 6 6 zu.) 6 A B C D 6 6 E F G H 6 6 zu.) 6 A B C D 6 E F G H zu.) 6 A B C D 6 6 E F G H 6 6 zu 6.) A B C D 0 0 E F G H 0 0 zu.) 6 A B C D 6 E F G H zu.) 6 A B C D E F G H Seite 6 von 6

Aufgabensammlung Bruchrechnen

Aufgabensammlung Bruchrechnen Aufgabensammlung Bruchrechnen Inhaltsverzeichnis Bruchrechnung. Kürzen und Erweitern.................................. 4. Addition von Brüchen................................... Multiplikation von Brüchen...............................

Mehr

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen.

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen. Essen und Trinken Teilen und Zusammenfügen Vertiefen Brüche im Alltag zu Aufgabe Schulbuch, Seite 06 Schokoladenstücke Schokoladentafeln haben unterschiedlich viele Stückchen. a) Till will von jeder Tafel

Mehr

Mathematik für Klasse 6 Bruchrechnung Teil 1

Mathematik für Klasse 6 Bruchrechnung Teil 1 Testversion Mathematik für Klasse 6 Bruchrechnung Teil Trainingseinheiten zum Unterricht Datei Nr. 00 Friedrich W. Buckel Stand. Januar 006 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt Vorwort. Training:

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

Themenkreise der Klasse 5

Themenkreise der Klasse 5 Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.

Mehr

Bruchrechnung Wir teilen gerecht auf

Bruchrechnung Wir teilen gerecht auf Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. : (+) : + Wir teilen einen Teil Eine halbe Minipizza auf Personen. :? Wir teilen

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen () 6. Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

Fördermaterialienordner Mathematik 5/6

Fördermaterialienordner Mathematik 5/6 Fördermaterialienordner 5/6 Inhaltsverzeichnis 1 Zahl und Zahlbereiche 1.1 Natürliche Zahlen 1.2 Rechnen mit natürlichen Zahlen 1.3 Rechnen mit Größen 1.4 Brüche 1.5 Teilbarkeit 1.6 Rechnen mit Brüchen

Mehr

Währungseinheiten. Mathematische Textaufgaben, Klasse 3 Bestell-Nr. 350-10 Mildenberger Verlag

Währungseinheiten. Mathematische Textaufgaben, Klasse 3 Bestell-Nr. 350-10 Mildenberger Verlag Währungseinheiten Anzahl der Centmünzen Es gibt sechs verschiedene Centmünzen. Dies sind Münzen zu 1 Cent, Münzen zu 2 Cent, Münzen zu 5 Cent, Münzen zu 10 Cent, Münzen zu 20 Cent und Münzen zu 50 Cent.

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

Übungsmaterialien zur Bruchrechnung

Übungsmaterialien zur Bruchrechnung Übungsmaterialien zur Bruchrechnung Die Materialien sind einsetzbar in Klasse. Unterschiedliche Aspekte des Bruchbegriffs werden angesprochen. Einige Seiten müssen im Maßstab : ausgedruckt werden. Daher

Mehr

Diagnostisches Interview zur Bruchrechnung

Diagnostisches Interview zur Bruchrechnung Diagnostisches Interview zur Bruchrechnung (1) Tortendiagramm Zeigen Sie der Schülerin/dem Schüler das Tortendiagramm. a) Wie groß ist der Teil B des Kreises? b) Wie groß ist der Teil D des Kreises? (2)

Mehr

Langenscheidt Training plus, Mathe 6. Klasse

Langenscheidt Training plus, Mathe 6. Klasse Langenscheidt Training plus - Mathe Langenscheidt Training plus, Mathe 6. Klasse Bearbeitet von Uwe Fricke 1. Auflage 13. Taschenbuch. ca. 128 S. Paperback ISBN 978 3 68 60073 9 Format (B x L): 17,1 x

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen (). Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

