5.5 Ortskurven höherer Ordnung

Größe: px
Ab Seite anzeigen:

Download "5.5 Ortskurven höherer Ordnung"

Transkript

1 2 5 Ortskurven 5.5 Ortskurven höherer Ordnung Ortskurve Parabel Die Ortskurvengleichung für die Parabel lautet P A + p B + p 2 C. (5.) Sie kann entweder aus der Geraden A + p B und dem Anteil p 2 C oder aus der Geraden A + p 2 C und dem Anteil p B durch Überlagerung der Zeiger zusammengesetzt werden, wie im Bild 5.28 erläutert ist. Bild 5.28 Konstruktion der Ortskurve Parabel Beispiel: Ortskurve für das Spannungsverhältnis /U des an einer Spannungsquelle angeschlossenen Reihenschwingkreises bei variabler Frequenz U + jω + jω jω U jωc U r ω 2 + C mit ω p ω U + p jω U p 2 ω 2. C Bild 5.29 Schaltung für das Beispiel einer Parabel-Ortskurve Mit ω und ω X kr Q r (vgl. Gl. 4.8) ist U + p j p 2. Q r Durch Vergleich mit der allgemeinen Ortskurvengleichung ergibt sich: A, B j Q r und C.

2 5.5 Ortskurven höherer Ordnung 2 Wird die Güte des Resonanzkreises wie im Beispiel des Abschnitts 4.5. (siehe Bild 4.95) Q r 2 gewählt, dann lautet die Ortskurvengleichung U j + p 2 p2 p 2 + j p 2, deren Ortskurve im Bild 5.3 dargestellt ist. Bild 5.3 Beispiel einer Parabel-Ortskurve Bei Resonanz des Reihenschwingkreises ist, also p, und das Spannungsverhältnis ist imaginär: U j j Q r 2 mit U bzw. Q r U Q r (vgl. Gl. 4.25). Wie im Abschnitt 4.5. im Bild 4.96 (siehe S.5) zu sehen ist, wird in den Resonanzkurven das Spannungsverhältnis /U dargestellt. Die zugehörige Ortskurvengleichung U j + p p 2 j + p p2 Q r 2 gehört nicht zu den einfachen Ortskurven und müsste Punkt für Punkt ermittelt werden, indem verschiedene p-werte in die Ortskurvengleichung eingesetzt werden, die komplexen Größen jeweils berechnet und in die Gaußsche Zahlenebene gezeichnet werden. Wie im Bild 5.3 gezeigt, kann die Ortskurve aber auch durch Inversion der Parabel ermittelt werden, indem die Zeiger für bestimmte Parameter invertiert werden. Dabei werden die Längen der Parabelzeiger abgegriffen und der Kehrwert der Beträge jeweils auf dem Strahl mit umgekehrten Winkel angetragen. Die dadurch entstehende Ortskurve enthält nicht nur die Beträge des Spannungsverhältnisses wie die Resonanzkurve im Bild 4.96, sondern auch die Phasenlage der beiden Spannungszeiger zueinander. Um die Beträge der Ortskurve mit den Resonanzkurven im Bild 4.96 vergleichen zu können, muss die Identität p x beachtet werden. Mit der Gl. (4.3) lässt sich auch der Parameterwert errechnen, bei der die Kondensatorspannung ihr Maximum hat: Bild 5.3 Inversion der Parabel pxx c 2Q r 2 8,935. Der Ortskurvenpunkt kann dann mit der Ortskurvengleichung berechnet werden: U p 2 + j p/2 U,935 2,533 j,996 2,66 e j 75 + j,468

3 22 5 Ortskurven Ortskurve Zirkulare Kubik Die allgemeine Ortskurvengleichung der zirkulären Kubik O A + p B + p2 C D + p (5.2) kann durch Division in die Summe einer Geradengleichung und einer Kreisgleichung überführt werden: CD B (p 2 C D CD C + pb + A): (p + D) p + + A B D + p 2 CD p C+ p CD p B + A CD D CD p B B + D CD Rest : A B O R + p S + F D + p R + p S + D F + p. (5.3) F Wird also die Ortskurvengleichung in der allgemeinen Form (Gl. 5.2) erkannt, dann muss diese zuerst in die Summenform der beiden Ortskurvengleichungen (Gl. 5.3) überführt werden, ehe die Konstruktion erfolgen kann. Dann werden der Kreis durch den Nullpunkt nach der Anleitung im Abschnitt 5.3 und die Gerade (siehe Abschnitt 5.2) getrennt konstruiert. Anschließend werden für gleiche Parameterwerte die jeweiligen beiden Zeiger durch Addition der Realteile und Imaginärteile überlagert. Beispiel: Ortskurven für den komplexen Leitwert und den komplexen Widerstand des Praktischen Parallel-Resonanzkreises in Abhängigkeit von der Frequenz (Schaltbild siehe Bild 5.32 oder Bild 4.8, S. 9). Y jω + + jω +jω ω2 + jω Y p jω + + p jω p2 ω 2 mit ωp ω + p jω + p jω L. r Die rechte Seite obiger Gleichung entspricht der allgemeinen Form der Ortskurvengleichung der zirkulären Kubik (Gl. 5.2). Die Division kann entfallen, weil die Summe der Geradengleichung und einer Kreisgleichung sofort aus der Schaltung (Bild 5.32) abgelesen werden kann (linke Seite obiger Gleichung).

