Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. ein Problem vor der Haustür 3

Größe: px
Ab Seite anzeigen:

Download "Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. ein Problem vor der Haustür 3"

Transkript

1 Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben Übersicht vom Problem zur Theorie 0. Juni Juni 008 Martin Oellrich die Idee weiter denken MathematikerIn werden? Gibt es einen Wanderweg, der über jede der Brücken (rot) genau einmal führt? ein Problem vor der Haustür wer das Problem löste 4 Trug maßgebliche Fortschritte bei in Königsberg 76: sieben Brücken über den Pregel Frage: gibt es einen Wanderweg, der über jede der Brücken (rot) genau einmal führt? Leonhard Euler schweizer Mathematiker (707 78) Algebra / Zahlentheorie Analysis / Funktionentheorie (Euler-Zahl e) Differential- und Integralgleichungen Kombinatorik / Graphentheorie (Begründer) history/mathematicians/euler.html

2 die Vorbereitung 5 die Lösung 6 Eulers Idee: Abstraktion durch einen Graphen Eulers Beobachtung: beim Durchlaufen eines Weges werden in allen inneren Knoten eine gerade Anzahl Kanten verbraucht 5 jede Landmasse wird repräsentiert durch einen Knoten jede Brücke wird repräsentiert durch eine Kante Eulers Einsicht: die wesentliche Problemstruktur steckt in diesem Modell! die eigentliche Leistung 7 Eulers Schluss: für einen Weg über alle Kanten darf es höchstens zwei Knoten mit ungerader Anzahl Kanten geben das ist nicht erfüllt! Übersicht 8 Was bedeutet Eulers Erkenntnis? klar: der Fall Königsberg ist gelöst Graphen: ein neuartige Idee, die Realität nachzubilden flexibles Instrument mit enormer Tragweite der Beweis: allgemeingültige Struktur in allen vergleichbaren Situationen vom Problem zur Theorie die Idee weiter denken MathematikerIn werden? Neubegründung der Graphentheorie hier wird noch heute geforscht!

3 Problemlösung mit Graphen 9 Aufgabe A 0 Aufgabe A Aufgabe B Frage: Gibt es für einen Springer einen Weg auf dem Schachbrett, der über jedes Feld genau einmal führt? Gibt es für einen Springer einen Weg auf dem 4 4-Schachbrett, der über jedes Feld genau einmal führt? Kann man das 4 4-Schachbrett ohne die beiden Ecken lückenlos mit -Dominosteinen überdecken? Aufgabe A Aufgabe B Frage: Kann man das 4 4-Schachbrett ohne die beiden Ecken lückenlos mit -Dominosteinen überdecken? Beobachtung: der Weg benutzt in jedem Knoten genau zwei Kanten. Wegen des eindeutigen Wegs durch die Eckfelder entsteht ein Kurzkreis kein vollständiger Weg möglich.

4 Aufgabe B ein einfaches Problem? Jeder Dominostein entspricht im Graphen einer Kante, die einen weißen mit einem schwarzen Knoten verbindet. Es gibt verschieden viele weiße und schwarze Knoten keine vollständige Überdeckung möglich. Wie kann man die Deutschlandkarte mit möglichst wenigen Farben so einfärben, dass benachbarte Länder verschiedene Farben bekommen? ein einfaches Problem? 5 Geschichte des Landkartenproblems 6 allgemeine Aufgabe: färbe die Knoten eines ebenen Graphen so, dass die Enden jeder Kante verschiedene Farben bekommen. Frage: Geht das immer mit höchstens 4 Farben? Kartographen kommen schon immer mit 4 Farben aus 85: Francis Guthrie formuliert die Vermutung mathematisch 878 bringt Arthur Cayley das Problem in die London Mathematical Society 879 veröffentlicht Alfred Kempe einen ersten Beweis 890 erkennt Percy Heawood ihn als falsch, kann aber beweisen, dass fünf Farben ausreichen 969 hat Heinrich Heesch entscheidende Ideen für einen Beweis, kann sie aber technisch nicht durchführen 976 gelingt Ken Appel und Wolfgang Haken ein Beweis mit Computerhilfe 996 reduzieren 4 Mathematiker den Rechenaufwand auf