Aufgaben zu Lambacher Schweizer 6 Hessen

Aufgaben zu Lambacher Schweizer 6 Hessen Aufgaben zu Kapitel I Erweitern und Kürzen Erweitere im Kopf. a) mit ; 6; b) å mit ; 6; 7 c) mit ; ; d) å mit ; ; e) mit ; ; 7 f) mit ; ; Erweitere auf den angegebenen Nenner. a) 0: ; ; ; 0 ; 0 ; 0 b)

Mehr

Grundwissen Jahrgangsstufe 6

Grundwissen Jahrgangsstufe 6 GM. Brüche Grundwissen Jahrgangsstufe Brüche: Zerlegt man ein Ganzes z.b. in gleich große Teile und fasst dann dieser Teile zusammen, so erhält man des Ganzen. Im Bruch ist der Nenner und der Zähler. Stammbrüche

Mehr

Mathematik für die Ferien Seite 1

Mathematik für die Ferien Seite 1 Mathematik für die Ferien Seite. Zähle die natürlichen geraden Zahlen auf, die größer als 0 und kleiner oder gleich 0 sind.. Schreib als Zahl: Deutschland hat 8 Millionen Einwohner. China hat Milliarde

Mehr

Klasse 9. Zahlenraum Mengen Vergleiche. Addition. Subtraktion. Multiplikation

Klasse 9. Zahlenraum Mengen Vergleiche. Addition. Subtraktion. Multiplikation Klasse 9 Maximalplan Kurs A Minimalplan Kurs B Zahlenbereich bis 10.000/100.000 (B) und 1.000.000 (A) - Grundrechenarten Bis 1.000.000 erarbeiten; Zahlenhaus, Stellentafel, Zahlenhaus, Stellentafel, Grundrechnen

Mehr

Übertrittsprüfung 2011

Übertrittsprüfung 2011 Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2011 Aufgaben Prüfung an die 1. Klasse Sekundarschule / 1. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des

Mehr

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Kantonale Fachschaft Mathematik Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Lernziele... 1

Mehr

In Tabellen hoch- und runterrechnen

In Tabellen hoch- und runterrechnen Vertiefen 1 In Tabellen hoch- und runterrechnen zu Aufgabe 1 Schulbuch, Seite 240 1 Übersicht durch Tabellen Pia, Till und Merve haben unterschiedliche Tabellen angelegt, um drei Hostels in Barcelona zu

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name:

Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Für unsaubere Darstellung gibt es Abzug Die angegebenen Punkte gelten unter Vorbehalt. Aufgabe 1 (6 Punkte): Hier ist eine Zahl mit Plättchen

Mehr

Dezimalzahlen. Dezimalzahlen sind Zahlen, die ein Komma besitzen, es sind also keine natürlichen Zahlen.

Dezimalzahlen. Dezimalzahlen sind Zahlen, die ein Komma besitzen, es sind also keine natürlichen Zahlen. Dezimalzahlen Information: Dezimalzahlen sind Zahlen, die ein Komma besitzen, es sind also keine natürlichen Zahlen. Beispiele für Dezimalzahlen mit Einheiten wären also:,8 7, kg,4 m 0,7 l 8,7 s, usw.

Mehr

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten)

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten) KLASSE: NAME: VORNAME: Mögliche Punktzahl: 51 48 Pte. = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK 1. Klassen Kantonschule Reussbühl Luzern 7. Mai 014 Zeit: 1:10 14:40 (90 Minuten) Allgemeines

Mehr

Download. Klassenarbeiten Mathematik 8. Flächeninhalt und Umfang von Vielecken. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 8. Flächeninhalt und Umfang von Vielecken. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Prozentrechnung. Prozent bedeutet: von hundert; bezogen auf die Anzahl 100 25% =

Prozentrechnung. Prozent bedeutet: von hundert; bezogen auf die Anzahl 100 25% = Prozentrechnung Aufgabe: In einer Klasse 7 mit 32 Schülern haben sich 25% für das Fach Latein entschieden. Wie viele Schüler sind das? Prozent bedeutet: von hundert; bezogen auf die Anzahl 25% = 25 Man

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

Die Größe von Flächen vergleichen

Die Größe von Flächen vergleichen Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6

Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6 Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6 1. Bestimme jeweils die Teilermenge der folgenden Zahlen: a) 62 b) 25 c)71 d) 28 Lösungsbeispiel: T 62 = {...} (Einzelne Elemente der

Mehr

Rund ums Fahrrad Ein Unterrichtsprojekt für den 7. Jahrgang

Rund ums Fahrrad Ein Unterrichtsprojekt für den 7. Jahrgang Fahrrad Sicherheit: Jedes Fahrrad muss verkehrssicher sein, sonst darf es nicht am Straßenverkehr teilnehmen. Die meisten benutzten Fahrräder erfüllen die Kriterien der Verkehrssicherheit nicht. Beschreibe

Mehr

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben Mathematik 5. bis 10. Klasse 150 Textaufgaben Alle Themen Typische Aufgaben 5. bis 10. Klasse 1.3 Rechnen mit ganzen Zahlen 1 25 Erstelle zu den folgenden Zahlenrätseln zunächst einen Rechenausdruck und

Mehr

Mit Dezimalzahlen multiplizieren

Mit Dezimalzahlen multiplizieren Vertiefen 1 Mit Dezimalzahlen multiplizieren zu Aufgabe 1 Schulbuch, Seite 134 1 Multiplizieren im Bild darstellen Zeichne zur Aufgaben 1,63 2,4 ein Bild und bestimme mit Hilfe des Bildes das Ergebnis

Mehr

Prozentrechnung. Klaus : = Karin : =

Prozentrechnung. Klaus : = Karin : = Prozentrechnung Klaus erzählt, dass bei der letzten Mathe-Arbeit 6 seiner Mitschüler die Note gut erhalten hätten. Seine Schwester Karin hat auch eine Arbeit zurück bekommen. In ihrer Klasse haben sogar

Mehr

Mathematik. Hauptschulabschlussprüfung 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse:

Mathematik. Hauptschulabschlussprüfung 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse: Hauptschulabschlussprüfung 2008 Schriftliche Prüfung Pflichtaufgaben 1. Teil Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 45 Minuten

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte

Mehr

6.4 Bedeutungsaspekte ausgewählter Begriffe 6.4.1 Zahlbegriffe und Rechenoperationen

6.4 Bedeutungsaspekte ausgewählter Begriffe 6.4.1 Zahlbegriffe und Rechenoperationen 6.4 Bedeutungsaspekte ausgewählter Begriffe 6.4.1 Zahlbegriffe und Rechenoperationen a) Natürliche Zahl Entspricht Bedeutung des Wortes ZAHL beim Schüler bis Kl. 5 Bedeutungen entwickeln sich durch entsprechende

Mehr

2 Lineare Gleichungen mit zwei Variablen

2 Lineare Gleichungen mit zwei Variablen 2 Lineare Gleichungen mit zwei Variablen Die Klasse 9 c möchte ihr Klassenzimmer mit Postern ausschmücken. Dafür nimmt sie 30, aus der Klassenkasse. In Klasse 7 wurden lineare Gleichungen mit einer Variablen

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

MATHE - CHECKER 6. Klasse L Ö S U N G E N. by W. Rasch

MATHE - CHECKER 6. Klasse L Ö S U N G E N. by W. Rasch MATHE - CHECKER 6. Klasse L Ö S U N G E N by W. Rasch 1. Aufgabe Ein Auto verbraucht 8 Liter Benzin auf 100 km. Wie viele Liter braucht es für 350 km? A: 32 Liter B: 24 Liter C: 28 Liter D: 36 Liter 2.

Mehr

1) Längenmasse. Verwandeln sie in die verlangte Einheit: Aufgaben 2: Ergänzen sie die Matrix, indem sie die Einheiten umrechnen.