4 5.5 Ortskurven höherer Ordnung 23 Als Bezugsfrequenz ω sollte die Resonanzfrequenz gewählt werden, die nach der Gl. (4.55) berechnet werden kann: 2 2 RLr Ω ω 2s. LC 6 r r Lr,5H 2,5 F,5H Die Ortskurvengleichung in Zahlenwerten lautet dann Y p j 2 3 s 2,5 6 As V + Ω +p j 2 3 s,5vs/a Y p j 5 ms + Ω +p j Ω. Die Gerade ist identisch mit der positiven imaginären Achse, und der Kreis durch den Nullpunkt hat den Mittelpunkt bei /(2A) /(2Ω) 5mS. Die Ortskurve für den komplexen Leitwert ergibt sich durch Überlagerung der Zeiger mit jeweils gleichem Parameterwert (siehe Bild 5.32). Aus der Ortskurve für den komplexen Leitwert Y Y e jϕ lassen sich Betrag und Argument für die p-werte ablesen und die entsprechenden komplexen Widerstände Z Z e jϕ berechnen und in die Gaußsche Zahlenebene einzeichnen: p,6,8,,2,5 2, Y ϕ ms Grad 7,5 6, 8 5, 4, , , Z /Y ϕ Ω Grad Bild 5.32 Ortskurven des komplexen Leitwerts und komplexen Widerstands des Praktischen Parallel-Resonanzkreises

5 24 5 Ortskurven Die Ortskurve für den frequenzabhängigen komplexen Widerstand Z kann natürlich nicht genau sein, weil sie über abgelesene Y-Werte ermittelt wurde. Deshalb soll die nicht einfache Ortskurve punktweise mit der Ortskurvengleichung errechnet werden. Nach Gl lautet die Formel für den komplexen Widerstand des Praktischen Parallel-Resonanzkreises mit ω p ω : R Z Lr + jω R Lr + p jω + jω ω 2 + p jω p 2 ω 2 und mit Zahlenwerten Z Ω +p j Ω ( p 2,5) + p j,5. Für p,6 ergibt sich beispielsweise Z,6 Ω + j 6Ω,82 + j,3 6,6Ω e j 3,873 e j 2, 33,6Ω e j,9. Die auf diese Weise berechneten Widerstandswerte sind in folgender Tabelle zusammengestellt: p,6,8,,2,5 2, Z Ω 33,6 62, ,9 237, 58, ϕ Grad,9 8,2 4,8 43,2 7,6

6 Übungsaufgaben zu den Abschnitten 5. bis Übungsaufgaben zu den Abschnitten 5. bis Für die Reihenschaltung eines ohmschen Widerstands 2 und einer variablen Induktivität 3mH sind. die Ortskurve für die Spannung bei konstantem Strom I ma bei f 2Hz und 2. die Ortskurve für den Strom bei konstanter Spannung U V bei f 2Hz zu ermitteln. 3. Kontrollieren Sie rechnerisch die Ortskurvenpunkte des Stroms für die Induktivitäten, 2 und 3mH. 5.2 Mit Hilfe von Ortskurven soll die Frequenzabhängigkeit der komplexen Widerstände und Leitwerte der Reihenschaltung und Parallelschaltung eines ohmschen Widerstandes und einer Kapazität untersucht werden.. ntwickeln Sie die Ortskurven des komplexen Widerstandes und komplexen Leitwerts der Reihenschaltung von 7,3 und 38µF. 2. rmitteln Sie anschließend die Ortskurven des komplexen Leitwerts und des komplexen Widerstandes der Parallelschaltung von R p 23, und C p 79,6µF. Die Bezugsfrequenz f soll so gewählt werden, dass für p die Reihenschaltung und die Parallelschaltung äquivalent sind. s ist also zu untersuchen, ob die Bedingungsgleichung für Äquivalenz bei einer bestimmten Frequenz erfüllbar ist. 3. Kontrollieren Sie anhand der Ortskurve, ob die Scheinwiderstände und Scheinleitwerte für p gleich sind Für den Reihen- und Parallelschwingkreis sollen die Ortskurven für den komplexen Widerstand und den komplexen Leitwert bei Variation der Frequenz ermittelt werden. Die ohmschen Widerstände, die Induktivitäten und Kapazitäten der Reihen- und Parallelschaltung sollen gleich sein: R p 2 L p,4h C p µf 2. Lesen Sie aus der Ortskurve für den komplexen Leitwert des Reihenschwingkreises die Strom-Resonanzkurve ab. 5.4 Für die Reihen- und Parallelschaltungen von Induktivität/ohmscher Widerstand und Kapazität/ohmscher Widerstand sind die Ortskurven für die Verhältnisse der Teilspannungen zur Gesamtspannung bzw. Teilströme zum Gesamtstrom in Abhängigkeit von der Frequenz zu entwickeln, wobei die Bezugsfrequenz jeweils festgelegt ist: /,R p /L p, /R p C p,/. 5.5 An den ingang des gezeichneten Vierpols wird eine sinusförmige Spannung mit veränderlicher Frequenz angelegt. Bild 5.33 Übungsaufgabe 5.5. Stellen Sie die Gleichung für das Spannungsverhältnis U 2 /U in Abhängigkeit von,, R und auf. 2. Konstruieren Sie die Ortskurve des Spannungsverhältnis in Abhängigkeit von p, nachdem Sie die Gleichung mit R und R/ vereinfacht haben. Geben Sie mindestens fünf Ortskurvenpunkte mit den entsprechenden p-werten an. 3. rgänzen Sie die Ortskurve durch entsprechende Ortskurven für /R, /2 und rmitteln Sie aus der Ortskurvenschar für p die Funktion U2 RLr f U R und stellen Sie sie dar.

