Lineare Gleichungssysteme

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lineare Gleichungssysteme"

Transkript

1 Lineare Gleichungssysteme Aufgabe: Gesucht sind Zahlen mit folgenden Eigenschaften:.) Subtrahiert man vom Dreifachen der ersten Zahl 8, so erhält man die zweite Zahl..) Subtrahiert man von der zweiten Zahl, so erhält man die erste Zahl. Welches Zahlenpaar erfüllt diese Bedingungen. x =. Zahl.) y = x 8 (/), (5/7), (6/0) y =. Zahl.) x = y / + (/), (/4), (5/7) x + = y y= x O L = {(5/7)} Übung: Bestimme zeichnerisch die Lösungsmenge von folgenden Gleichungssystemen: a.).) y = x + b.).) x = y 4 c.).) x y = 6.) y = 0,5x.) y + = 4x.) x = 4y + L={(-/-)} L={(/)} L={(4/-)} Berechne die Nullstellen von allen Geraden mit der Nummer : N (-6/0) N (0,5/0) N (/0) Seite von

2 Aufgabe: Bestimme die Lösungsmenge der folgenden Gleichungssysteme: a.).) x + 4y = 8 b.).) y + = x.) y + x = 4.) 6x + 4y = 4.) 4y = x + 8.) y = x.) y = x 4.) 4y = 6x 4.) y = x +.) y = x 6.) y = x.) y = x O { } {( ) } a.) L = b.) L = x / y / y =,5x 6 Merke: Man löst ein Gleichungssystem graphisch nach folgenden Schritten:.) Umformen der Gleichungen in Funktionsgleichungen (y alleine auf eine Seite)..) Einzeichnen der Geraden in KS. Es können Möglichkeiten auftreten: a.) Die beiden Geraden schneiden sich. L = {(x/y)} b.) Die beiden Geraden verlaufen parallel. L = { } c.) Die beiden Geraden sind identisch. Lösung sind alle Punkte, die auf der Geraden liegen. L = {(x/y) / y = mx+n} Seite von

3 Rechnerisches Lösungsverfahren.) Das Gleichsetzungsverfahren Auflösung nach y: Auflösung nach x:.) x + y = 0.) 5y + x = 5.) x + y = 7.) x + y = 7.) y = 0 x.) x = 5 5y.) y = 7 x.) x = 7 y.) y = 0 x 5 5y = 7 y.) y = 7 x 8 5y = y 8 = y 0 x = 7 x = y x = 7 x x = 7 x + = 7 x =,5 x + 5 = 7 x = y = 0,5 y = 6,5 L = {(,5 / 6, 5) } L = / Seite von

4 Aufgaben:.) x + y = 0.) 0y = x + 0.) y + = 5x.) y = x.) x + = y.) 0y = x + 0.) y = 5x.) 0y = 5x 5.) y = x + x + 0 = 5x 5.) y = 5x x + 0 = 5 x = 5 x + = 5x x = 5 = 4x 4 = 4x 0y = = x 0y = 70 y = 7 y = 6 + y = 8 L = 5 / 7 y = 4 L = 6 / 4.) Das Einsetzungsverfahren Aufgabe: 6 Erwachsene und 7 Kinder zahlen für eine Seilbahnfahrt,5. Ein Erwachsener zahlt doppelt so viel wie ein Kind. Bestimme die Fahrpreise. x: Fahrpreis für Kind y: Fahrpreis für ein Erwachsener.) x = y.) 7x + 6y =,5 7x + 6 x =,5 7x + x =,5 9x =,5 x =,75 y =,75 y =,5 Eine Fahrt kostet für ein Kind,75 und für einen Erwachsenen,50. Seite 4 von

5 Aufgaben:.) x + 5y = 9.) 0x 7y = 44.) y = x +.) 7y = x x + 5 (x + ) = 9 0x (x ) = 44 x + 5x + 60 = 9 0x x + = 44 7x + 60 = 9 7x + = 44 7x = 5 7x = x = x = y = ( ) + 7y = y = y = L = / L = /.) Das Additionsverfahren Aufgaben.) x + y = 8 / +.) x y = 4.) x y = 4 / +.) 5x + y = 7 / 4x =.) x y = 4 / + x =.) 5x + y = 8 / + + y = 8 7x = y = 8 x = 5 y = y = 7 L = / 5 + y = 7 y = L = 5 /.) x + y = 5 /.) 4y + 8 = 6x.) 5x y = 9 /.) y + x = 4 / 4.) 4x + 6y = 0 / +.) 4y + 8 = 6x / + 6x / 8.) 5x 6y = 87 / +.) 4y + x = 56 9x = 57.) 4y + 6x = 8 / + x =.) 4y + x = 56 / y = 5 8x = 8 y = x = = = {( )} = = {( ) } y 7 L / 7 y L / Seite 5 von