1) Längenmasse. Verwandeln sie in die verlangte Einheit: Aufgaben 2: Ergänzen sie die Matrix, indem sie die Einheiten umrechnen. Kapitel B: Masseinheiten 1) Längenmasse Die Länge von Strecken und Distanzen werden mit den Längenmassen angegeben. Die für das Längenmass ist das Meter (m). Weitere gängige en für Längen sind Kilometer

Mehr

1 Dreisatz In diesem Modul werden alle Spielarten des Dreisatzes behandelt

1 Dreisatz In diesem Modul werden alle Spielarten des Dreisatzes behandelt 1 In diesem Modul werden alle Spielarten des es behandelt Inhalt: 1... 1 1.1 Der normale... 2 1.1.1 Erstes direktes Berechnen... 2 1.1.2 Berechnung mittels Schema... 3 1.1.3 Lösen als Tabelle... 4 Seite

Mehr

Die Bruchrechnung in der Lerntherapie. von Johanna Sielemann

Die Bruchrechnung in der Lerntherapie. von Johanna Sielemann Die Bruchrechnung in der Lerntherapie von Johanna Sielemann 1 1 EINLEITUNG 3 2 BRUCHZAHLASPEKTE 4 2.1 Teil eines Ganzen 4 2.2 Teil mehrerer Ganzer 5 2.3 Anteil 5 2.4 Mögliche Schwierigkeiten 5 3 SCHREIBWEISEN

Mehr

Mathematik. Hauptschulabschlussprüfung 2007. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse:

Mathematik. Hauptschulabschlussprüfung 2007. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse: Hauptschulabschlussprüfung 2007 Pflichtaufgaben 1. Teil Mathematik x+3 45 Name: Klasse: Die Aufgabenblätter sind Bestandteil der Prüfungsarbeit und müssen mit deinem Namen versehen werden. Du darfst in

Mehr

Längen und Längenmessung

Längen und Längenmessung Längen und Längenmessung 1.) Messt die folgenden Gegenstände aus. Zur Verfügung stehen: Maßband; Tafellineal; Geodreieck; Lineal a.) Mathebuch b.) Matheheft c.) Schultisch d.) Tintenpatrone e.) Klassenzimmer

Mehr

Download. Mathematik üben Klasse 8 Terme und Gleichungen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Terme und Gleichungen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Terme und Gleichungen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Terme

Mehr

Diagnoseaufgaben. egative Zahlen. Ganz In mit Ganztag mehr Zukunft. Das neue Ganztagsgymnasium NRW. TU Dortmund

Diagnoseaufgaben. egative Zahlen. Ganz In mit Ganztag mehr Zukunft. Das neue Ganztagsgymnasium NRW. TU Dortmund aufgaben egative Zahlen Ganz In mit Ganztag mehr Zukunft. Das neue Ganztagsgymnasium NRW. TU Dortmund 1 Kann ich beschreiben, was das Minus vor einer Zahl bedeutet? a) Erkläre, was die beiden meinen. Welche

Mehr

Lineare Funktionen. Danach will er sich eine Tabelle anlegen, um einen Überblick der Kosten für mehrere Stunden zu erhalten:

Lineare Funktionen. Danach will er sich eine Tabelle anlegen, um einen Überblick der Kosten für mehrere Stunden zu erhalten: Lineare Funktionen Einleitung: Jan besitzt eine Playstation von der er weiß, dass sie einen Stromverbrauch von 00 Watt hat. Der Stromversorger seiner Stadt berechnet 0, pro Kilowattstunde (kwh). Jan überlegt

Mehr

Inhalt 1 Natürliche Zahlen 2 Addition und Subtraktion natürlicher Zahlen 3 Multiplikation und Division natürlicher Zahlen

Inhalt 1 Natürliche Zahlen 2 Addition und Subtraktion natürlicher Zahlen 3 Multiplikation und Division natürlicher Zahlen Inhalt 1 Natürliche Zahlen 1.1 Der Zahlbegriff... 6 1.2 Das Zehnersystem... 7 1.3 Andere Stellenwertsysteme... 8 1.4 Römische Zahlen... 10 1.5 Große Zahlen... 11 1.6 Runden... 13 1.7 Rechnen mit Einheiten...

Mehr

1 Strichlisten und Diagramme Die Schülerinnen und Schüler fertigen Strichlisten an und beantworten Fragen mithilfe eines Diagramms.