7 26 5 Ortskurven 5.6 Die Ortskurve des Spannungsverhältnis U R /U des Reihenschwingkreises bei variabler Frequenz p ist zu ermitteln. Deuten Sie die Ortskurvenpunkte für p, und. Bild 5.34 Übungsaufgabe Für die gezeichnete Schaltung ist die Ortskurve für U 2 /U in Abhängigkeit von der Frequenz zu konstruieren.. Leiten Sie zunächst die Ortskurvengleichung allgemein und dann mit den Zahlenwerten her. 2. Konstruieren Sie die Ortskurve mit den Ortskurvenpunkten p, /3, /2,, 2, 3 und. 3. rklären Sie den Ortskurvenpunkt für p. Bild 5.35 Übungsaufgabe ntwickeln Sie die Ortskurve für den komplexen Leitwert Y der skizzierten Schaltung im Frequenzbereich s s in Schritten von s. Bild 5.36 Übungsaufgabe Kontrollieren Sie rechnerisch die Ortskurvenpunkte für, 5s und. 3. rmitteln Sie aus der Ortskurve den Graphen der Funktion Y f ( ) und stellen Sie ihn dar. Tragen Sie den Wert ein, den die Kurve für hohe Kreisfrequenzen anstrebt (Asymptote).

8 Übungsaufgaben zu den Abschnitten 5. bis Für einen Reihenschwingkreis mit der Güte Q r 2, angeschlossen an eine Wechselspannungsquelle, ist die Ortskurve des Spannungsverhältnisses U/U L in Abhängigkeit von der Frequenz zu entwickeln. Bild 5.37 Übungsaufgabe Anschließend ist durch Inversion der Zeiger die Ortskurve des Spannungsverhältnisses U L /U zu ermitteln. Die Ortskurvenpunkte für p, /2, 2/3,, 2 und sind rechnerisch zu kontrollieren. 3. Schließlich sind die Beträge U L /U für die unter 2. angegebenen Parameterwerte mit Hilfe der Formeln des Abschnitts 4.5. zu kontrollieren. Das Maximum des Spannungsverhältnisses ist zu berechnen. Die rgebnisse sind mit der Resonanzkurve (Bild 4.95) zu vergleichen. 5.. Konstruieren Sie die Ortskurve des komplexen Leitwerts der skizzierten Schaltung in einem Frequenzbereich s s im Abstand von s, indem Sie einfache Ortskurven überlagern. Bild 5.38 Übungsaufgabe Lesen Sie aus der Ortskurve die Frequenz ab, bei der der komplexe Leitwert reell ist. Weisen Sie die abgelesene Frequenz und den reellen Leitwert rechnerisch nach. 5.. Bei welchen Kreisfrequenzen ist der komplexe Widerstand der Schaltung reell? Bild 5.39 Übungsaufgabe ntwickeln Sie die Ortskurve des komplexen Widerstandes durch Überlagerung einfacher Ortskurven, indem Sie eine der Kreisfrequenzen unter. als Bezugsfrequenz wählen. Die Ortskurve ist für p, /2,,,5 und 2 zu konstruieren. 3. Kontrollieren Sie rechnerisch die Ortskurvenpunkte für p und p.

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an!

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an! Grundlagen der Elektrotechnik I Aufgabe K4 Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. R 1 A R 2 Daten R 1 30 Ω R 3 L R 2 20 Ω B R 3 30 Ω L 40 mh 1500 V f 159,15 Hz 1. Berechnen Sie

Mehr

3 Ortskurven. 3.1 Einleitung. 3.2 Spannungs-/Widerstandsdiagramme in der Reihenschaltung

3 Ortskurven. 3.1 Einleitung. 3.2 Spannungs-/Widerstandsdiagramme in der Reihenschaltung C. FEPEL 3 Ortskurven 3. Einleitung Durch ein Zeigerbild wird ein bestimmter Betriebszustand eines Wechselstromnetzes bei konstanten Parametern (Amplitude und Frequenz der einspeisenden sinusförmigen Quellspannungen

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

E 4 Spule und Kondensator im Wechselstromkreis

E 4 Spule und Kondensator im Wechselstromkreis E 4 Spule und Kondensator im Wechselstromkreis 1. Aufgaben 1. Die Scheinwiderstände einer Spule und eines Kondensators sind in Abhängigkeit von der Frequenz zu bestimmen und gemeinsam in einem Diagramm

Mehr

Reihenresonanz - C8/ C8/9.2 -

Reihenresonanz - C8/ C8/9.2 - Versuch C8/9: - C8/9. - Wechselstromwiderstände und Reihenresonanz - C8/9.2 - Wechselstromkreis mit induktiven und kapazitiven Elementen Spannung und Strom im allgemeinen nicht die gleiche Phase haben

Mehr

Übung Grundlagen der Elektrotechnik B

Übung Grundlagen der Elektrotechnik B Übung Grundlagen der Elektrotechnik B Themengebiet E: Komplexe Zahlen Aufgabe 1: echnen mit komplexen Zahlen Stellen Sie die folgenden komplexen Zahlen in der arithmetischen Form (z = x + jy und der exponentiellen

Mehr

Grundlagen der Elektrotechnik 2 Übungsaufgaben

Grundlagen der Elektrotechnik 2 Übungsaufgaben ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version 2006.07 Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler

Mehr

Ergänzung zu komplexe Zahlen

Ergänzung zu komplexe Zahlen Juli 2015 Übersicht 1 Ortskurven 2 Wechselstromkreis mit ohmschem und kapazitivem Widerstand (Parallelschaltung) i(t) u(t) R C Bei festen Werten für den ohmschen Widerstand R und die Kapazität C ergibt

Mehr

Wechselstromwiderstände und Reihenresonanz

Wechselstromwiderstände und Reihenresonanz Versuch C8/9: Wechselstromwiderstände und Reihenresonanz. Literatur: Demtröder, Experimentalphysik : Elektrizität und Optik Pohl, Einführung in die Physik, Bd. Gerthsen, Kneser, Vogel; Physik Bergmann-Schaefer,

