Monte Carlo Simulationen

Größe: px
Ab Seite anzeigen:

Download "Monte Carlo Simulationen"

Transkript

1 Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

2 Gliederung 1 Was sind Monte Carlo Simulationen? 2 Zufallszahlen 3 Erzeugung gleichverteilter Zufallszahlen 4 Monte Carlo Integration 5 Erzeugung beliebig verteilter Zufallszahlen 6 Anwendungsgebiete in und außerhalb der Physik Stefan Wunsch Monte Carlo Simulationen 31. Mai

3 Was sind Monte Carlo Simulationen? Stefan Wunsch Monte Carlo Simulationen 31. Mai

4 Was sind Monte Carlo Simulationen? Simulationen bzw. Methoden, die auf Zufallszahlen beruhen Name ist abgeleitet vom Monte Carlo Casino in Monaco Hauptanwendungsgebiete sind Optimierungsprobleme, numerische Integration von hochdimensionalen Integralen und Erzeugung von Wahrscheinlichkeitsverteilungen wichtige Personen: Stanislaw Ulam, Nicholas Metropolis und John von Neumann Entwicklung am Los Alamos National Laboratory im Manhatten Project (ca. 1940) Eng verbunden mit den ersten vollprogrammierbaren Computern: Z3 (1941) und ENIAC (1946) Stefan Wunsch Monte Carlo Simulationen 31. Mai

5 Zufallszahlen Stefan Wunsch Monte Carlo Simulationen 31. Mai

6 Zufallszahlen echter Zufall nur über stochastische Prozesse, z. B. radioaktive Zerfälle, Umgebungsrauschen aus Gerätetreibern UNIX: /dev/random, Entropiepool aus Umgebungsrauschen, Zufallszahlen sehr hoher Qualität Probleme: standardmäßig maximal 4096 Bit, füllt sich zu langsam, blockiert Zugriff bei leerem Pool Andere Quelle: QRNG (Quantum Randomness) Service der HU Berlin, gleichverteilte Zufallszahlen mit bis zu MByte/s zum Download Pseudozufallszahlen: Zahlen aus deterministischer Folge Stefan Wunsch Monte Carlo Simulationen 31. Mai

7 Erzeugung gleichverteilter Zufallszahlen Stefan Wunsch Monte Carlo Simulationen 31. Mai

8 Erzeugung gleichverteilter Zufallszahlen Basis für alle Monte Carlo Anwendungen Mögliche deterministische Zufallsgeneratoren nicht-periodische Generatoren, z. B. Nachkommastellen von π Problem: lange, aber feste Folge, Verteilung nicht wirklich bekannt periodisch-rekursive Generatoren, im Folgenden behandelt Periodenlänge als guter Anhaltspunkt für die Qualität eines Generators Geschwindigkeit der Implementierung beschränkt Simulation Reproduzierbarkeit der Folge ist erwünscht Stefan Wunsch Monte Carlo Simulationen 31. Mai

9 Linear Congruential Generator X n+1 = (ax n + c) mod (m) Modulo m: m > 0 Multiplier a: 0 < a < m Increment c: 0 c < m Seed X 0 : 0 X 0 < m Gleichverteilung auf [0, 1) über Transformation U = X m Periodenlängen in der Größenordnung Stefan Wunsch Monte Carlo Simulationen 31. Mai

10 Linear Congruential Generator Mögliche Ausbildung von Hyperebenen bei ungünstiger Wahl der Parameter. LCG nie für stochastische Simulationen benutzen. Stefan Wunsch Monte Carlo Simulationen 31. Mai

11 Mersenne-Twister Algorithmus h = Y i N Y i N mod ( 2 31) + Y i N+1 mod ( 2 31) ( ) h Y i = Y i 227 floor [(hmod (2)) 0x9908b0df)] 2 meist benutzter Pseudozufallszahlengenerator N = Bit Integer als Eingabeparameter (Seed) Periodenlänge von (Mersenne Primzahl) gleichverteilt auf bis zu 623 Dimensionen implementiert in ROOT in TRandom3, Standard in Python, Maple, MATLAB, Ruby,... in C++ seit C++11 und in Boost Libraries und Glib vorhanden Stefan Wunsch Monte Carlo Simulationen 31. Mai