6 MERKE: Man wendet das Gleichsetzungsverfahren an, wenn: beide Gleichungen die Form y= / x = besitzen. Man wendet das Einsetzungsverfahren an, wenn: nur eine der beiden Gleichungen die Form y = / x = besitzt. Man wendet das Additionsverfahren an, wenn: alle Variablen unterschiedliche Vorzahlen besitzen. Aufgaben mit Brüchen als Vorzahlen: ) x y = 9 / (Hauptnenner!).) x + y = x + / ) x + y = 5 / 5 (Hauptnenner!).) x + = y + / ) x 4y = 8 / ( ).) 4x + 8y = 5x + 5 / Ordnen!.) 6x + 5y = 75.) 40x + 8 = 9y + 0 / Ordnen!.) 6x + 8y = 6 / +.) x + 8y = 5 / 9.) 6x + 5y = 75 / +.) 40x 9y = / 8 y = 9.) 99x + 7y = 45 / + y =.) 0x 7y = 76 / + x = 0 L = 0 / x = x = y = L = / Für das Koordinatensystem: Anwendungsaufgaben In welchem Punkt schneiden sich die Geraden y = x + 4 und y = x 6?.) y = x + 4.) y = x 6 x + 4 = x 6 / 9x + = x 8 0x = 0 x = y = 5 L = / 5 Der Schnittpunkt liegt bei S(/-5). Seite 6 von

7 Im Koordinatensystem bilden die Geraden y = x + und y = x + 7 und y = ein Dreieck. a.) Zeichne das Dreieck. b.) Berechne die Koordinaten der Eckpunkte A, B, C des Dreiecks. c.) Bestimme den Flächeninhalt (A) des Dreiecks. d.) Das Dreieck ist die Grundfläche eines Prismas mit einer Höhe von,5 cm. Bestimme das Volumen (V) dieses Prismas. zu a.) y C A B O x zu b.).) y = x +.) y = x + 7.) y = x +.) y = x + 7.) y =.) y = x + = x + 7 x + 7 = x + = x = 5 x = 6 x = x = x = x = y = y = y = L = / C / L = / B / L = / A / Seite 7 von

8 zu c.) g h 5 A = A = = 5 cm zu d.) V = G h V = 5 cm,5 cm = 6,5 cm Weitere Anwendungen Aufgabe: Eine Gerade verläuft durch den Punkt A ( / 8) und B (- / ). Wie lautet ihre Funktionsgleichung? y = mx + n.) 8 = m + n y = mx + n.) = m + n /.) 8 = m + n / +.) 6 = m + n / + 4 = 4n,5 = n 8 = m +,5 4,5 = m,5 = m Funktionsgleichung: y =,5x +,5 Aufgabe: Anwendung Geometrie Ein Schreiner möchte eine,80 m lange Holzleiste zu einem rechteckigen Bilderrahmen verarbeiten. Die größere Seite soll dabei 0 cm länger werden als die kürzere Seite. Bestimme die Länge und die Breite des Bilderrahmens. Breite des Bilderrahmens: x Länge des Bilderrahmens: x + 0 x + 0 x x 80 = x + (x + 0) 80 = x + x = 4x = 4x 5 = x x + 0 Breite des Bilderrahmens: 5 cm Länge des Bilderrahmens: 55 cm Seite 8 von

9 Breite des Bilderrahmens: x Länge des Bilderrahmens: y y x.) y = x + 0.) x + y = 80 x + (x + 0) = 80 x + x + 40 = 80 4x + 40 = 80 4x = 40 x = 5 Breite des Bilderrahmens: 5 cm Länge des Bilderrahmens: 55 cm y = x + 0 y = y = 55 Aufgabe: Die Fläche eines Trapezes mit einer Höhe von 8 cm beträgt 96 cm. Die untere Grundseite ist 6 cm länger als die obere Grundseite. Wie lang sind die beiden Grundseiten? Länge der unteren Grundseite: x Länge der oberen Grundseite: y y 96cm 8cm x.) x = y + 6 ( ) x + y 8.) = 96.) x = y + 6.) (x + y) 4 = 96 (y y) 4 = 96 (y + 6) 4 = 96 8y + 4 = 96 8y = 7 y = 9 Länge der unteren Grundseite: 5 cm Länge der oberen Grundseite: 9 cm x = y + 6 x = x = 5 Seite 9 von

10 Prozentrechnung in Gleichungssystemen Aufgabe: Ein Gastwirt bestellt bei einer Weingroßhandlung für 070 deutsche und französische Weine. Auf deutsche Weine wird ein Mengenrabatt von 5%, auf französische Weine ein solcher von % gewährt. Dadurch ergibt sich ein Preisnachlass von insgesamt 46,50. Wie hoch war der ursprüngliche Rechnungsbetrag für jede Weinsorte? Rechnungsbetrag für deutsche Weine: x Rechnungsbetrag für französische Weine: y.) x + y = 070 Pr obe : 5.) x + y = 46,50 / 00 x + y = = 070.) x = 070 y 070 = 070.) 5x + y = 4650 Pr obe : 5(070 y) + y = = 46, y + y = , +,5 = 46, y = ,5 = 46,5 y = ,5 = 46,5 y = 50 x + y = 070 x + 50 = 070 x = 70 Rechnungsbetrag für deutschen Wein: 70 Rechnungsbetrag für französischen Wein: 50 Seite 0 von