5 die Geschichte geht weiter 7 Wie funktioniert ein Durchbruch? 8 noch heute wird gearbeitet an einem computerfreien Beweis an den Farbanzahlen anderer Oberflächen an schnelleren Verfahren zur Konstruktion von 4-Färbungen? Torus: 7 Farben ein aufmerksamer Mensch beobachtet einen Sachverhalt ein anderer erkennt die Bedeutung, trägt sie in die wissenschaftliche Gemeinschaft auch Experten können irren Fortschritte bleiben lange Zeit gering irgendwann hat jemand eine bahnbrechende Idee, kommt aber selbst nicht zum Ziel Kollegen greifen die Idee auf und führen sie durch es ergeben sich weit reichende Folgen und Arbeitsfelder. Mathematik ist beharrliches Ringen um endgültige Wahrheiten Mathematik ist heute weltweites Teamwork Euler heute: Rundfahrt der Müllabfuhr 9 Euler heute: Rundfahrt der Müllabfuhr 0 Frage: Wie kann die Müllabfuhr möglichst schnell alle Straßen abfahren? Frage: Wie kann die Müllabfuhr möglichst schnell alle Straßen abfahren? Sackgassen streichen 0 ungerade Knoten! allgemeine Aufgabe: finde eine Rundfahrt, die (trotz der ungeraden Knoten) so wenig wie möglich Straßen wiederholt.

6 Graphen heute: Navigationssysteme Graphen heute: Mobilfunk Straßenkarten sind riesige Graphen kürzeste Strecken müssen möglichst schnell gefunden werden Antennen stören einander muss mit möglichst wenig Frequenzen auskommen Übersicht das Studium 4 es gibt vier mathematische Bachelor-Studiengänge: vom Problem zur Theorie die Idee weiter denken MathematikerIn werden? Mathematik: allgemein, mit eigenem Schwerpunkt Statistik: Aussagen aus (sehr) vielen Daten Technomathematik: physikalisch-technische Prozesse Wirtschaftsmathematik: Finanzströme, Wirtschaftsmodelle Grundausbildung ist dieselbe, Spezialisierung durch Schwerpunkte und Nebenfächer alle dauern drei Jahre, danach Berufseinstieg oder Master-Studiengang Ausbildung für die Wissenschaft zwei Jahre kann auch später gemacht werden

7 Grundlagen der Mathematik 5 Grundlagen der Mathematik 6 Eigenschaften von Zahlen, Folgen und n-dimensionalen Funktionen x 0 für alle x R welche Art Zahl erfüllt x =? allgemeine Vektorräume und lineare Abbildungen in beliebigen Dimensionen P v v Q 0 a 0 R + a n+ := ( a n + r ) a n lim a n = r n Wo liegt das rote Maximum genau? f(x, x )! = 0 orthogonale Projektion Q = n i= v i, P v i v i Rotation eines Körpers y y y 0 cos α 0 sin α 0 0 sin α 0 cos α 0 A@ x x x A Grundlagen der Mathematik 7 Kommunikation in der Mathematik 8 diskrete Strukturen und elementare Wahrscheinlichkeit Verknüpfung von Permutationen ( ) ( ) ( ) 4 = 4 4 Gaußsche Normalverteilung φ(x) = π e x Mathematik anderer Leute verstehen Theorem: Let G be a graph. G has an Eulerian path if all the edges belong to a single component and there are at most two odd vertices. Proof. We observe that every Eulerian path is incident to every interior node twice.... Mathematik anderen erklären

8 die Rolle des Computers 9 der Trend 0 Studierende lernen: Verhalten von Zahlen auf einem Computer algorithmische Abläufe für Berechnungen Programmieren in einer Hochsprache, z.b. Java keine Vorliebe für Computer oder Perfektion im Programmieren nötig! Schwerpunkt bleibt auf den Abläufen, nicht der Maschine der Arbeitsmarkt Quelle: Dieter et al., Zahlen rund um das Mathematikstudium I, MDMV 6/08 die Message Mathe ist eine jahrtausende lange Erfolgsstory Mathe erfordert Geduld, Grips und Liebe zum Detail Mathe ist abwechslungsreich, nichts wird doppelt gemacht Mathe ist heute Teamwork Mathe belohnt durch Anerkennung sachlicher Ergebnisse Mathe ist Zukunft! Quelle: Bundesanstalt für Arbeit, Arbeitsmarkt Information 00

Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. wer das Problem löste 4

Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. wer das Problem löste 4 Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben Übersicht 5. April 009 5. April 009 Martin Oellrich 1 vom Problem zur Theorie die Idee weiter denken 3 MathematikerIn werden? Gibt

Mehr

Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen. Martin Oellrich. Warum eine Karte? 3. Warum stetige Grenzen?

Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen. Martin Oellrich. Warum eine Karte? 3. Warum stetige Grenzen? Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen Problemstellung Deutsche Bundesländer in vier Farben 4. April 06 Martin Oellrich Warum geht das immer? Gegeben: Karte eines Gebietes

Mehr

16. Flächenfärbungen

16. Flächenfärbungen Chr.Nelius: Graphentheorie (WS 2015/16) 57 16. Flächenfärbungen In der Mitte des 19. Jahrhunderts tauchte eine Vermutung auf, die erst 125 Jahre später bewiesen werden sollte und die eine der bekanntesten

Mehr

Vier-Farbenproblem. (c) Ein etwas schwereres Beispiel...

Vier-Farbenproblem. (c) Ein etwas schwereres Beispiel... Vier-Farbenproblem Kann man jede Landkarte mit vier Farben färben, sodass keine aneindander angrenzenden Länder die gleiche Farbe haben? Versuchen Sie die Karte Deutschlands oder eines der anderen Bilder

Mehr

4 Färbungen Begriffe Komplexität Greedy-Algorithmus Knotenreihenfolgen Das 4-Farben-Problem...

4 Färbungen Begriffe Komplexität Greedy-Algorithmus Knotenreihenfolgen Das 4-Farben-Problem... Inhaltsverzeichnis 4 Färbungen 41 4.1 Begriffe....................... 41 4.2 Komplexität..................... 42 4.3 Greedy-Algorithmus................ 42 4.4 Knotenreihenfolgen................. 43 4.5

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? 1 Königsberger Brückenproblem Im Jahre 1736 Leonhard Euler löste das Problem allgemein

Mehr

Kapitel 3. Kapitel 3 Graphentheorie

Kapitel 3. Kapitel 3 Graphentheorie Graphentheorie Inhalt 3.1 3.1 Grundlagen 3.2 3.2 Das Das Königsberger Brückenproblem 3.3 3.3 Bäume 3.4. 3.4. Planare Graphen 3.5 3.5 Färbungen Seite 2 3.1 Grundlagen Definition. Ein Ein Graph besteht aus

Mehr

Wozu ist Mathematik gut? M. Hinze

Wozu ist Mathematik gut? M. Hinze Wozu ist Mathematik gut? M. Hinze Technische Universität Dresden Institut für Numerische Mathematik hinze@math.tu-dresden.de www.math.tu-dresden.de/ hinze Technische Universität Dresden Institut für Numerische

Mehr

Einführung in die Diskrete Mathematik

Einführung in die Diskrete Mathematik Einführung in die Diskrete Mathematik Sommersemester 2014 PD Dr. Nils Rosehr Inhaltsverzeichnis I Einleitung 5 II Kombinatorik 5 1 Grundlagen der Kombinatorik 6 1.1 Standardbezeichnungen......................

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? Königsberger Brückenproblem Gibt es in Königsberg einen Spaziergang, bei dem man

Mehr

Sudoku und Mathematik

Sudoku und Mathematik Sudoku und Mathematik Ulrich Görtz http://www.esaga.uni-due.de/ulrich.goertz 24. September 2010 1 Einführung 2 Lösungsstrategien 3 Färben von Graphen Sudoku Sudoku erfunden 1979 als number place von Howard

Mehr

Wiederholung aus Diskreter Mathematik I: I: Graphentheorie

Wiederholung aus Diskreter Mathematik I: I: Graphentheorie Wiederholung aus Diskreter Mathematik I: I: Graphentheorie Inhalt: W.1 Grundlagen W.2 Das Königsberger Brückenproblem W.3 Bäume W.4 Planare Graphen W.5 Färbungen W.1 Grundlagen Ein Ein Graph besteht aus

Mehr

Graphen. Leonhard Euler ( )

Graphen. Leonhard Euler ( ) Graphen Leonhard Euler (1707-1783) 2 Graph Ein Graph besteht aus Knoten (nodes, vertices) die durch Kanten (edges) miteinander verbunden sind. 3 Nachbarschaftsbeziehungen Zwei Knoten heissen adjazent (adjacent),

Mehr

Der Vier-Farben-Satz

Der Vier-Farben-Satz , Samuel Hetterich, Felicia Raßmann Goethe-Universität Frankfurt, Institut für Mathematik 21.Juni 2013 Wieviele Farben braucht man zum Färben einer Landkarte? Spielregeln Länder mit einer gemeinsamen Grenze

Mehr

Vorlesung 1: Graphentheorie. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich

Vorlesung 1: Graphentheorie. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Vorlesung 1: Graphentheorie Markus Püschel David Steurer Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Plan für die ersten Vorlesungen Vorlesungen 1,2: wichtige mathematische Grundlagen;

Mehr

Alexandra Kuhls Proseminar Das Buch der Beweise

Alexandra Kuhls Proseminar Das Buch der Beweise Der Fünf Farben Satz Alexandra Kuhls Proseminar Das Buch der Beweise 30.11.2017 Der Fünf Farben Satz Ist es möglich, die Gebiete einer ebenen Karte so Ist es möglich, die Gebiete einer ebenen Karte so

Mehr

Begrüßung zum Bachelor-Studium Mathematik. 16. Oktober IfM INSTITUT FÜR MATHEMATIK

Begrüßung zum Bachelor-Studium Mathematik. 16. Oktober IfM INSTITUT FÜR MATHEMATIK Begrüßung zum Bachelor-Studium Mathematik 16. Oktober 2012 Übersicht 1. Was ist Mathematik? 2. Informationen zum Studium Was ist Mathematik? Mathematik... ist eine wunderbare Landschaft, die es zu entdecken

Mehr

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung)

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton)

Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton) WS 2015/16 Diskrete Strukturen Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Minimale Graphentheorie Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt

Mehr

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr

Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 13. Januar 2018

Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 13. Januar 2018 Brückenkurs Mathematik Jörn Steuding (Uni Würzburg), 3. Januar 08 unser Programm. November:. Zahlen und einfache Gleichungen Zahlen, Rechengesetze, lineare u. quadratische Gleichungen, Dezimalbrüche, ein

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Diskrete Strukturen Kapitel 1: Einleitung

Diskrete Strukturen Kapitel 1: Einleitung WS 2015/16 Diskrete Strukturen Kapitel 1: Einleitung Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Bernd Döring. Wege, Plätten, Färben. Vom Problem zur Theorie der Graphen

Bernd Döring. Wege, Plätten, Färben. Vom Problem zur Theorie der Graphen Bernd Döring Wege, Plätten, Färben Vom Problem zur Theorie der Graphen Bernd Döring, 2002-2005 Bernd Döring Johannes-Althusius-Gymnasium Früchteburger Weg 28 26721 Emden - 2 - Inhaltsverzeichnis 0. Einleitung

Mehr

Formale Grundlagen. Graphentheorie 2008W. Vorlesung im 2008S

Formale Grundlagen. Graphentheorie 2008W. Vorlesung im 2008S Minimale Formale Grundlagen Graphentheorie Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt Minimale

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek

Mehr

Achilles und die Schildkröte Sommersemester 2008

Achilles und die Schildkröte Sommersemester 2008 Achilles und die Schildkröte Sommersemester 2008 Färbbarkeit planarer Graphen Alexander Damarowsky 20.05.2008 V6, 15.05.2008 Problemstellung /Ziel des Vortrags: Wie viele Farben werden benötigt, um jeden

Mehr

Seminar: Einladung in die Mathematik

Seminar: Einladung in die Mathematik Seminar: Einladung in die Mathematik Marius Kling 11.11.2013 Übersicht 1. Königsberger Brückenproblem 2. Diskrete Optimierung 3. Graphentheorie in der Informatik 4. Zufällige Graphen 5. Anwendungen von

Mehr

Färbungen auf Graphen

Färbungen auf Graphen Färbungen auf Graphen Robert Siegfried Seminar Algorithmische Graphentheorie FH Wedel, 26.06.2003 Agenda Einleitung Definitionen Färben von Landkarten Anwendungsbeispiele Algorithmen Folie 2 Einleitung

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt

Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt Diskrete Mathematik Hamiltonsche Graphen Teil I Karina Arndt 21.06.2006 Übersicht Einleitung Hamiltonsch und eulersch Hamiltonsche Kreise Hamiltonsche Graphen neu zeichnen Kreise und Wege Reguläre Graphen

Mehr

1 Pfade in azyklischen Graphen

1 Pfade in azyklischen Graphen Praktikum Algorithmen-Entwurf (Teil 5) 17.11.2008 1 1 Pfade in azyklischen Graphen Sei wieder ein gerichteter Graph mit Kantengewichten gegeben, der diesmal aber keine Kreise enthält, also azyklisch ist.