12 Anwendungsbeispiel: Pi Erstelle zufälliges Tuple mit r 1, r 2 [0, 1] ( ) r1 x = r 2 Akzeptiere Punkt für x < 1 Nehme Anzahl akzeptierte Punkte N A und Gesamtanzahl Punkte N G Berechne π mit π = 4 NA N G. Stefan Wunsch Monte Carlo Simulationen 31. Mai

13 Monte Carlo Integration Stefan Wunsch Monte Carlo Simulationen 31. Mai

14 MC Integration: Verfahren Definition Erwartungswert: x = xϕ(x)dx Erwartungswert f (x): f = f (x)ϕ(x)dx zentrale Grenzwertsatz der Wahrscheinlichkeitsrechnung f = 1 N N i f (x i ) mit x i nach ϕ(x) verteilt Fehler des Mittelwerts: σ N = f (x)2 f (x) 2 N b a f (x)ϕ(x)dx = 1 b b a a f (x)dx 1 N f (x) N i f (x i ) ± 2 f (x) 2 N Stefan Wunsch Monte Carlo Simulationen 31. Mai

15 MC Integration: Fehler f(x) Fehler Trapezverfahren: ɛ 1 N d 2 Fehler MC Integration: ɛ 1 N 1 2 MC Integration hat geringeren Fehler für d > 4 Dimensionen. x Trapezverfahren Stefan Wunsch Monte Carlo Simulationen 31. Mai

16 MC Integration: Laufzeitverhalten MC Integration: Berechnungspunkte N unabhängig von der Dimension d bei konstantem Fehler ɛ. Trapezverfahren: Berechnungspunkte N steigen exponentiell mit der Dimension mit exp ( ) d 2 bei konstantem Fehler ɛ. N d Stefan Wunsch Monte Carlo Simulationen 31. Mai

17 Erzeugung beliebig verteilter Zufallszahlen Stefan Wunsch Monte Carlo Simulationen 31. Mai

18 Neumann sches Rückweisungsverfahren x i = x min + r 2i x φ(x) y i = r 2i+1 ϕ max Akzeptiere Wert, wenn y i < ϕ(x i ) Nachteil: Bei steilen Verteilungen müssen sehr viele Zahlen verworfen werden. x Stefan Wunsch Monte Carlo Simulationen 31. Mai

19 Transformationsmethode φ(x) Φ(x) 1 y x 0 x Stefan Wunsch Monte Carlo Simulationen 31. Mai

20 Transformationsmethode ϕ(x) ϕ(y) mit x = f (y) x ϕ(x )dx = y ϕ(y )dy Φ(x ) x = Φ(y ) y mit Φ(y) = y x = Φ 1 (y) Vorteil: Direktes Abbilden ohne Verwerfen von Zufallszahlen. Nachteil: Wahrscheinlichkeitsdichte muss integrierbar und invertierbar sein für analytische Transformation. Stefan Wunsch Monte Carlo Simulationen 31. Mai

21 Majorantenverfahren x i = M 1 (r 2i ) y i = r 2i+1 m(x i ) Akzeptiere Wert, wenn y i < ϕ(x i ) φ(x) m(x) f (x) Vorteil: Nur f (x) Werte werden in einem Punkt x verworfen. x Stefan Wunsch Monte Carlo Simulationen 31. Mai

22 Box-Müller Verfahren Erzeugung von standardnormalverteilten Zufallszahlen z. B. Simulation mittelwertfreies weißes Rauschen exp( x 2 )dx nicht analytisch lösbar Transformationsmethode x 1 nur voll numerisch nutzbar Lösung: Methode in zwei Dimensionen benutzen ( ( )) 1 x 2 x 2 2π exp 1 + x2 2 dx 1 dx 2 = 2 r mit x 1 = r cos(θ) und x 2 = r sin(θ) θ 1 2π exp ( r ) 2 rdrdθ 2 Stefan Wunsch Monte Carlo Simulationen 31. Mai