1 Strichlisten und Diagramme Die Schülerinnen und Schüler fertigen Strichlisten an und beantworten Fragen mithilfe eines Diagramms. Inklusionsmaterial Nummer Titel Beschreibung 1 Strichlisten und Diagramme Die Schülerinnen und Schüler fertigen Strichlisten an und beantworten Fragen mithilfe eines Diagramms. 2 Säulendiagramme Die Schülerinnen

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28.

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28. Demoseiten für Mathematik für Klasse 6/7 Prozentrechnen Trainingseinheiten zum Üben und Vertiefen Teil Grundlagen Teil 2 Anwendungen Datei Nr. 055 Stand 28. März 2008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Mathematik heute 5 (ISBN 978-3-507-81140-9) Lernbereiche Stunden Inhalt Seite Inhalt Seite Kapitel 1 Zahlen und Größen. 6 Zahlen und Größen

Mathematik heute 5 (ISBN 978-3-507-81140-9) Lernbereiche Stunden Inhalt Seite Inhalt Seite Kapitel 1 Zahlen und Größen. 6 Zahlen und Größen Zahlen und Operationen 30 Kapitel 1: Kapitel 1 Zahlen und Größen 6 Zahlen und Größen 1 Vielfache von großen Zahlen darstellen, lesen und inhaltlich interpretieren Zahlen über 1 Million Stellentafel Große

Mehr

DOWNLOAD. Ganze Zahlen 7./8. Klasse: Grundrechenarten. Mathetraining in 3 Kompetenzstufen. Brigitte Penzenstadler

DOWNLOAD. Ganze Zahlen 7./8. Klasse: Grundrechenarten. Mathetraining in 3 Kompetenzstufen. Brigitte Penzenstadler DOWNLOAD Brigitte Penzenstadler 7./8. Klasse: Grundrechenarten Mathetraining in 3 Kompetenzstufen Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Lehrplan Mathematik Klasse 4

Lehrplan Mathematik Klasse 4 Lehrplan Mathematik Klasse 4 Lernziele/ Inhalte Lernziel: Entwickeln von Zahlvorstellungen Orientieren im Zahlenraum bis 1 Million Schätzen und überschlagen Große Zahlen in der Umwelt Bündeln und zählen

Mehr

Inhaltsübersicht. Jahrgang: 6 Schuljahr: 2015/2016 Halbjahr: 1/2. inhaltsbezogene prozessbezogene Kompetenzen. Halbjahr/1 Zeit (in Wochen)

Inhaltsübersicht. Jahrgang: 6 Schuljahr: 2015/2016 Halbjahr: 1/2. inhaltsbezogene prozessbezogene Kompetenzen. Halbjahr/1 Zeit (in Wochen) Halbjahr/1 Zeit (in Wochen) Inhalte Seite inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen / mögliche Berufsfelder / 1 6 Wochen 1 18.09.15 1. Teilbarkeit 1.1 Noch fit? 1.2 Teiler und Vielfache 1.3

Mehr

Buch: Einblicke Mathematik 8 Klett ISBN 3-12-745580-1. Modul 8. Prozentrechnen (Seiten 86 96)

Buch: Einblicke Mathematik 8 Klett ISBN 3-12-745580-1. Modul 8. Prozentrechnen (Seiten 86 96) Buch: Einblicke Mathematik 8 Klett ISBN 3-12-745580-1 Modul 8 Prozentrechnen (Seiten 86 96) 1) Vergleichen von Anteilen über Prozentsätze Als erstes soll man auf den Unterschied zwischen dem absoluten

Mehr

Zur Behandlung der Division. Klassifikationstypen und heuristische Strategien

Zur Behandlung der Division. Klassifikationstypen und heuristische Strategien Zur Behandlung der Division Klassifikationstypen und heuristische Strategien Wiederholung: Erkennen der Operation und des Klassifikationstypes Am Inselsberg ist ein neuer Skilift in Betrieb genommen worden.