Mehr

P = U I cos ϕ. 3,52 kw 220 V 0,8 = 20 A. Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos ϕ bestimmt: ϕ = arccos(0,8 ) = 36,87

P = U I cos ϕ. 3,52 kw 220 V 0,8 = 20 A. Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos ϕ bestimmt: ϕ = arccos(0,8 ) = 36,87 a) Strom nach Betrag und Phase: Der Betrag des Stroms wird aus der Wirkleistung bestimmt: P = U cos ϕ = P U cos ϕ = 3,52 kw 220 V 0,8 = 20 A Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos

Mehr

2 Komplexe Rechnung in der Elektrotechnik

2 Komplexe Rechnung in der Elektrotechnik Komplexe echnung in der Elektrotechnik. Einleitung Wechselstromnetwerke sind Netwerke, in denen sinusförmige Spannungen oder ströme gleicher Frequen auf ohmsche, induktive und kapaitive Widerstände wirken.

Mehr

= 2 i 2= 2 2 i, z 4. = 1.5, z 8

= 2 i 2= 2 2 i, z 4. = 1.5, z 8 Mathematik 1 - Übungsblatt 11 Aufgabe 1 (komplexe Zahlen) Gegeben sind folgende komplexe Zahlen in der Darstellung als Normalform mit Real- und Imaginärteil z=x i y - oder wegen der Vertauschbarkeit von

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Vorbereitung Elektrische Messverfahren Carsten Röttele 20. Dezember 2011 Inhaltsverzeichnis 1 Messungen bei Gleichstrom 2 1.1 Innenwiderstand des µa-multizets...................... 2 1.2 Innenwiderstand

Mehr

Komplexe Zahlen in der Elektrotechnik. ohne Ballast. von. Wolfgang Bengfort ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials

Komplexe Zahlen in der Elektrotechnik. ohne Ballast. von. Wolfgang Bengfort ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials Komplexe Zahlen in der Elektrotechnik ohne Ballast von Wolfgang Bengfort ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials Rechtlicher Hinweis: Alle Rechte vorbehalten. Dieses Buch darf ohne

Mehr

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation 1. Oktober 2015 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation Aufgabe 1. Ersatzzweipole a) Berechnen Sie die Bauteilwerte für R r und L

Mehr

Elektrotechnik für Studierende Inhalt. Vorwort...11

Elektrotechnik für Studierende Inhalt. Vorwort...11 5 Inhalt Vorwort...11 1 Signale...13 1.1 Definitionen zu Signalen...13 1.2 Klassifizierung von Signalen...15 1.2.1 Klassifizierung nach dem Signalverlauf...15 1.2.1.1 Determinierte Signale...15 1.2.1.2

Mehr

1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82)

1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82) 3 Schaltungen mit frequenzselektiven Eigenschaften 35 a lg (8) a die Grenzkreisfrequenz ist Grenz a a (8) 3 esonanzkreise 3 eihenresonanzkreis i u u u u Bild 4 eihenresonanzkreis Die Schaltung nach Bild

Mehr

Asynchronmaschine: Heylandkreis für

Asynchronmaschine: Heylandkreis für Aufgabe 1: Asynchronmaschine: Heylandkreis für R 1 =0Ω Ausgangspunkt für die Konstruktion des Heylandkreises in Aufgabe 1.1 bildet der Nennstrom mit seiner Phasenlage. Abbildung 1: Nennstrom Da der Leistungsfaktor

Mehr

Leitwerts- und Widerstandsdiagramm Graphische Lösung von Transformationsaufgaben

Leitwerts- und Widerstandsdiagramm Graphische Lösung von Transformationsaufgaben Aus FUNKSCHAU Heft 14/1955, im Original -spaltig. Digitalisiert 10/016 von Eike Grund für http://www.radiomuseum.org mit freundlicher Genehmigung der FUNKSCHAU-Redaktion. Die aktuellen Ausgaben der FUNKSCHAU

Mehr

Probe zur Lösung der Berechnungsbeispiele BB_14.x: - Fortsetzung -

Probe zur Lösung der Berechnungsbeispiele BB_14.x: - Fortsetzung - Prof. Dr.-Ing. Rainer Ose Elektrotechnik für Ingenieure Grundlagen. Auflage, 2008 Fachhochschule Braunschweig/Wolfenbüttel -niversity of Applied Sciences- Probe zur Lösung der Berechnungsbeispiele BB_1.x:

Mehr

= 16 V geschaltet. Bei einer Frequenz f 0

= 16 V geschaltet. Bei einer Frequenz f 0 Augaben Wechselstromwiderstände 6. Ein Kondensator mit der Kapazität 4,0 µf und ein Drahtwiderstand von, kohm sind in eihe geschaltet und an eine Wechselspannungsquelle mit konstanter Eektivspannung sowie

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

Umdruck zum Versuch. Basis 1 Eigenschaften einfacher Bauelemente und. Anwendung von Messgeräten

Umdruck zum Versuch. Basis 1 Eigenschaften einfacher Bauelemente und. Anwendung von Messgeräten Universität Stuttgart Fakultät Informatik, Elektrotechnik und Informationstechnik Umdruck zum Versuch Basis 1 Eigenschaften einfacher Bauelemente und Anwendung von Messgeräten Bitte bringen Sie zur Versuchsdurchführung

Mehr

Filter und Schwingkreise

Filter und Schwingkreise FH-Pforzheim Studiengang Elektrotechnik Labor Elektrotechnik Laborübung 5: Filter und Schwingkreise 28..2000 Sven Bangha Martin Steppuhn Inhalt. Wechselstromlehre Seite 2.2 Eigenschaften von R, L und C

Mehr

Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3. "Parallelschwingkreis"

Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3. Parallelschwingkreis Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3 "Parallelschwingkreis" Allgemeine und Theoretische Elektrotechnik (ATE) Elektrotechnik und Informationstechnik Fakultät für Ingenieurwissenschaften

Mehr

6 Wechselstrom-Schaltungen

6 Wechselstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 6 Wechselstrom-Schaltungen Aufgabe 6.1 Durch ein Grundeintor C = 0,47 µf an der Sinusspannung U = 42 V fließt ein Sinusstrom mit dem Effektivwert

Mehr

Messtechnische Ermittlung der Größen komplexer Bauelemente

Messtechnische Ermittlung der Größen komplexer Bauelemente TFH Berlin Messtechnik Labor Seite 1 von 9 Messtechnische Ermittlung der Größen komplexer Bauelemente Ort: TFH Berlin Datum: 08.12.03 Uhrzeit: Dozent: Arbeitsgruppe: von 8.00 bis 11.30 Uhr Prof. Dr.-Ing.

Mehr

Elektrische Messverfahren Versuchsauswertung

Elektrische Messverfahren Versuchsauswertung Versuche P1-70,71,81 Elektrische Messverfahren Versuchsauswertung Marco A. Harrendorf, Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 22.11.2010 1 1 Wechselstromwiderstände

Mehr

Grundgebiete der Elektrotechnik 2

Grundgebiete der Elektrotechnik 2 Grundgebiete der Elektrotechnik 2 Wechselströme, Drehstrom, Leitungen, Anwendungen der Fourier-, der Laplace- und der Z-Transformation von Prof. Dr.-Ing. Horst Clausert, TU Darmstadt Prof. Dr.-Ing. Günther

Mehr

RE Elektrische Resonanz

RE Elektrische Resonanz RE Elektrische Resonanz Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Impedanz...................................... 2 1.2 Phasenresonanz...................................

Mehr

Schaltungen mit mehreren Widerständen

Schaltungen mit mehreren Widerständen Grundlagen der Elektrotechnik: WIDERSTANDSSCHALTUNGEN Seite 1 Schaltungen mit mehreren Widerständen 1) Parallelschaltung von Widerständen In der rechten Schaltung ist eine Spannungsquelle mit U=22V und

Mehr

Übungen zur Komplexen Rechnung in der Elektrotechnik

Übungen zur Komplexen Rechnung in der Elektrotechnik Übungen zur Komplexen Rechnung in der Elektrotechnik Aufgabe 1 Gegeben ist nebenstehende Schaltung. Berechnen Sie den Komplexen Ersatzwiderstand Z der Schaltung sowie seinen Betrag Z und den Phasenverschiebungswinkel

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E6 Elektrische Resonanz Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den.. INHALTSVERZEICHNIS. Einleitung. Theoretische Grundlagen. Serienschaltung von Widerstand R, Induktivität L

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Grundpraktikum Versuch 14 Wechselstromwiderstände Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor: Gruppe:

Mehr

Versuch P1-70,71,81 Elektrische Messverfahren. Auswertung. Von Ingo Medebach und Jan Oertlin. 26. Januar 2010

Versuch P1-70,71,81 Elektrische Messverfahren. Auswertung. Von Ingo Medebach und Jan Oertlin. 26. Januar 2010 Versuch P1-70,71,81 Elektrische Messverfahren Auswertung Von Ingo Medebach und Jan Oertlin 26. Januar 2010 Inhaltsverzeichnis 1. Aufgabe...2 I 1.1. Messung des Innenwiderstandes R i des µa-multizets im

Mehr

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND.

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND. Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND. Bestimmung des Wechselstromwiderstandes

Mehr

Musterlösungen zu Grundlagen der Wechselstromtechnik

Musterlösungen zu Grundlagen der Wechselstromtechnik Musterlösungen zu Grundlagen der Wechselstromtechnik W. Kippels 2. September 2016 Inhaltsverzeichnis 1 Grundgrößen der Wechselstromtechnik 2 1.1 Übungsfragen zu Grundgrößen der Wechselstromtechnik..........

Mehr

1. Frequenzverhalten einfacher RC- und RL-Schaltungen

1. Frequenzverhalten einfacher RC- und RL-Schaltungen Prof. Dr. H. Klein Hochschule Landshut Fakultät Elektrotechnik und Wirtschaftsingenieurwesen Praktikum "Grundlagen der Elektrotechnik" Versuch 4 Wechselspannungsnetzwerke Themen zur Vorbereitung: - Darstellung

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A

Mehr

Lösungen zum Aufgabenblatt 4:

Lösungen zum Aufgabenblatt 4: Lösungen zum Aufgabenblatt 4: $XIJDE Berechnen Sie die Kapazität eines Plattenkondensators mit der Fläche A 1cm, einem Abstand zwischen den Platten von d 5mm und einem Isoliermaterial mit der Dielektrizitätszahl

Mehr

Elektrotechnisches Praktikum II

Elektrotechnisches Praktikum II Elektrotechnisches Praktikum II Versuch 2: Versuchsinhalt 2 2 Versuchsvorbereitung 2 2. Zeitfunktionen................................ 2 2.. Phasenverschiebung......................... 2 2..2 Parameterdarstellung........................