23 Box-Müller Verfahren θ 0 1 r 2π dθ exp ( r ) 2 r dr = y 1 y y 1 = θ 2π θ = 2πy 1 ( ) r 2 y 2 = 1 exp r = 2 log (1 y 2 ) = 2 log (y 2 ) 2 x 1 = r cos(θ) = 2 log (y 2 ) cos(2πy 1 ) x 2 = r sin(θ) = 2 log (y 2 ) sin(2πy 1 ) Stefan Wunsch Monte Carlo Simulationen 31. Mai

24 Anwendungsbeispiele Stefan Wunsch Monte Carlo Simulationen 31. Mai

25 Metropolis Algorithmus: Energieniveaus Simulation von System mit diskreten Energieniveaus Wahrscheinlichkeit für ein Teilchen im Zustand X folgt Boltzmannverteilung ( 1 p(x) = ( ) exp E ) X expi E i k B T k B T Suche Besetzung der Niveaus für gegebene Temperatur T und Anfangszustand X 0 Stefan Wunsch Monte Carlo Simulationen 31. Mai

26 Metropolis Algorithmus: Energieniveaus Wähle zufälligen Zustand Y aus. Dieser wird vom aktuellen Zustand X aus angenommen mit der Akzeptanzwahrscheinlichkeit ) A(X Y ) = min ( 1, p(y ) p(x) = min Entscheide über die Akzeptanz mit r [0, 1) und ( ( r < min 1, exp E )). k B T ( ( 1, exp E )). k B T Histogrammiere angenommene Zustände bei N-facher Ausführung Stefan Wunsch Monte Carlo Simulationen 31. Mai

27 Mehrteilchensystem im Kasten Mehrteilchensystem mit N Teilchen und gegenseitig abstoßender Kraft (Coulombpotential) und Anfangspositionen x 0,i V( x) = N i=0 c x x i Ermittle neue Position eines Teilchens mit ( cos(2πr1 ) x n = x n 1 + a r 2 sin(2πr 1 ) [ ( Akzeptiere neue Position für r < min 1, exp r [0, 1) und innerhalb Kasten. ). V( x n 1) V( x n) k B T )] mit Stefan Wunsch Monte Carlo Simulationen 31. Mai

28 Aktienmarkt Gute Näherung für das Verhalten von Aktienmärkten ist ein Random Walk Beschreibung über Diffusionsgleichung der Form mit den Eigenschaften ds = µsdt + σɛ dt µ : const., Drift σ : const., Variation ɛ : normalverteilt Stefan Wunsch Monte Carlo Simulationen 31. Mai

Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen

Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Marco A. Harrendorf Hauptseminar Methoden der experimentellen Teilchenphysik WS 2011/2012 Karlsruhe Institut für Technologie (KIT) 25.11.2011

Mehr

ZUFALLSZAHLEN. WPG Informatik / Mathematik. BG/BRG Bad Ischl. A. Lindner

ZUFALLSZAHLEN. WPG Informatik / Mathematik. BG/BRG Bad Ischl. A. Lindner ZUFALLSZAHLEN WPG Informatik / Mathematik BG/BRG Bad Ischl A. Lindner 1 BEDEUTUNG VON ZUFALLSZAHLEN Beispiel: Computertip für Lotto in einer Trafik. Wie kann ein (elektronisches) Gerät, das nach einem

Mehr

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Inhaltsverzeichnis 12.01.2015. 1. Grundbegriffe. 2. Einführung in die statistische Mechanik. 3. Normalmoden. 4. Molekulardynamik

Inhaltsverzeichnis 12.01.2015. 1. Grundbegriffe. 2. Einführung in die statistische Mechanik. 3. Normalmoden. 4. Molekulardynamik Inhaltsverzeichnis 1. Grundbegriffe 2. Einführung in die statistische Mechanik 3. ormalmoden 4. Molekulardynamik 5. Monte -Carlo Simulationen 6. Finite-Elemente Methode 1 Casino in Monte Carlo, Monaco