11 Gleichungssysteme.) Löse die folgenden Gleichungssysteme mit einem beliebigen Verfahren: a.).) (4x y) (x ) =.) (y x) 5 (x y) = 0 b.).) (x.) (x + 5)(y + ) = xy )(y ) = xy + 4 c.) x + 5y +.) = 8 x + y + 4.) + = 5.) Anwendungsaufgaben: a.) Bestimme den Schnittpunkt der beiden linearen Funktionen y = x und y = 0,5x +. b.) Eine lineare Funktion verläuft durch die Punkte A(90/) und B(-0/-7). Wie lautet ihre Funktionsgleichung? c.) 7 Flaschen Orangenlimo und 8 Flaschen Zitronenlimo kosten zusammen,80. 8 Flaschen Orangenlimo und 7 Flaschen Zitronenlimo kosten zusammen,70. Wie teuer ist eine Flasche Orangenlimo, wie teuer ist eine Flasche Zitronenlimo? d.) Johanna kauft zum Muttertag einen Strauß mit Rosen und Lilien zu 4,50. Kai kauft einen Strauß mit Rosen und Lilien zu 5,50. Ihr Vater weiß nicht, dass seine Kinder Blumen schenken und kauft einen Strauß mit Rosen und Lilien. Wie viel Euro muss der Vater für die Blumen zahlen? e.) Sandra und Dirk gehen in die gleiche Klasse. Sandra sagt: Ich habe,7-mal so viele Mitschülerinnen wie Mitschüler. Dirk hingegen meint: Ich habe doppelt so viele Mitschülerinnen wie Mitschüler. Wie viele Schülerinnen und Schüler besuchen diese Klasse? f.) Ein Rechteck hat einen Umfang von 84 cm. Eine Seite ist um 6 cm länger als die andere Seite. Wie lang sind die Seiten des Rechtecks? g.) Verkürzt man eine Seite eines Rechtecks um cm und verlängert die andere um 5 cm, so wächst der Flächeninhalt um 85 cm. Verlängert man aber die erste Seite um 5 cm und verkürzt die andere um cm, so verringert sich der Flächeninhalt um cm. Wie groß war der Flächeninhalt des ursprünglichen Rechtecks? h.) Der Umfang eines gleichschenkligen Dreiecks beträgt 7 cm. Die Basis des Dreiecks ist um 5 cm kürzer als die Schenkel. Berechne die Seitenlängen des Dreiecks. i.) Silkes Mutter leiht sich für zwei Tage ein Auto. Die Kosten für den Leihwagen setzen sich aus einer Grundgebühr pro Tag und den Kosten für jeden zurückgelegten Kilometer zusammen. Für eine Strecke von 70 km muss Silkes Mutter nach zwei Tagen insgesamt 45,40 bezahlen. Svens Vater bezahlt für den gleichen Wagen nach sechs Tagen und 540 km Fahrstrecke 45. Berechne die Grundgebühr pro Tag und die Kosten pro Kilometer. j.) An einem Vereinsausflug nehmen Erwachsene und Kinder teil, insgesamt 0 Personen. Für eine Bootsfahrt bezahlt jeder Erwachsene 7, jedes Kind weniger. Die Gesamtkosten der Bootsfahrt betragen 6. k.) Subtrahiert man vom Fünffachen einer Zahl das Dreifache einer zweiten Zahl, erhält man 6. Addiert man zum Doppelten der ersten Zahl das Vierfache der zweiten Zahl, erhält man. Wie heißen die beiden Zahlen? l.) Die Quersumme einer zweistelligen Zahl ist 0. Die Einerziffer ist dabei um 4 größer als die Zehnerziffer. Wie heißt die Zahl? m.) Zwei Geldbeträge werden zum Zinssatz 4,5% für das eine und 6% für das andere Kapital ausgeliehen. Sie bringen zusammen jährlich 4800 Zinsen. Werden die beiden Zinssätze um,5% erhöht, so ist die jährliche Zinseinnahme um 500 höher. Wie hoch sind die ausgeliehenen Beträge? Seite von

12 Gleichungssysteme (Lösungen).) a.).) b.).) (4x y) (x ) =.) (x + 5)(y + ) = xy + 0.) (y x) 5(x y) = 0.) (x + )(y ) = xy + 4.) x y 6x + =.) xy + x + 5y + 0 = xy + 0.) 6y + x 5x + 0y = 0.) xy x + y 6 = xy + 4.) 6x y = 5.) x + 5y = 0.) x + 4y = 0.) x + y = 0 x = x = 7,5 y = y = 6,5.) c.) x + 5y +.) = 8 x + y + 4.) + = 5.) 6x + 5y = 9.) x + + 5y + 0 = 5.) 6x 5y =.) x + 5y = 7 x = y =.) a.). b.).) c.).) y = x.) = 90m + n.) 7x + 8y =,80.) y = 0,5x +.) 7 = 0m + n.) 8x + 7y =,70 x = 0,5x +.) 90m = n.) 56x 64y = 0,4,5x = 5.) 7 + 0m = n.) 56x + 49y = 88,9 x =, y = 4,6 90m = 7 + 0m 5y =,5 0m = 60 y = 0,9 m =, x = 0,8 n = y =,x + Seite von

13 .) d.). e.).) f.).) x + y = 4,50.) Anzahl Schüler : x.) x 6 = y.) x + y = 5,50.) Anzahl Schülerinnen : y.) x + y = 84.) 6x + 4y = 9.) y =,7x x + (x 6) = 84.) 6x 9y = 46,50.) (x ) = y x + x = 84 4x = 96 5y = 7,5 x =,7x x = 4 y =,5 0,x = y = 8 x =,5 x = 0 Vater :,5 +,5 = 40,50 y = 7.) g.). h.).) i.).) (x )(y + 5) = xy + 85.) x + y = 7.) x + 70y = 45,40.) (x + 5)(y ) = xy.) y + 5 = x.) 6x + 540y = 45.) xy + 5x y 5 = xy + 85 (y + 5) + y = 7.) 6x 50y = 46,0.) xy x + 5y 5 = xy y y = 7.) 6x + 540y = 45 y = 7.) 5x y = 00 y = 9 0y = 6,80.) x + 5y = 4 x = 4 y = 0,56 x = 5,0 x = 4 y = 8.) j.). k.).) l.).) x + y = 0.) 5x y = 6.) Zehnerziffer : x.) 7x + 5y = 6.) x + 4y =.) Einerziffer : y.) 7x 7y = 40.) 5x y = 6.) x + y = 0.) 7x + 5y = 6.) 5x 0y = 55.) x + 4 = y y = 4 y = 9 x + x + 4 = 0 y = y = x = x = 8 x = 5 y = 7.) m.).) 0,045x + 0,06y = 4800.) 80x 40y = ) 0,06x + 0,075y = 600.) 80x + 5y = ) 45x + 60y = / ( 4) 5y = ) 60x + 75y = / y =.000 x = Seite von