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen. LD Handblätter Physik

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen. LD Handblätter Physik Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen

Mehr

Repetitionen. Widerstand, Drosseln und Kondensatoren

Repetitionen. Widerstand, Drosseln und Kondensatoren Kapitel 16.1 epetitionen Widerstand, Drosseln und Kondensatoren Verfasser: Hans-udolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Oktober 2011 1 1.702 Serieschaltung

Mehr

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i Lo sung zu UÜ bung 1 I Schaltung 1 Schaltbild 1: 1.Schaltung mit Spannungsquelle 1. Ersatzquellenberechnung 1.1 Berechnung von R i Zunächst Ersatzschaltbild von den Klemmen aus betrachtet zeichnen: ESB

Mehr

Grundlagen der Elektrotechnik für Maschinenbauer

Grundlagen der Elektrotechnik für Maschinenbauer Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 1 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 7. April 005 Klausurdauer : Stunden Hilfsmittel : 5 Blätter Formelsammlung DIN

Mehr

Versuch 15. Wechselstromwiderstände

Versuch 15. Wechselstromwiderstände Physikalisches Praktikum Versuch 5 Wechselstromwiderstände Name: Christian Köhler Datum der Durchführung: 26.09.2006 Gruppe Mitarbeiter: Henning Hansen Assistent: Thomas Rademacher testiert: 3 Einleitung

Mehr

Brückenschaltung (BRÜ)

Brückenschaltung (BRÜ) TUM Anfängerpraktikum für Physiker II Wintersemester 2006/2007 Brückenschaltung (BRÜ) Inhaltsverzeichnis 9. Januar 2007 1. Einleitung... 2 2. Messung ohmscher und komplexer Widerstände... 2 3. Versuchsauswertung...

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2001/2002

Abschlussprüfung an Fachoberschulen im Schuljahr 2001/2002 Abschlussprüfung an Fachoberschulen im Schuljahr 2001/2002 Haupttermin: Nach- bzw. Wiederholtermin: 08.0.2002 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: Formelsammlung/Tafelwerk

Mehr

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 4: Messungen von Kapazitäten und Induktivitäten

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 4: Messungen von Kapazitäten und Induktivitäten 1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand C eines Kondensators soll mit Hilfe einer spannungsrichtigen Messschaltung (vergleiche Versuch 1) bei verschiedenen

Mehr

Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min

Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min Abitur 009 hysik Klausur Hannover, 0403008 arei K Semester Bearbeitungszeit: 90 min Thema: Spule, Kondensator und Ohmscher Widerstand im Wechselstromkreis Aufgabe eite begründet her: Für den Gesamtwiderstand

Mehr

4. Gemischte Schaltungen

4. Gemischte Schaltungen 4. Einleitung Unter einer gemischten Schaltung, auch Gruppenschaltung genannt, versteht man eine Schaltung in der sowohl die eihen- als auch die Parallelschaltung vorkommt. 4.2 Die Maschen- und Knotenpunktregel

Mehr

Aufgabe 1 Transiente Vorgänge

Aufgabe 1 Transiente Vorgänge Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe

Mehr

Ortskurve, Resonanz, Filter

Ortskurve, Resonanz, Filter Elektrotechnisches Grundlagen-Labor II Ortskurve, esonanz, Filter Versuch Nr. 1 Erforderliche Geräte Anzahl Bezeichnung, Daten GL-Nr. 1 NF-Generator 10V; 600Ω 14 1 NF-Millivoltmeter 16 NF-Voltmeter, erdfrei

Mehr

3. Übungen zum Kapitel Der Wechselstromkreis

3. Übungen zum Kapitel Der Wechselstromkreis n n n n n n n n n n n n n n n n n n n n n n n Fachhochschule Köln University of Applied Sciences ologne ampus Gummersbach 18 Elektrotechnik Prof. Dr. Jürgen Weber Einführung in die Mechanik und Elektrote

Mehr

Laborversuche zur Physik I. Versuch 1-10 Wechselstrom und Schwingkreise. Versuchsleiter:

Laborversuche zur Physik I. Versuch 1-10 Wechselstrom und Schwingkreise. Versuchsleiter: Laborversuche zur Physik I Versuch - 0 Wechselstrom und Schwingkreise Versuchsleiter: Autoren: Kai Dinges Michael Beer Gruppe: 5 Versuchsdatum: 3. Oktober 2005 Inhaltsverzeichnis 2 Aufgaben und Hinweise

Mehr

Vorbereitung: elektrische Messverfahren

Vorbereitung: elektrische Messverfahren Vorbereitung: elektrische Messverfahren Marcel Köpke 29.10.2011 Inhaltsverzeichnis 1 Ohmscher Widerstand 3 1.1 Innenwiderstand des µa Multizets...................... 3 1.2 Innenwiderstand des AVΩ Multizets.....................

Mehr

Wechselstrombrücken. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines

Wechselstrombrücken. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines Praktikum Grundlagen der Elektrotechnik Versuch: Wechselstrombrücken Versuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Praktikum ist nur durch eine gute Vorbereitung auf dem jeweiligen Stoffgebiet

Mehr

Wechselspannung. Zeigerdiagramme

Wechselspannung. Zeigerdiagramme niversity of Applied Sciences ologne ampus Gummersbach Dipl.-ng. (FH Dipl.-Wirt. ng. (FH D-0 Stand: 9.03.006; 0 Wie bereits im Kapitel an,, beschrieben, ist die Darstellung von Wechselgrößen in reellen

Mehr

4.5 Gekoppelte LC-Schwingkreise

4.5 Gekoppelte LC-Schwingkreise 4.5. GEKOPPELTE LC-SCHWINGKEISE 27 4.5 Gekoppelte LC-Schwingkreise 4.5. Versuchsbeschreibung Ein elektrischer Schwingkreis kann induktiv mit einem zweiten erregten Schwingkreis 2 koppeln. Der Kreis wird

Mehr

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Untersuchen Sie das Übertragungsverhalten eines RC-Tiefpasses mit Hilfe der Oszilloskopmesstechnik 1.Es ist das Wechselstromverhalten

Mehr

Grundlagen. Stromkreisgesetze. Andreas Zbinden. Gewerblich- Industrielle Berufsschule Bern. 1 Ohmsches Gesetz 2. 2 Reihnenschaltung von Widerständen 6