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

COMPUTERSIMULATIONEN. Ein Überblick

COMPUTERSIMULATIONEN. Ein Überblick COMPUTERSIMULATIONEN Ein Überblick Ziel: Vorhersage der makroskopischen Eigenschaften eines Systems. Geht das? Newton: Ja: F=m a gibt an, wie sich das System mit der Zeit entwickelt Laplace: Im Prinzip

Mehr

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

Simulationsverfahren. Schwerpunkt: Monte Carlo Simulation

Simulationsverfahren. Schwerpunkt: Monte Carlo Simulation Simulationsverfahren Schwerpunkt: Monte Carlo Simulation Agenda 1. Was ist eine Simulation? 2. Verschiedene Arten von Simulation 3. Einsatzgebiete von Simulationen 4. Geschichte der MC Simulation 5. Warum

Mehr

Fotios Filis. Monte-Carlo-Simulation

Fotios Filis. Monte-Carlo-Simulation Fotios Filis Monte-Carlo-Simulation Monte-Carlo-Methoden??? Spielcasino gibt Namen Monte Carlo war namensgebend für diese Art von Verfahren: Erste Tabellen mit Zufallszahlen wurden durch Roulette-Spiel-Ergebnisse

Mehr

Universität zu Köln Mathematisches Institut Sommersemester 2008. Zufallszahlengeneratoren und Monte-Carlo-Simulation

Universität zu Köln Mathematisches Institut Sommersemester 2008. Zufallszahlengeneratoren und Monte-Carlo-Simulation Universität zu Köln Mathematisches Institut Sommersemester 2008 Zufallszahlengeneratoren und Monte-Carlo-Simulation Stefan Müller muelles1(at)smail.uni-koeln.de 3. September 2008 1 Optionen In den letzten

Mehr

38. Algorithmus der Woche Zufallszahlen Wie kommt der Zufall in den Rechner?

38. Algorithmus der Woche Zufallszahlen Wie kommt der Zufall in den Rechner? 38. Algorithmus der Woche Zufallszahlen Wie kommt der Zufall in den Rechner? Autor Tim Jonischkat, Universität Duisburg-Essen Bruno Müller-Clostermann, Universität Duisburg-Essen Algorithmen sind clevere

Mehr

Die Black-Scholes-Gleichung

Die Black-Scholes-Gleichung Die Black-Scholes-Gleichung Franziska Merk 22.06.2012 Outline Optionen 1 Optionen 2 3 Optionen Eine Kaufoption ist ein Recht, eine Aktie zu einem heute (t=0) festgelegten Preis E an einem zukünftigen Zeitpunkt

Mehr

Erforschung aktueller Quellen von Zufallszahlen

Erforschung aktueller Quellen von Zufallszahlen Erforschung aktueller Quellen von Zufallszahlen Projektarbeit verfasst von Carole Bréda Matrikelnummer: 1100786 Betreuer: Dipl. Math. Daniel Mohr Betreuerin: Dipl. Math. Nina Ovcharova Institut für Mathematik

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Dolga Olena Otto-von-Guericke-Universität Fakultät für Informatik Seminar-Das virtuelle Labor Inhaltsverzeichnis Überblick Geschichte Anwendung -Bereiche -Spezielle Methoden Mathematische

Mehr

In Kapitel 1 haben wir folgende Formel zur risiko-neutralen Bewertung von Optionen eingeführt:

In Kapitel 1 haben wir folgende Formel zur risiko-neutralen Bewertung von Optionen eingeführt: Seydel: Skript Numerische Finanzmathematik, Kap. 3 (Version 211) 47 ºÅÓÒØ ¹ ÖÐÓ¹Å Ø Ó Ò In Kapitel 1 haben wir folgende Formel zur risiko-neutralen Bewertung von Optionen eingeführt: V (S, ) = e rt E Q

Mehr

Was können Schüler anhand von Primzahltests über Mathematik lernen?

Was können Schüler anhand von Primzahltests über Mathematik lernen? Was können Schüler anhand von Primzahltests über Mathematik lernen? Innermathematisches Vernetzen von Zahlentheorie und Wahrscheinlichkeitsrechnung Katharina Klembalski Humboldt-Universität Berlin 20.