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul

Mehr

in einem Zug finden, egal, wie lange man probiert? b) Warum kann man von bestimmten Ecken aus niemals eine Lösung

in einem Zug finden, egal, wie lange man probiert? b) Warum kann man von bestimmten Ecken aus niemals eine Lösung Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Graphentheorie... oder das Haus vom Nikolaus! Graphentheorie man könnte meinen, dass es hier um Funktionsgraphen geht, wie ihr sie

Mehr

Einiges über komplexe Zahlen

Einiges über komplexe Zahlen Lineare Algebra und Analytische Geometrie I für LB WS 2001/2002 Dr. Bruno Riedmüller Einiges über komplexe Zahlen Es muss davon ausgegangen werden, dass der Leser mit komplexen Zahlen wenig oder nicht

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010 Bericht zur Mathematischen Zulassungsprüfung im Mai 2 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 5. Mai 2 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 9-minütigen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe / Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern.

Mehr

Diskrete Strukturen. Chair for Foundations of Software Reliability and Theoretical Computer Science Technische Universität München

Diskrete Strukturen. Chair for Foundations of Software Reliability and Theoretical Computer Science Technische Universität München Diskrete Strukturen c Javier Esparza und Michael Luttenberger Chair for Foundations of Software Reliability and Theoretical Computer Science Technische Universität München Montag 16 Oktober, 2017 p.2 Was

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Vier-Farben-Vermutung (1)

Vier-Farben-Vermutung (1) Vier-Farben-Vermutung (1) Landkarten möchte man so färben, dass keine benachbarten Länder die gleiche Farbe erhalten. Wie viele Farben braucht man zur Färbung einer Landkarte? Vier-Farben-Vermutung: Jede

Mehr

Diskrete Mathematik mit Grundlagen

Diskrete Mathematik mit Grundlagen Sebastian lwanowski Rainer Lang Diskrete Mathematik mit Grundlagen Lehrbuch für Studierende von MINT-Fächern ~ Springer Vieweg Inhaltsverzeichnis 1 Grundlagen der Mathematik 1 1.1 Einführung...............

Mehr

Mathematik ohne Formeln gibt s denn das?

Mathematik ohne Formeln gibt s denn das? Mathematik ohne Formeln gibt s denn das? Ein Stück Mathematik der anderen Art Daniel Grieser Institut für Mathematik Universität Oldenburg Der Läufer Ein Läufer im Schach kann nur schräg ziehen. Kann er......

Mehr

Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn

Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn 1. Geschichte - Frage kommt Mitte des 19 Jahrhunderts auf Wie viele Farben benötigt man um eine Karte

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

Vorlesung 2: Graphentheorie

Vorlesung 2: Graphentheorie Vorlesung 2: Graphentheorie Markus Püschel David Steurer Peter Widmayer Algorithmen und Datenstrukturen, Herbstsemester 2017, ETH Zürich Funktionsgraph bekannt aus der Schule hat aber leider nichts mit

Mehr

Beschluss AK-Mathematik 01/

Beschluss AK-Mathematik 01/ TU Berlin Marchstraße 6 10587 Berlin Auszug aus dem (noch nicht genehmigten) Protokoll der 02. Sitzung der Ausbildungskommission Mathematik im Jahr 2013 am Dienstag, den 28. Mai 2013, Raum MA 415 Beschluss

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter WS 2013/14 1 Eulersche Graphen Kantenzug Ein Kantenzug in einem Graphen (V, E) ist eine Folge (a 0, a 1,..., a n ) von Knoten

Mehr

Die Abstraktion der Schwanzlänge des Hundes

Die Abstraktion der Schwanzlänge des Hundes Die Abstraktion der Schwanzlänge des Hundes Prof. Dr. Sonja Prohaska und Dr. Marc Hellmuth Interdisziplinäres Zentrum für Biologie und Informatik Universität Leipzig 2. DEZEMBER 2010 Was ist diskrete Mathematik?

Mehr

17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13

17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13 17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13 Aufgabe 1 Sei M eine Menge von in einem Dreieck verlaufenden Strecken, über die Folgendes vorausgesetzt wird: Die Kanten

Mehr

durch Einfügen von Knoten konstruiert werden kann.

durch Einfügen von Knoten konstruiert werden kann. Satz von Kuratowski Definition Unterteilung eines Graphen Sei G = (V, E) und e = {u, v} E. 1 Das Einfügen eines neuen Knoten w in die Kante e führt zum Graphen G = (V {w}, E \ e {{u, w}, {w, v}}). 2 Der