Lineare Gleichungssysteme mit zwei Unbekannten

Lineare Gleichungssysteme mit zwei Unbekannten Lineare Gleichungssysteme mit zwei Unbekannten von helmut hinder gießen 2012-15 Lineare Gleichungssysteme mit 2 Unbekannten Problem: Die Dekorationsabteilung eines Kaufhauses bestellt beim Fachhandel 50

Mehr

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17 Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:

Mehr

F u n k t i o n e n Gleichungssysteme

F u n k t i o n e n Gleichungssysteme F u n k t i o n e n Gleichungssysteme Diese Skizze ist aus Leonardo da Vincis Tagebuch aus dem Jahre 149 und zeigt wie sehr sich Leonardo für Proportionen am Menschen interessierte. Ob er den Text von

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mar Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei

Mehr

Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe. Aufgaben zur Wiederholung und Vertiefung

Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe. Aufgaben zur Wiederholung und Vertiefung Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe Aufgaben zur Wiederholung und Vertiefung Mathematik Einführungsphase gymnasiale Oberstufe Seite 1 Hinweise zum Umgang mit dem Aufgabenmaterial

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Veranschauliche alle Lösungen der Gleichung 3x + 5y = 0 in einem Koordinatensystem. Bestimme zwei Lösungspaare der Gleichung. Aufgabe : Bestimme rechnerisch

Mehr

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11.

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11. Seite 1 von 7 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des mittleren Schulabschlusses 008 (5. Juni 008 von 8.0 bis 11.00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren

Mehr

R. Brinkmann Seite Lineare Gleichungssysteme mit 2 Gleichungen und 2 Variablen

R. Brinkmann  Seite Lineare Gleichungssysteme mit 2 Gleichungen und 2 Variablen R. Brinkmann http://brinkmann-du.de Seite 1 18.0010 Lineare e mit Gleichungen und Variablen Ein solches besteht aus zwei Gleichungen. Gesucht ist die gemeinsame Lösung beider Gleichungen. Es gibt unterschiedliche

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Dr. H. Macholdt 7. September 2005 1 Motivation Viele Probleme aus dem Bereich der Technik und der Naturwissenschaften stellen uns vor die Aufgabe mehrere unbekannte Gröÿen gleichzeitig

Mehr

Gleichungsarten. Quadratische Gleichungen

Gleichungsarten. Quadratische Gleichungen Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:

Mehr

Lösungen. fw53hj Lösungen. fw53hj. Name: Klasse: Datum:

Lösungen. fw53hj Lösungen. fw53hj. Name: Klasse: Datum: Name: Klasse: Datum: 1) Welches Zahlenpaar ist eine Lösung der linearen Gleichung mit zwei Variablen? Ordne richtig zu. 2x + y = 2 5x 2y = 11 2x + y = 10 A(2 6) A(1,2 0) A(1 5) -x 2y = 4 A(0,5 1) 5x 0,6y

Mehr

Lineare Gleichungssyteme ================================================================== 1. Bestimme die Gleichung einer Parabel durch die Punkte

Lineare Gleichungssyteme ================================================================== 1. Bestimme die Gleichung einer Parabel durch die Punkte Lineare Gleichungssyteme ==================================================================. Bestimme die Gleichung einer Parabel durch die Punkte a) A 2, und b), und B 2 5 C 5 8 A B 2 5 C 3 4 c) A 0,5

Mehr

Lineare Gleichungen Lösungen

Lineare Gleichungen Lösungen 1) Welches Zahlenpaar ist eine Lösung der linearen Gleichung mit zwei Variablen? Ordne richtig zu. 2x + y = 2 5x 2y = 11 2x + y = 10 A(2 6) A(1,2 0) A(1 5) -x 2y = 4 A(0,5 1) 5x 0,6y = 6 6x 3y = -9 A(3

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Stationenlernen Mathematik Steckbrief

Stationenlernen Mathematik Steckbrief Stationenlernen Mathematik Steckbrief Klasse: 9 R Thema: Lösen linearer Gleichungssysteme Phase: Übung Dauer: ca. 5 Stunden Anz. Stationen: 9 Stationentypen: 6 Pflichtstationen 3 Wahlstationen Stationenthemen:

Mehr

AB2 Lineare Gleichungssysteme (LGS)

AB2 Lineare Gleichungssysteme (LGS) AB2 Lineare Gleichungssysteme (LGS) 1) An der Kinokasse 2) In der Kneipe Wie hoch ist der Preis für die Kinokarte eines Erwachsenen, wie viel Dollar kostet die Kinderkarte? Schreibe deinen Lösungsweg auf.