Grundlagen. Stromkreisgesetze. Andreas Zbinden. Gewerblich- Industrielle Berufsschule Bern. 1 Ohmsches Gesetz 2. 2 Reihnenschaltung von Widerständen 6 Elektrotechnik Grundlagen Stromkreisgesetze Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Ohmsches Gesetz 2 2 Reihnenschaltung von Widerständen 6 3 Parallelschaltung von

Mehr

Simulation der Dynamik eines Piezoelements, Frequenzbereich, Zeitbereich, Aufstellen des Ersatzschaltbildes

Simulation der Dynamik eines Piezoelements, Frequenzbereich, Zeitbereich, Aufstellen des Ersatzschaltbildes Prof. Dr. R. Kessler, FH-Karlsruhe, Sensorsystemtechnik, D:\Si040306\dgln\piezo\piezo4.doc, Seite /7 Homepage: http://www.home.fh-karlsruhe.de/~kero000/, Simulation der Dynamik eines Piezoelements, Frequenzbereich,

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch elektrische Messverfahren Armin Burgmeier (347488) Gruppe 5 2. Dezember 2007 Messungen an Widerständen. Innenwiderstand eines µa-multizets Die Schaltung wird nach Schaltbild (siehe

Mehr

Bearbeitungszeit: 30 Minuten

Bearbeitungszeit: 30 Minuten Vorname: Studiengang: Platz: Aufgabe: 1 2 3 Gesamt Punkte: Bearbeitungszeit: 30 Minuten Zugelassene Hilfsmittel: - eine selbsterstellte, handgeschriebene Formelsammlung (1 Blatt DIN A4, einseitig beschrieben,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Übungsaufgaben:

Mehr

kommt zur Kreisinversion eine Spiegelung des Punktes an der reellen Achse dazu. Die folgenden vier Eigenschaften gelten auch für diese Abbildung

kommt zur Kreisinversion eine Spiegelung des Punktes an der reellen Achse dazu. Die folgenden vier Eigenschaften gelten auch für diese Abbildung 1 3. Die Kreisinversion 3.1. Definition Die Abbildung 1 ordnet der Zahl das folgende Bild zu 1 1 1 1 1 Die Konstruktion des Bildpunkts besteht also aus zwei Schritten: Der Punkt wird in den Bildpunkt abgebildet,

Mehr

Protokoll zum Laborversuch (Bachelor-Anleitung) Wechselstrom an Spule und Kondensator. Zug Labor am: Wochentag Abgabe am:

Protokoll zum Laborversuch (Bachelor-Anleitung) Wechselstrom an Spule und Kondensator. Zug Labor am: Wochentag Abgabe am: FHTW Berlin, Fachbereich, Physikalisches Praktikum - Wechselstromwiderstände Version /04 Hochschule für Technik und Wirtschaft Berlin Physikalisches Praktikum HTW-Berlin Protokoll zum Laborversuch (Bachelor-Anleitung)

Mehr

2 Elektrischer Stromkreis

2 Elektrischer Stromkreis 2 Elektrischer Stromkreis 2.1 Aufbau des technischen Stromkreises Nach der Durcharbeitung dieses Kapitels haben Sie die Kompetenz... Stromkreise in äußere und innere Abschnitte einzuteilen und die Bedeutung

Mehr

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck A.1 MATHEMATISCHE GRUNDLAGEN In diesem Abschnitt werden die mathematischen Grundlagen zusammengestellt, die für die Behandlung von Übertragungssystemen erforderlich sind. Unter anderem sind dies die komplexen

Mehr

Grundlagen der Elektrotechnik. Übungsaufgaben

Grundlagen der Elektrotechnik. Übungsaufgaben Grundlagen der Elektrotechnik Sönke Carstens-Behrens Wintersemester 2009/2010 RheinAhrCampus 1 Grundlagen der Elektrotechnik, WiSe 2009/2010 Aufgabe 1: Beantworten Sie folgende Fragen: a) Wie viele Elektronen

Mehr

1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i

1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i Leistungsanpassung Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6 ) gegeben. Welchen Wert muss die Innenimpedanz Z i der Quelle annehmen, dass an Z L a) die maximale Wirkleistung b) die maximale

Mehr

Versuchsprotokoll zum Versuch Nr. 10 Kondensator und Spule im Wechselstromkreis

Versuchsprotokoll zum Versuch Nr. 10 Kondensator und Spule im Wechselstromkreis Gruppe: A Versuchsprotokoll zum Versuch Nr. 0 Künzell, den 9.0.00 In diesem Versuch ging es darum die Kapazität eines Widerstandes und die Induktivität von Spulen zu bestimmen. I. Kondensator im Wechselstromkreis

Mehr

Filter zur frequenzselektiven Messung

Filter zur frequenzselektiven Messung Messtechnik-Praktikum 29. April 2008 Filter zur frequenzselektiven Messung Silvio Fuchs & Simon Stützer Augabenstellung. a) Bauen Sie die Schaltung eines RC-Hochpass (Abbildung 3.2, Seite 3) und eines

Mehr

Elektrotechnik. 16., verbesserte und aktualisierte Auflage

Elektrotechnik. 16., verbesserte und aktualisierte Auflage Dieter Zastrow Elektrotechnik Ein Grundlagenlehrbuch 16., verbesserte und aktualisierte Auflage Mit 526 Abbildungen, 142 Beispielen und 225 Übungsaufgaben mit Lösungen sowie 27 Übersichten als Wissensspeicher

Mehr

3.2 Ohmscher Widerstand im Wechselstromkreis 12

3.2 Ohmscher Widerstand im Wechselstromkreis 12 3 WECHSELSPANNNG 3 3.1 Grundlagen der 3 3.1.1 Festlegung der Wechselstromgrößen 3 3.1.2 Sinusförmige Wechselgrößen 7 3.1.3 Graphische Darstellung von Wechselgrößen 9 3.2 Ohmscher Widerstand im Wechselstromkreis

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0).0.0. Berechnen Sie unter Verwendung des binomischen Lehrsatzes ( x + y) 7 Lösung: Nach dem binomischen Lehrsatz ist ( x + y) 7 = 7

Mehr

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND OHMSCHEM WIDERSTAND.