Mehr

116 KAPITEL 15. INTEGRALSÄTZE

116 KAPITEL 15. INTEGRALSÄTZE 116 APITEL 15. INTEGRALSÄTZE Aufgabe 15.1.3 (Verschwinden des Integrales über eine partielle Ableitung) Es sei U R n offen, ϕ C 0 (U; R). Dann ist für j = 1,..., n U ϕ x j dλ n = 0. Wir erinnern an die

Mehr

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296 Kapitel 7 Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 256 / 296 Inhalt Inhalt 7 Färbungen Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 257 / 296 Jordankurve Zentrale Frage

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie

Mehr

3. Die Datenstruktur Graph

3. Die Datenstruktur Graph 3. Die Datenstruktur Graph 3.1 Einleitung: Das Königsberger Brückenproblem Das Königsberger Brückenproblem ist eine mathematische Fragestellung des frühen 18. Jahrhunderts, die anhand von sieben Brücken

Mehr

Knotenfärbung. Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E.

Knotenfärbung. Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E. Knotenfärbung Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E. Die chromatische Zahl χ(g) eines Graphen G ist die minimale

Mehr

Informationsveranstaltung zum freiwilligen Wechsel in die Prüfungsordnung 2015

Informationsveranstaltung zum freiwilligen Wechsel in die Prüfungsordnung 2015 Informationsveranstaltung zum freiwilligen Wechsel in die Prüfungsordnung 2015 Weyertal 86-90 50931 Köln 21. Oktober 2015 1 / 21 Inhaltsverzeichnis 1. Allgemeine Hinweise 2. Bachelorstudiengang Mathematik

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Vorlesung 6: Modellierung Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 1/30 MOTIVATION FÜR AUSSAGENLOGIK Aussagenlogik erlaubt Repräsentation

Mehr

FH AACHEN STANDORTE JÜLICH, KÖLN, FORSCHUNGSZENTRUM JÜLICH IT CENTER DER RWTH AACHEN UNIVERSITY. M. Grajewski, P. Jansen, B.

FH AACHEN STANDORTE JÜLICH, KÖLN, FORSCHUNGSZENTRUM JÜLICH IT CENTER DER RWTH AACHEN UNIVERSITY. M. Grajewski, P. Jansen, B. FH AACHEN STANDORTE JÜLICH, KÖLN, FORSCHUNGSZENTRUM JÜLICH IT CENTER DER RWTH AACHEN UNIVERSITY M. Grajewski, P. Jansen, B. Willemsen BACHELORSTUDIENGANG SCIENTIFIC PROGRAMMING MATSE AUSBILDUNG Klausur

Mehr

In diesem Skript werden folgende Begriffe anhand von einfachen Beispielen eingeführt:

In diesem Skript werden folgende Begriffe anhand von einfachen Beispielen eingeführt: Färbungsprobleme Einstieg In diesem Skript werden folgende Begriffe anhand von einfachen Beispielen eingeführt: Graphentheorie Der Vier-Farben-Satz Algorithmen Komplexität von Algorithmen NP-Probleme Die

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 08: Menger, König und Hall / Planare Graphen 1 / 30 Der Satz von Menger: s t trennende Kantenmenge

Mehr

Mathemathik für Informatiker Band 1: Diskrete Mathematik und Lineare Algebra

Mathemathik für Informatiker Band 1: Diskrete Mathematik und Lineare Algebra Gerald Teschl Susanne Teschl Mathemathik für Informatiker Band 1: Diskrete Mathematik und Lineare Algebra Springer Inhaltsverzeichnis Grundlagen 1 Logik und Mengen 1 1.1 Elementare Logik 1 1.2 Elementare

Mehr

Der Fünffarbensatz. Ausarbeitung des Seminarvortrags vom

Der Fünffarbensatz. Ausarbeitung des Seminarvortrags vom Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS Über klassische Probleme der Mathematik Leitung: Prof. Harald Upmeier, Benjamin Schwarz Referentin: Sabrina Klöpfel Wintersemester

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

Diskrete Strukturen. wissen leben WWU Münster

Diskrete Strukturen. wissen leben WWU Münster MÜNSTER Diskrete Strukturen Dietmar Lammers Vorlesung SoSe 2010 MÜNSTER Diskrete Strukturen 269/260 MÜNSTER Diskrete Strukturen 270/260 Im WLAN gibt es 6 Frequenzen und die AccessPoints müssen so verteilt

Mehr

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Über 7 Brücken... wissen leben WWU Münster. Dietmar Lammers Hochschultag 201

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Über 7 Brücken... wissen leben WWU Münster. Dietmar Lammers Hochschultag 201 MÜNSTER Über 7 Brücken... Dietmar Lammers Hochschultag 201 MÜNSTER Über 7 Brücken... 2/29 > Dauerwerbeveranstaltung für ein Studium der Informatik- aber mit mathematischem Inhalt! Hier: Ein Auszug aus

Mehr

Was ist Diskrete Mathematik und wozu?