Mehr

1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75)

1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75) Lineare Gleichungs und Ungleichungssysteme 1 1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75) 2. Ergänzen Sie die fehlende Zahl, sodass sich eine Lösung

Mehr

Gleichsetzungsverfahren

Gleichsetzungsverfahren Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

ABSCHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SCHULABSCHLUSSES 2012 MATHEMATIK

ABSCHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SCHULABSCHLUSSES 2012 MATHEMATIK 10. KLSSE DER MITTELSHULE BSHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SHULBSHLUSSES 2012 MTHEMTIK am 20. Juni 2012 von 8:30 Uhr bis 11:00 Uhr Jeder Schüler muss e i n e von der Prüfungskommission ausgewählte

Mehr

Mathematik Eingangstest

Mathematik Eingangstest Mathematik Eingangstest Dreisatz Aufgabe Ein Mitarbeiter im Außendienst erhielt im vergangenen Jahr für 24.500 km Geschäftsfahrten einen Kostenersatz von 0.290,00. Mit wie viel Kostenersatz kann er im

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe 1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere

Mehr

Lineare Gleichungssysteme mit zwei Variablen

Lineare Gleichungssysteme mit zwei Variablen Lineare Gleichungssysteme mit zwei Variablen Anna Heynkes 4.11.2005, Aachen Enthält eine Gleichung mehr als eine Variable, dann gibt es unendlich viele mögliche Lösungen und jede Lösung besteht aus so

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Mathematik - Arbeitsblatt Lineare Funktionen

Mathematik - Arbeitsblatt Lineare Funktionen Mathematik - Arbeitsblatt Lineare Funktionen 1.(a) Welche der drei roten Graphen gehört zur Funktion == +5? Wie lautet die Funktionsgleichung des blauen Graphen? Bestimme rechnerisch die Nullstelle des

Mehr

Muster für den Schultest. Muster Nr. 1

Muster für den Schultest. Muster Nr. 1 GRUNDELEMENTE DER MATHEMATIK Boris Girnat Wintersemester 2005/06 Technische Universität Braunschweig Institut für Elementarmathematik und Didaktik der Mathematik Muster für den Schultest Dieser Blatt enthält

Mehr

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor.

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor. M 8.1 Direkte Proportionalität Wann heißen zwei Größen (direkt) proportional? Ananas kosten Wie viel kosten Ananas? Bestimme den Proportionalitätsfaktor. Zeichne den Graphen der Zuordnung. M 8.2 Indirekte

Mehr

a) Von welcher Art ist die Zuordnung : Anzahl der Tage mögliche Ausgaben pro Tag?

a) Von welcher Art ist die Zuordnung : Anzahl der Tage mögliche Ausgaben pro Tag? Aufgaben zum Grundwissen ================================================================== I. Proportionale und umgekehrt proportionale Zuordnungen 1. Von welcher Art können die durch die Tabellen gegebenen

Mehr

1 Geometrie - Lösungen von linearen Gleichungen

1 Geometrie - Lösungen von linearen Gleichungen Übungsmaterial Geometrie - Lösungen von linearen Gleichungen Lineare Gleichungen sind von der Form y = f(x) = 3x + oder y = g(x) = x + 3. Zwei oder mehr Gleichungen bilden ein Gleichungssystem. Ein Gleichungssystem

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 1.4 a) {( 1)} b) { } c) unendlich viele Lösungen d) {(4 )} e) {( 4)} f) { } 1.7 a) x = ; y = b) x = 4; y = c) x = _ ; y = 4 1.8 Zu diesen Aufgaben gibt es jeweils viele mögliche

Mehr

Gleichungen und Gleichungssysteme 5. Klasse

Gleichungen und Gleichungssysteme 5. Klasse Gleichungen und Gleichungssysteme 5. Klasse Andrea Berger, Martina Graner, Nadine Pacher Inhaltlichen Grundlagen zur standardisierten schriftlichen Reifeprüfung Inhaltsbereich Algebra und Geometrie (AG)

Mehr

Mathematik 9/E1 oder 10/E1 Test zu den Übungsaufgaben Übergang in die Einführungsphase E1.!!! Dokumentieren Sie alle Ansätze und Zwischenrechnungen!!!

Mathematik 9/E1 oder 10/E1 Test zu den Übungsaufgaben Übergang in die Einführungsphase E1.!!! Dokumentieren Sie alle Ansätze und Zwischenrechnungen!!! Mathematik 9/E1 oder 10/E1 Test zu den Übungsaufgaben Übergang in die Einführungsphase E1 Mittwoch, 1. Oktober 014 Zeit : 90 Minuten Name :!!! Dokumentieren Sie alle Ansätze und Zwischenrechnungen!!! Teil

Mehr

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen Grundwissensblatt 8. Klasse IV. Lineare Gleichungen mit zwei Variablen. Eigenschaften von linearen Gleichungen mit zwei Variablen Alle linearen Gleichungen der Form a + by = c (oder auch y = m + t) erfüllen:

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Lineare Gleichungssysteme. Rätsel

Lineare Gleichungssysteme. Rätsel Kantonsschule Solothurn RYS SS13 Rätsel Tiere sind es, grosse, kleine, Dreissig Köpfe, siebzig Beine. Teils sind s Kröten, teils auch Enten, wenn wir doch die Anzahl kennten! Wieder Tiere, grosse, kleine,

Mehr

Inhaltsverzeichnis. 1 Flächen 2. 2 Klammern auflösen 4. 3 Prozentrechnung 6. 4 Zinsrechnung 7. 5 Funktionen 8