Mehr

Lerneinheit 3: Mit Euro und Cent rechnen

Lerneinheit 3: Mit Euro und Cent rechnen LM Maßeinheiten S. 11 Übergang Schule - Betrieb Lerneinheit 3: Mit Euro und Cent rechnen A: Werden mehrere Größen addiert (+) oder voneinander subtrahiert (-), muss man alle Größen zuvor in die gleiche

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3

Mehr

Geometrie. Umfang/Fläche (eckige Körper)

Geometrie. Umfang/Fläche (eckige Körper) Seite 1 Hier lernst du, Umfänge und Flächen bei folgenden geometrischen Flächen zu ermitteln: Quadrat, Rechteck, Parallelogramm, Dreieck, Trapez Und einfache zusammengesetzte Formen Prinzipielle Grundlagen

Mehr

Grundwissen 5 Lösungen

Grundwissen 5 Lösungen Grundwissen 5 Lösungen Zahlengerade Zeichne eine Zahlengerade, wähle eine passende Einheit und trage folgende Zahlen ein: 12 30 3 60 Welche Zahlen werden auf den Zahlengeraden in der Figur durch die Pfeile

Mehr

Englische Division. ... und allgemeine Hinweise

Englische Division. ... und allgemeine Hinweise Das folgende Verfahren ist rechnerisch identisch mit dem Normalverfahren; es unterscheidet sich nur in der Schreibweise des Rechenschemas Alle Tipps und Anmerkungen, die über die Besonderheiten dieser

Mehr

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME)

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) Aufgabe 1: Tanzkurs ( * ) Zu einem Tanzkurs erscheinen dreimal so viele Mädchen wie Jungen. Nachdem 15 Mädchen gegangen sind, sind noch doppelt so viele

Mehr

Mathematik Klasse 5 Bereich (Kartennummer): Strategie. Gewichte

Mathematik Klasse 5 Bereich (Kartennummer): Strategie. Gewichte Gewichtsmaße Strategie Gewichte Basiswissen Für Gewichte gibt es die Maßeinheiten 1t (Tonne), 1kg (Kilogramm), 1g (Gramm) und 1mg (Milligramm). Wenn zwei Gewichte in verschiedenen Maßeinheiten gegeben

Mehr

Anteile und Teile verstehen und bestimmen

Anteile und Teile verstehen und bestimmen Vertiefen Anteile und Teile verstehen und bestimmen zu Aufgabe Schulbuch, Seite Anteile und Teile auf dem Bruchstreifen und dem Zahlenstrahl a) Zeichne einen cm langen Bruchstreifen oder Zahlenstrahl,

Mehr

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik. Bruchrechnung (ohne Taschenrechner!!!) a) Mache gleichnamig! 4 und ; und ; 4 7 b) Berechne! 8 7 8 + 4 9 8 4

Mehr

a) Welche der beiden Halbgeraden stehen für die Tarife REGENBOGEN und UFO? Begründe. b) Hat Lena recht oder Giuseppe? Begründe.

a) Welche der beiden Halbgeraden stehen für die Tarife REGENBOGEN und UFO? Begründe. b) Hat Lena recht oder Giuseppe? Begründe. 38 3 Lineare Gleichungsssteme mit zwei Variablen Lineare Gleichungsssteme grafisch lösen Beim Tarif REGENBGEN zahle ich für das Telefonieren mit dem Hand zwar einen Grundpreis. Dafür sind aber die Gesprächseinheiten

Mehr

Z U O R D N U N G E N

Z U O R D N U N G E N A u f g a b e 1 Herr Knusper kauft 15 Brötchen und zahlt dafür 1,80. Herr Frisch kauft 6, Frau Sparsam nur 3 Brötchen. Frau Knabber zahlt 1,08. Nur Herr Geizig hungert lieber und kauft gar nicht ein. a)

Mehr

math-circuit Liebe Schülerin, lieber Schüler

math-circuit Liebe Schülerin, lieber Schüler Liebe Schülerin, lieber Schüler Der math-circuit besteht, wie ein Circuittraining im Sport, aus verschiedenen Posten. Im Sport trainiert man bestimmte Fertigkeiten. Im math-circuit trainierst du die wichtigsten

Mehr

Natürliche Zahlen. Wer kann alle möglichen Zahlen aus diesen Ziffern basteln und sie der Größe nach ordnen?