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND OHMSCHEM WIDERSTAND. Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTOMWIDESTANDES IN EINEM STOMKEIS MIT IN- DUKTIVEM UND OHMSCHEM WIDESTAND. Bestimmung von Amplitude und Phase des

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 3 Grundschaltungen der Wechselstromtechnik Teilnehmer: Name orname Matr.-Nr. Datum der

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

Komplexe Widerstände

Komplexe Widerstände Komplexe Widerstände Abb. 1: Versuchsaufbau Geräteliste: Kondensator 32μ F 400V, Kapazitätsdekade, Widerstandsdekade, Widerstand ( > 100Ω), Messwiderstand 1Ω, verschiedene Spulen, Funktionsgenerator Speicheroszilloskop,

Mehr

RLC-Schaltungen Kompensation

RLC-Schaltungen Kompensation EST ELEKTRISCHE SYSTEMTECHNIK Kapitel 16 RLC-Schaltungen Kompensation Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Oktober 2011 Ich bin das

Mehr

Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1

Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1 Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1 Geräte: Netzgerät mit Strom- und Spannungsanzeige, 2 Vielfachmessgeräte, 4 Kabel 20cm, 3 Kabel 10cm, 2Kabel 30cm, 1 Glühlampe 6V/100mA,

Mehr

1 Elektrische Stromkreise und lineare Netzwerke /20

1 Elektrische Stromkreise und lineare Netzwerke /20 Elektrische Stromkreise und lineare Netzwerke /20 Zwei Batterien G und G2 mit unterschiedlichen elektrischen Eigenschaften wurden polrichtig parallel geschaltet und an den Anschlussklemmen A, B mit einem

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

Übung 2 Einschwingvorgänge 2 Diode Linearisierung

Übung 2 Einschwingvorgänge 2 Diode Linearisierung Universität Stuttgart Übung 2 Einschwingvorgänge 2 Diode Linearisierung Institut für Leistungselektronik und Elektrische Antriebe Abt. Elektrische Energiewandlung Prof. Dr.-Ing. N. Parspour Aufgabe 2.1

Mehr

WECHSELSTROM. 1. Messung von Wechselspannungen, Blindwiderstand. a) Maximalspannung. Geräte: Netzgerät Ossi Spannungsmessgerät (~)

WECHSELSTROM. 1. Messung von Wechselspannungen, Blindwiderstand. a) Maximalspannung. Geräte: Netzgerät Ossi Spannungsmessgerät (~) WECHSELSTROM 1. Messung von Wechselspannungen, Blindwiderstand a) Maximalspannung Spannungsmessgerät (~) Miss 3 unterschiedliche Spannungen der Wechselspannungsquelle (

Mehr

Rechenübung HFT I. Smithdiagramm Impedanztransformation

Rechenübung HFT I. Smithdiagramm Impedanztransformation Rechenübung HFT I Smithdiagramm Impedanztransformation Organisatorisches zur Rechenübung HFT I UPDATE! Anmeldung für die Klausur: Bis 01.02.2010 im Sekretariat HFT 4 - (Bachelor und Diplom) Klausur wird

Mehr

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3

Mehr

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X Praktikum Physik Protokoll zum Versuch: Wechselstromkreise Durchgeführt am 08.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Labor für Grundlagen der Elektrotechnik. EE1- ETP1 Labor 4. Weitere Übungsteilnehmer: Messung von Kapazitäten und Induktivitäten

Labor für Grundlagen der Elektrotechnik. EE1- ETP1 Labor 4. Weitere Übungsteilnehmer: Messung von Kapazitäten und Induktivitäten Department Informations- und Elektrotechnik Studiengruppe: Übungstag: Professor: abor für Grundlagen der Elektrotechnik EE1- ETP1 abor 4 Testat: Protokollführer (Name, Vorname): Weitere Übungsteilnehmer:

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Elektrotechnik IIa SS 2011

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Elektrotechnik IIa SS 2011 Aufgabe 1: Berechnen Sie die Resonanzfrequenz des gegebenen Parallelschwingkreises! Lösen Sie die Aufgabe über den komplexen Leitwert! 5 2,5 10 100 Reihenschaltungszweig Parallelschaltung sämtlicher Bauteile

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 2. Klausur Grundlagen der Elektrotechnik I-A 16. Februar 2004 Name:... Vorname:... Matr.-Nr.:... Bitte den Laborbeteuer ankreuzen Björn Eissing Karsten Gänger Christian Jung Andreas Schulz Jörg Schröder

Mehr

Komplexe Zahlen und Wechselstromwiderstände

Komplexe Zahlen und Wechselstromwiderstände Komplexe Zahlen und Wechselstromwiderstände Axel Tobias 22.2.2000 Ein besonderer Dank geht an Ingo Treunowski, der die Übertragung meines Manuskriptes in L A TEX durchgeführt hat tob skript komplex.tex.

Mehr

Nimm KL-3 Fragenkatalog, Seite 34, = Formelsammung 1.Seite, oben rechts!

Nimm KL-3 Fragenkatalog, Seite 34, = Formelsammung 1.Seite, oben rechts! Die Fragen sind sehr einfach, wenn... siehe. Bild... der Widerstand richtig rum liegt. Hä? Einfach, da in den Aufgaben jeweils das richtigrum, d.h. die Reihenfolge der Farben angegeben ist!! Bei Vierfach

Mehr