Inhaltsverzeichnis. 1 Flächen 2. 2 Klammern auflösen 4. 3 Prozentrechnung 6. 4 Zinsrechnung 7. 5 Funktionen 8 Inhaltsverzeichnis 1 Flächen Klammern auflösen 4 3 Prozentrechnung 6 4 Zinsrechnung 7 5 Funktionen 8 1 Flächen Quadrat Alle Seiten sind gleich lang und alle Winkel sind rechte Winkel. - 4 Symmentriachsen

Mehr

Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN

Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN Schule Thema Bundesgymnasium für Berufstätige Salzburg Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN Unterlagen LehrerInnenteam Sehr oft treten in der Mathematik

Mehr

x x

x x Gleichungen und Ungleichungen 10 10 15 10 10 x x 0 10 5 10 10 5,5,5 55 60 10 + 10 + 15 + 10 + 10 + x + x = 0 + 10 + 5 + 10 + 10 + 5 Gleichung, die sich im Gleichgewicht befin det! 55 + x = 60 55 + x =

Mehr

6,5 34,5 24,375 46,75

6,5 34,5 24,375 46,75 Teste dich! - (/5) Für eine Taxifahrt zahlt man für jeden gefahrenen Kilometer,60. Zusätzlich wird eine Grundgebühr von 2,50 gezahlt. Stelle den Preis für 20 km (0 km; x km) Fahrt als Term dar. 2,5 +,6

Mehr

HS Pians St. Margarethen. Alles Gute!

HS Pians St. Margarethen. Alles Gute! Vorübungen auf die 6. M-Schularbeit KL, KV 01 Ich habe mich bemüht, dir möglichst wieder früh Unterlagen zur Verfügung zu stellen, die Pfingstferien klopfen an die Türe, HS Pians St. Margarethen Alles

Mehr

Reelle Zahlen (R)

Reelle Zahlen (R) Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

Ferienaufgaben Mathematik 8. Klasse

Ferienaufgaben Mathematik 8. Klasse Ferienaufgaben Mathematik 8. Klasse 8.A Funktionen 8.A. Begriff Entscheide in den folgenden Fällen, ob eine Funktion vorliegt und begründe Deine Antwort! Jeder Zahl wird ihr um eins erhöhtes Quadrat zugeordnet.

Mehr

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen. MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren

Mehr

Tipps und Tricks für die Abschlussprüfung

Tipps und Tricks für die Abschlussprüfung Tipps und Tricks für die Abschlussprüfung Rechentipps und Lösungsstrategien mit Beispielen zu allen Prüfungsthemen Mathematik Baden-Württemberg Mathematik-Verlag Vorwort: Sehr geehrte Schülerinnen und

Mehr

Parallelogramme Rechtecke Quadrate

Parallelogramme Rechtecke Quadrate Parallelogramme Rechtecke Quadrate (Hinweis: Die ezeichnungen der Seiten entsprechen den ezeichnungen aus der Formelsammlung). erechne den Flächeninhalt des Parallelogramms mit der Seitenlänge a = 6,3

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Mecklenburg - Vorpommern Ersatzarbeit Realschulprüfung 1996 im Fach Mathematik Pflichtteil 1. Herr Berg kauft ein 672,0 m 2 großes unerschlossenes Baugrundstück zu einem Quadratmeterpreis von 56,00 DM.

Mehr

Lineare Gleichungssysteme Basis

Lineare Gleichungssysteme Basis Lineare Gleichungssysteme Basis Graphische Lösung von Gleichungen Regel Gegeben sind zwei Gleichungen von zwei Funktionen. Die Lösung dieses Systems ist gleich dem Schnittpunkt beider Graphen. Verlaufen

Mehr

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240. I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich

Mehr

Repetitionsaufgaben: Gleichungssysteme

Repetitionsaufgaben: Gleichungssysteme Repetitionsaufgaben: Gleichungssysteme Zusammengestellt von Roman Oberholzer und Lukas Fischer, KSA Inhaltsverzeichnis A) Vorbemerkungen.... B) Lernziele.... C) Repetition...... 3. Einführung.... 3. Lösungsverfahren

Mehr

WADI 7/8 Aufgaben A17 Terme. Name: Klasse:

WADI 7/8 Aufgaben A17 Terme. Name: Klasse: WADI 7/8 Aufgaben A17 Terme 1 Berechne den Wert für x = -1,5. x x + x x + x 1000x c) 10. (10x) d) 100(x 2x) 2 Welche Terme sind äquivalent zu 4x? x + 2(x+1) 2 + 2x c) x + x+ x + x d) 2. (2 x) 3 Sind beim

Mehr

Mathematik Lineare Gleichungssysteme Grundwissen und Übungen

Mathematik Lineare Gleichungssysteme Grundwissen und Übungen Mathematik Lineare Gleichungsssteme Grundwissen und Übungen Stefan Gärtner 00-00 Gr Mathematik Lineare Gleichungsssteme Seite Lineare Gleichung: a + b c ( a,b R) ist eine lineare Gleichung mit zwei Variablen

Mehr

Skript Mathematik Klasse 10 Realschule

Skript Mathematik Klasse 10 Realschule Skript Mathematik Klasse 0 Realschule Das vorliegende Skript wurde erstellt durch: Marco Johannes Türk marco.tuerk@googlemail.com Die aktuellste Version dieses Skriptes ist online auf www.marco-tuerk.de

Mehr

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):

Mehr

Knackt die Box. Zum Boxenfüllen könnt ihr Streichholzschachteln. verwenden. Markiert sie mit unterschiedlichen Symbolen.