Natürliche Zahlen. Wer kann alle möglichen Zahlen aus diesen Ziffern basteln und sie der Größe nach ordnen? Natürliche Zahlen 1.) Stellentafel Große Zahlen Impuls: Lehrer schreibt in Kästchen an die Tafel folgende Ziffern: 5 3 6 2 9 8 Wer kann aus diesen Ziffern eine Zahl basteln? 356928 Wer kann aus diesen

Mehr

Vergleichsarbeit Mathematik. Gesamtschulen, Jahrgang 8, Kurs I. Schuljahr 2005/2006

Vergleichsarbeit Mathematik. Gesamtschulen, Jahrgang 8, Kurs I. Schuljahr 2005/2006 , Jahrgang 8, Kurs I 9. März 006 Unterlagen für die Lehrerinnen und Lehrer Diese Unterlagen enthalten: I II III Allgemeine Hinweise zur Arbeit Aufgabenblätter in den Versionen A und B Lösungsskizzen, Punkteverteilung

Mehr

a) Subtrahiere 3 von 7. b) Multipliziere die Zahlen 4 und 5. Kreuze anschließend das Ergebnis an, das deiner Meinung nach stimmt.

a) Subtrahiere 3 von 7. b) Multipliziere die Zahlen 4 und 5. Kreuze anschließend das Ergebnis an, das deiner Meinung nach stimmt. Niedersächsisches Kultusministerium Abschlussprüfung zum Erwerb des Sekundarabschlusses I Realschulabschluss für die Schulformen, die nach den Lehrplänen der Hauptschule unterrichten Schuljahrgang 10,

Mehr

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss:

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss: 2 2. Prozentrechnung Was du schon können musst: Du solltest proportionale Zusammenhänge kennen und wissen, wie man damit rechnet. Außerdem musst du Dreisatzrechnungen rasch und sicher durchführen können.

Mehr

Mathematik VOLKSSCHULEN KANTONE SOLOTHURN BASEL-LANDSCHAFT ORIENTIERUNGSARBEIT. Primarschule. Lösungen und Korrekturanweisungen

Mathematik VOLKSSCHULEN KANTONE SOLOTHURN BASEL-LANDSCHAFT ORIENTIERUNGSARBEIT. Primarschule. Lösungen und Korrekturanweisungen VOLKSSCHULEN KANTONE BASEL-LANDSCHAFT SOLOTHURN Primarschule 5. Klasse Name Vorname Schuljahr 2014/2015 Datum der Durchführung 4. September 2014 ORIENTIERUNGSARBEIT Primarschule Mathematik Lösungen und

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss 2011. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss 2011. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2011 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten Wenn du deine Arbeit abgibst,

Mehr

Zahlen und Operationen (Klasse 3)

Zahlen und Operationen (Klasse 3) Zahlen und (Klasse 3) LZ überwiegend Zahldarstellungen, Zahlbeziehungen, Zahlvorstellungen verstehen beherrschen In Kontexten rechnen LZ voll Du orientierst Dich sicher im Zahlenraum bis 1000 und kannst

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

Mathematik üben mit Erfolg

Mathematik üben mit Erfolg Steffen Beuthan /Günter Nordmeier Mathematik üben mit Erfolg 7. Schuljahr Realschule MANZ VERLAG Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung in anderen als den gesetzlich zugelassenen

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Algebra in den Jahrgangsstufen 5 bis 8. Lerninhalte Natürliche Zahlen. Lernziele Natürliche Zahlen. Didaktik der Algebra und Gleichungslehre

Algebra in den Jahrgangsstufen 5 bis 8. Lerninhalte Natürliche Zahlen. Lernziele Natürliche Zahlen. Didaktik der Algebra und Gleichungslehre Didaktik der Algebra und Gleichungslehre Algebra in den Jahrgangsstufen 5 bis 8 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Sommersemester 2008 Vollrath: Algebra in der Sekundarstufe