Was ist Diskrete Mathematik und wozu? Was ist und wozu? Fakultät für Mathematik, Universität Wien Was ist? Was ist? diskret... Was ist? diskret... 1) unauällig, unaufdringlich (Brockhaus) Was ist? diskret... 1) unauällig, unaufdringlich (Brockhaus)

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Nichts als die mathematische Wahrheit

Nichts als die mathematische Wahrheit 1 Nichts als die mathematische Wahrheit Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin Lange Nacht der Wissenschaften 10. Mai 2014 2 Anregungen zu folgenden Fragen

Mehr

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv?

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv? Umkehrfunktionen Aufgabe 1. Sei A = {1, 2, 3, 4}. Definieren Sie eine bijektive Funktion f A A und geben Sie ihre Umkehrfunktion f 1 an. Lösung von Aufgabe 1. Zum Beispiel f, f 1 A A mit f(x) = x f 1 (x)

Mehr

Graphen. Graphen und ihre Darstellungen

Graphen. Graphen und ihre Darstellungen Graphen Graphen und ihre Darstellungen Ein Graph beschreibt Beziehungen zwischen den Elementen einer Menge von Objekten. Die Objekte werden als Knoten des Graphen bezeichnet; besteht zwischen zwei Knoten

Mehr

Königsberger Brückenproblem

Königsberger Brückenproblem Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS: Klassische Probleme der Mathematik Leitung: Prof. Dr. Harald Upmeier, Benjamin Schwarz Referentin: Lene Baur WS 2009/2010 Königsberger

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 01: Einleitung 1 / 43 Organisatorisches Vorlesung Di 09:45-11:15 Hörsaal 13 3.00 ECTS (2.00

Mehr

Verflixt, warum geht das nicht? Unmöglichkeitsbeweise in der Mathematik

Verflixt, warum geht das nicht? Unmöglichkeitsbeweise in der Mathematik Verflixt, warum geht das nicht? Unmöglichkeitsbeweise in der Mathematik Daniel Grieser Institut für Mathematik Universität Oldenburg Tag der Mathematik, 5. November 2008 Der Läufer Ein Läufer im Schach

Mehr

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert:

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert: KAPITEL 3 Graphen Man kann als Ursprung der Graphentheorie ein Problem sehen, welches Euler 1736 von Studenten aus Königsberg gestellt bekam. Der Fluss Pregel wird von 7 Brücken überquert, und die Frage

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

Die. Ramsey-Zahlen

Die. Ramsey-Zahlen Westfälische Willhelms-Universität Münster Fachbereich 10 Mathematik und Informatik Seminar Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Die Ramsey-Zahlen 01.06.15 Kirsten Voß k_voss11@uni-muenster.de

Mehr

Zur Zykelschreibweise von Permutationen

Zur Zykelschreibweise von Permutationen Zur Zykelschreibweise von Permutationen Olivier Sète 16. Juni 2010 1 Grundlagen Definition 1.1. Eine Permutation von {1, 2,..., n} ist eine bijektive Abbildung σ : {1, 2,..., n} {1, 2,..., n}, i σ(i).

Mehr

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage.

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage. 1.3 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben, wahr oder falsch

Mehr

Hamiltonsche Graphen (2. Teil)

Hamiltonsche Graphen (2. Teil) Hamiltonsche Graphen (2. Teil) Themen des Vortrages Für Schachspieler Hamiltons Spiel Sitzordnungen Eine billige Rundreise Ein vielleicht unlösbares Problem Bäcker mit Kenntnissen in Graphentheorie Fazit

Mehr

Mathematik-Studium an der Freien Universität Was ist Mathematik? Günter M. Ziegler Freie Universität Berlin

Mathematik-Studium an der Freien Universität Was ist Mathematik? Günter M. Ziegler Freie Universität Berlin -Studium an der Freien Universität Was ist? Freie Universität Berlin EinS@FU, 20. November 2017 Berlin studium Die mathematischen Schwerpunkte : Reine Algebra Algebraische Geometrie Zahlentheorie Berlin

Mehr

Jedes zweite ist schwarz Analyse und Spielereien um die Formulierung jedes zweite. Es zeigen sich Paritätsprobleme.