Knackt die Box. Zum Boxenfüllen könnt ihr Streichholzschachteln. verwenden. Markiert sie mit unterschiedlichen Symbolen. I Lineare Gleichungssysteme Knackt die Box In Klasse 7 hast du bereits Boxen geknackt. Jetzt wird die Ausgangssituation etwas komplizierter: Es gibt verschiedenfarbige Boxen (rot blau) außerdem sind immer

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (24. Juni 2009 von 8:30 bis 11:00 Uhr)

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (24. Juni 2009 von 8:30 bis 11:00 Uhr) 10. Klasse der Hauptschule bschlussprüfung zum Erwerb des Mittleren Schulabschlusses 009 (. Juni 009 von 8:0 bis 11:00 Uhr) M T H E M T I K ei der bschlussprüfung zum Erwerb des mittleren Schulabschlusses

Mehr

Stundenplanung Verfahren zum Lösen von linearen Gleichungssystemen

Stundenplanung Verfahren zum Lösen von linearen Gleichungssystemen Stundenplanung Verfahren zum Lösen von linearen Gleichungssystemen Das graphische Lösen von linearen Gleichungssystemen hat in der Praxis einige Nachteile, deshalb verwendet man hier eher die rechnerischen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 3. Semester ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 3. Semester ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN Prinzipiell kennen wir die Vorgangsweise beim Lösen von Textaufgaben bereits. Neu ist hingegen, dass wir nun immer zwei Variable

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Fit in Mathe. August Klassenstufe 10 Lineare Gleichungssysteme

Fit in Mathe. August Klassenstufe 10 Lineare Gleichungssysteme Thema Musterlösung 1 Lineare Gleichungssysteme Zeichne die Geraden g i i=1,...6 in ein kartesisches Koordinatensystem, deren Koordinaten folgende Bedingungen erfüllen: 1) y = x 1 ) y = x 1 3) x y = 1 4)

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Anwendungen in Sachzusammenhängen

Anwendungen in Sachzusammenhängen Anwendungen in Sachzusammenhängen 1. Vor drei Jahren war Hans viermal so alt als Eva vor drei Jahren alt war. In fünf Jahren ist Hans doppelt so alt als Eva in fünf Jahren alt sein wird. Wie alt sind die

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

6 Bestimmung linearer Funktionen

6 Bestimmung linearer Funktionen 1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1

Mehr

Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a)

Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a) Übungen lineare Gleichungssysteme - Lösungen. Bestimme die Lösungsmenge und führe eine Probe durch! a) b) c) 2x5y=23 2x 3y= 6x0y=64 6x 2y=6 2x3y=20 5x y=33 2x5y=23 2x 3y= 2x5y=23 2x3y= 8y=24 : 8 y=3 6x0y=64

Mehr

2a +2b = a +2b = 38 a +b = 3 2 2a +2b = 6. 4b = 44 b = 11 und a = 8. DF: Arithmetisches Mittel angegeben (FNr 6)

2a +2b = a +2b = 38 a +b = 3 2 2a +2b = 6. 4b = 44 b = 11 und a = 8. DF: Arithmetisches Mittel angegeben (FNr 6) Blatt Nr 05.05 Mathematik Online - Übungen Blatt 5 Textaufgabe lineare Gleichungssysteme Nummer: 36 0 009010017 Kl: 8X Grad: 10 Zeit: 0 Quelle: SP 8 W Aufgabe 5.1.1: Ein Rechteck hat einen Umfang von 38

Mehr

MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN MTHEMTIK-WETTBEWERB 2001/2002 DES LNDES HESSEN UFGBEN DER GRUPPE Hinweis : Von jeder Schülerin / jedem Schüler werden vier ufgaben gewertet. Werden mehr als vier ufgaben bearbeitet, so werden die mit der

Mehr

3 a) ( 2; 3_ 2 ) ; (0; 3) ; ( 3; 3_ 4 ) b) (1; 2) ; ( 2; 8_ 3 ) ; (4; 4)

3 a) ( 2; 3_ 2 ) ; (0; 3) ; ( 3; 3_ 4 ) b) (1; 2) ; ( 2; 8_ 3 ) ; (4; 4) Schülerbuchseite 08 09 1 Lineare Gleichungssysteme 1 Lineare Gleichungssysteme Standpunkt Seite 6 Die Lösungen zum Standpunkt befinden sich am Ende des Schülerbuches. Was kostet der Führerschein? Seite

Mehr

Grundwissen Mathematik Klasse 8

Grundwissen Mathematik Klasse 8 Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)

Mehr

Lineare Funktionen Auftrag 1: Bearbeitung mit dem GTR (grafikfähigen Taschenrechner)

Lineare Funktionen Auftrag 1: Bearbeitung mit dem GTR (grafikfähigen Taschenrechner) Lineare Funktionen Auftrag : Ein Wasserwerk verlangt von seinen Kunden jährlich eine Grundgebühr von,0. Für einen m³ Wasser muss man 0,80 und zudem 0,0 Kanalgebühren bezahlen. a) Notiere eine passende

Mehr

Mathematik. Wiederholungen und Übungen zum leichteren Einstieg in das Fach Mathematik in den Beruflichen Gymnasien