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe Kriterien: Der Prüfling Lösung: Punkte: a) entscheidet sich für passenden Wert 8 000 000 b) wählt ein geeignetes Verfahren zur z. B. Dreisatz Berechnung gibt das richtige Ergebnis

Mehr

MATHEMATIK 5. Schulstufe Schularbeiten

MATHEMATIK 5. Schulstufe Schularbeiten MATHEMATIK 5. Schulstufe Schularbeiten 1. Schularbeit Dekadisches Zahlensystem Runden von Zahlen Zahlenstrahl Ordnung der natürlichen Zahlen Grundrechnungsarten Statistik a) Schreibe ohne dekadische Einheiten:

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 1. Zählen, Mengen erfassen und Zahlen schreiben 1. Mengen erfassen 1 2. Mengen erfassen 2 3. Zähle die Kästchen 4. Zähle die Gegenstände 5. Zähle

Mehr

Lernen an Stationen Thema: Flächenberechnung

Lernen an Stationen Thema: Flächenberechnung Lernen an Stationen Thema: Flächenberechnung 8. Jahrgang Mathematics is a way of thinking, not a collection of facts! Ausgehend von dieser grundsätzlichen Überzeugung sollte ein Unterricht zum Thema Flächenberechnung

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Addition und Subtraktion ungleichnamiger Brüche

Addition und Subtraktion ungleichnamiger Brüche Addition und Subtraktion ungleichnamiger Brüche Inhaltsverzeichnis Inhaltsverzeichnis... 1 Impressum... 2 Addition und Subtraktion ungleichnamiger Brüche... 3 Aufgabe 1... 5 Aufgabe 2... 8 Aufgabe 3...

Mehr

3. UNTERRICHTSTUNDE: DIE GRÖßE DER USA

3. UNTERRICHTSTUNDE: DIE GRÖßE DER USA 3. UNTERRICHTSTUNDE 44 3. UNTERRICHTSTUNDE: DIE GRÖßE DER USA Ziele: Die Schüler sollen erkennen, dass die USA sehr großfl ächig sind. Sprache der kognitiven Prozesse: Deduktion, Vermutungen anstellen,

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.

Mehr

WOCHENPLAN MATHEMATIK

WOCHENPLAN MATHEMATIK Wochenplan Übersicht NACHHILFE WINTERTHUR & ÜRICH WOCHENPLAN MATHEMATIK Mathematik Sekundarstufe Woche Thema Unterthema/ Hilfsmittel 1 : Umformen Klammern, Brüche, Potenzen, Variablen Algebra: Gleichungen

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Uwes Wiests Training

Uwes Wiests Training Uwes Wiests Training So lernst du das 1 mal 1 im Nu. Versuch's mal. Jeden Tag drei Minuten. Das ist ist deine tägliche Arbeitszeit. Jeden Tag wirst du du etwas weiterkommen. von der Seite www.uwewiest.de

Mehr

9.2 Anhang 2: Lernkontrollen zum Werkzeug 15 (Kompetenzraster Mathematik)

9.2 Anhang 2: Lernkontrollen zum Werkzeug 15 (Kompetenzraster Mathematik) 9.2 Anhang 2: Lernkontrollen zum Werkzeug 15 (Kompetenzraster Mathematik) Test: Dezimalbrüche Name, Vorname: Datum: ohne Taschenrechner Niv. Nr. Aufgaben Resultate Korrektur A/B/ 1. Ordnen Sie die Zahlen

Mehr

Weiter im Einmaleins. 100 nur das Schaf schaut noch verwundert. bellt der Dackel Heinz. pfeift das Murmeltier. Panda kann sich freu'n.

Weiter im Einmaleins. 100 nur das Schaf schaut noch verwundert. bellt der Dackel Heinz. pfeift das Murmeltier. Panda kann sich freu'n. Weiter im Einmaleins bellt der Dackel Heinz. pfeift das Murmeltier. Panda kann sich freu'n. Grabi kann das Jumbo frisst sie Biene Maja schlecht seh'n. und entspannt sich. rechnet fleißig. das Huhn meint

Mehr