Jedes zweite ist schwarz Analyse und Spielereien um die Formulierung jedes zweite. Es zeigen sich Paritätsprobleme. Hans Walser, [20111120b] Jedes zweite ist schwarz Analyse und Spielereien um die Formulierung jedes zweite. Es zeigen sich Paritätsprobleme. 1 Schachbrett Im Schachbrett (Abb. 1) ist jedes zweite Feld

Mehr

8 KAPITEL 1. GRUNDLAGEN

8 KAPITEL 1. GRUNDLAGEN 8 KAPITEL 1. GRUNDLAGEN Beweis. 1. Sei A X abgeschlossen, dann ist X \ A offen und jede offene Überdeckung von A lässt sich durch Hinzunahme von X \ A auf ganz X fortsetzen. Die Kompaktheit von X erlaubt

Mehr

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14 KARL-FRANZENS-UNIVERSITÄT GRAZ Seminar aus Reiner Mathematik Die Museumswächter Krupic Mustafa Wintersemester 2013/14 Inhaltsverzeichnis 2 Inhaltsverzeichnis 1 Einleitung 3 2 Museumswächter-Satz 6 2.1

Mehr

HEUTE. Regeln für Programmabnahmen! Wiederholung: Regeln für Übungs- und Programmieraufgaben! Beweistechniken: vollständige Induktion, Widerspruch

HEUTE. Regeln für Programmabnahmen! Wiederholung: Regeln für Übungs- und Programmieraufgaben! Beweistechniken: vollständige Induktion, Widerspruch 04.11.05 1 HEUTE 04.11.05 3 Regeln für Programmabnahmen! Wiederholung: Regeln für Übungs- und Programmieraufgaben! Beweistechniken: vollständige Induktion, Widerspruch die Rundungsfunktionen und modulo

Mehr

Q.E.D. Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#2, Christian Rieck, Arne Schmidt

Q.E.D. Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#2, Christian Rieck, Arne Schmidt Institute of Operating Systems and Computer Networks Algorithms Group Q.E.D. Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#2, 01.11.2018 Christian Rieck, Arne Schmidt Einführendes Beispiel

Mehr

Ilse Fischer. Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria.

Ilse Fischer. Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria. GRAPHEN MÜSSEN NICHT IMMER FUNKTIONEN DARSTELLEN Ilse Fischer Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria. E-mail: Ilse.Fischer@univie.ac.at Zusammenfassung. In der

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik - WS 11/12. Klausurvorbereitung

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik - WS 11/12. Klausurvorbereitung Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik - WS 11/12 Prof. Dr. A. Taraz, Dr. O. Cooley, Klausurvorbereitung Die Klausur zum Propädeutikum Diskrete Mathematik findet

Mehr

1 Grundlagen. 1.1 Aussagen

1 Grundlagen. 1.1 Aussagen 1 Grundlagen 1.1 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben,

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Dr. Joachim Spoerhase und Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Algorithmische Graphentheorie Sommersemester 2017 10. Vorlesung Planaritätstest und Färben planarer Graphen Graphen färben

Mehr

Diskrete Mathematik Referenzen zum Nacharbeiten:

Diskrete Mathematik Referenzen zum Nacharbeiten: DM1 Slide 1 Diskrete Mathematik Sebastian Ianoski FH Wedel Kapitel 1: Grundlagen der Mathematik Reerenzen zum Nacharbeiten: Lang 1, 2.1 Meinel 1 DM1 Slide 2 Inhaltlicher Umang dieser Vorlesung Inhaltliche

Mehr

Diskrete Mathematik. Kryptographie und Graphentheorie

Diskrete Mathematik. Kryptographie und Graphentheorie Diskrete Matheatik Kryptographie und Graphentheorie Jochen Hores & Jonas Bühler 14.06.006 Jochen Hores, Jonas Bühler Kryptographie & Graphentherorie 1 Inhaltsverzeichnis Inhaltsverzeichnis 1. Kryptographie

Mehr

Seminararbeit Zahlentheorie. Gitter und der Minkowskische Gitterpunktsatz

Seminararbeit Zahlentheorie. Gitter und der Minkowskische Gitterpunktsatz Seminararbeit Zahlentheorie Gitter und der Minkowskische Gitterpunktsatz Natascha Bilkic und Andreas Welling 4. Dezember 2007 Inhaltsverzeichnis I. Einführung 3 8.1. Definition: Gitter................................

Mehr