Mathematik. Wiederholungen und Übungen zum leichteren Einstieg in das Fach Mathematik in den Beruflichen Gymnasien Mathematik Wiederholungen und Übungen zum leichteren Einstieg in das Fach Mathematik in den Beruflichen Gymnasien I. Termumformungen II. Lineare Gleichungen und ihre Lösungsmengen III. Quadratische Gleichungen

Mehr

Anzahl der Fahrschüler Bild 1

Anzahl der Fahrschüler Bild 1 Kultusministerium des Landes Sachsen-Anhalt Schriftliche Abschlussprüfung Mathematik Schuljahr 2001/2002 Realschulbildungsgang 10. Schuljahrgang Pflichtaufgaben 1. 5 a) Lösen Sie die Gleichung + x = 1,

Mehr

Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, lineare und quadratische Funktionen, Gleichungssysteme

Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, lineare und quadratische Funktionen, Gleichungssysteme Vorwort: Sehr geehrte Schülerinnen und Schüler, anhand der folgenden 11 Fragen können Sie sich schnell und nachhaltig alle Kenntnisse aneignen, die Sie für eine erfolgreiche Mathematik-Prüfung benötigen

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

( 4-9 ) ( 5x + 16 ) -5x c - d - ( c - d ) 0 4. ( 3b + 4d ) - ( 5b - 3d ) 7d - 2b a - [ 5b - ( 6a + 7b ) ] 3a + 2b

( 4-9 ) ( 5x + 16 ) -5x c - d - ( c - d ) 0 4. ( 3b + 4d ) - ( 5b - 3d ) 7d - 2b a - [ 5b - ( 6a + 7b ) ] 3a + 2b Klammerrechnung Für das Rechnen mit Klammern gilt: Steht vor einer Klammer ein Minus, so drehen sich beim Auflösen der Klammern die Vorzeichen um. Distributivgesetz: Wird eine ganze Zahl mit einer eingeklammerten

Mehr

Kompetenzraster Geometrie

Kompetenzraster Geometrie Mathebox 6 I Themenbereich 3 Kompetenzraster Geometrie Eigenschaften von Vierecken und Dreiecken finden Einfachen Anwendungsaufgaben Vierecken lösen unterscheiden Symmetrieachsen in Vierecken und Dreiecken

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Besondere Leistungsfeststellung Mathematik ERSTTERMIN

Besondere Leistungsfeststellung Mathematik ERSTTERMIN Sächsisches Staatsministerium für Kultus und Sport Schuljahr 010/11 Geltungsbereich: Schüler der Klassenstufe 10 an allgemeinbildenden Gymnasien ohne Realschulabschluss Besondere Leistungsfeststellung

Mehr

Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen

Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen Mathematik -Intensivierung * Jahrgangsstufe Lösung von Gleichungen durch Äquivalenzumformungen Musterbeispiel: 5 ( x - ) + x = ( 5 - x ) (Vereinfachen!) 5 x - 0 + x = 0-6 x (Vereinfachen!) 8 x - 0 = 0-6

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

1.1 Direkte Proportionalität

1.1 Direkte Proportionalität Beziehungen zwischen Größen. Direkte Proportionalität Bei einer direkten Proportionalität wird dem doppelten, dreifachen,...wert der einen Größe x der doppelte, dreifache,... Wert der anderen Größe y zugeordnet.

Mehr

Kaufmännische Berufsmatura 2012 Kanton Zürich Serie 1

Kaufmännische Berufsmatura 2012 Kanton Zürich Serie 1 Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM Prüfungstag: Mittwoch, 16. Juni 1999 Prüfungsbeginn: 8.00 Uhr THÜRINGER KULTUSMINISTERIUM Realschulabschluss 1998/99 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

Lineare Gleichungssysteme mit zwei Variablen Lösungen

Lineare Gleichungssysteme mit zwei Variablen Lösungen Lineare Gleichungssysteme mit zwei Variablen Lösungen. Bestimme rechnerisch und grafisch die Lösungsmenge L der folgenden Gleichungssysteme. a) b) c) I. x y I. 5y (x ) 5 II. x y II. x y I. 5y (x ) 5 II.

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Tim ist dreimal so alt wie... ( 2x + 7z)². Quelle:

Tim ist dreimal so alt wie... ( 2x + 7z)². Quelle: ab ² Tim ist dreimal so alt wie... ( 2x + 7z)² Quelle: http://www.sinus.lernnetz.de Wochenprogramm 1 9/10 a²b² a) Berechne die Terme ohne den Taschenrechner zu benutzen. 1674. 28 1,674. 28 1,674. 2,8 1,

Mehr

Lösen von linearen Gleichungen und Gleichungssystemen

Lösen von linearen Gleichungen und Gleichungssystemen - 1 - VB 2004 Lösen von linearen Gleichungen und Gleichungssystemen Inhaltsverzeichnis Lösen von linearen Gleichungen und Gleichungssystemen... 1 Inhaltsverzeichnis... 1 Einführung... 2 Lösen einfacher

Mehr

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik. Bruchrechnung (ohne Taschenrechner!!!) a) Mache gleichnamig! 4 und ; und ; 4 7 b) Berechne! 8 7 8 + 4 9 8 4

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe 1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1

Mehr

Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am

Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am 24.2.15 1 NT 2013: Quadratische und lineare Funktionen Die abgebildete Parabel gehört zur Funktion f mit f(x) = x 2 5 x + 4. a) Zeige durch eine Rechnung,

Mehr