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Unsupervised Kernel Regression

Unsupervised Kernel Regression 9. Mai 26 Inhalt Nichtlineare Dimensionsreduktion mittels UKR (Unüberwachte KernRegression, 25) Anknüpfungspunkte Datamining I: PCA + Hauptkurven Benötigte Zutaten Klassische Kernregression Kerndichteschätzung

Mehr

Monte Carlo Methoden

Monte Carlo Methoden Monte Carlo Methoden im Verstärkungslernen [Spink] Bryan Spink 2003 Ketill Gunnarsson [ ketill@inf.fu-berlin.de ], Seminar zum Verstärkungslernen, Freie Universität Berlin [ www.inf.fu-berlin.de ] Einleitung

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Pseudozufallszahlen INHALTSVERZEICHNIS. Thema Nr. 14 des Seminars Ausgewählte Gebiete der Analysis und der linearen Algebra

Pseudozufallszahlen INHALTSVERZEICHNIS. Thema Nr. 14 des Seminars Ausgewählte Gebiete der Analysis und der linearen Algebra Pseudozufallszahlen Thema Nr. 14 des Seminars Ausgewählte Gebiete der Analysis und der linearen Algebra Annette Schielek, Max-Beckmann-Str. 14, 60599 Frankfurt Matrikel-Nr. 2880312, Studienrichtung Wirtschaftpädagogik,

Mehr

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

MATHEMATISCHE ANALYSE VON ALGORITHMEN

MATHEMATISCHE ANALYSE VON ALGORITHMEN MATHEMATISCHE ANALYSE VON ALGORITHMEN Michael Drmota Institut für Diskrete Mathematik und Geometrie, TU Wien michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/ Ringvorlesung SS 2008, TU Wien Algorithmus

Mehr

Moderne Methoden der Datenanalyse WS 2010/11

Moderne Methoden der Datenanalyse WS 2010/11 Moderne Methoden der Datenanalyse WS 2010/11 1 Übungen Moderne Methoden der Datenanalyse WS 2010/11 Dr. Anze Zupanc Tutoren: Bastian Kronenbitter, Markus Röhrken Donnerstags, 15.30 FE/6 http://www-ekp.physik.uni-karlsruhe.de/~zupanc/ws1011/

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

11 Monte-Carlo (MC) Simulation

11 Monte-Carlo (MC) Simulation 11 Monte-Carlo (MC) Simulation Literatur zu diesem Teil: neben MD die andere wichtige Simulationsmethode für klassische Vielteilchensysteme. Sehr zu empfehlen ist Frenkel [1], aber auch Landau und Binder

Mehr

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen Finanzmathematik Absichern und Bewerten von Optionen Arnold Janssen / Klaus Janßen Universität Düsseldorf 27.09.2012 Rohstoffe, Devisen, Aktien, Kredite,... haben Preise, die im Laufe der Zeit zufällig

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Stochastische Simulation in der Lebensversicherung

Stochastische Simulation in der Lebensversicherung Stochastische Simulation in der Lebensversicherung Monte-Carlo Methoden und deren Anwendung in Versicherungen Reinhold Kainhofer, reinhold@kainhofer.com FG Finanz- und Versicherungsmathematik Institut

Mehr

Statistische Methoden der Datenanalyse

Statistische Methoden der Datenanalyse Aktuelle Probleme der experimentellen Teilchenphysik (Modul P23.1.2b) Statistische Methoden der Datenanalyse Ulrich Husemann Humboldt-Universität zu Berlin Wintersemester 2010/2011 Vorstellung Vorlesung:

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Einführung in die Stochastik Josef G. Steinebach Köln, WS 2009/10 I Wahrscheinlichkeitsrechnung 1 Wahrscheinlichkeitsräume, Urnenmodelle Stochastik : Lehre von den Gesetzmäßigkeiten des Zufalls, Analyse

Mehr

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Jan Jescow Stoehr Gliederung 1. Einführung / Grundlagen 1.1 Ziel 1.2 CreditRisk+ und CreditMetrics 2. Kreditportfolio 2.1 Konstruktion

Mehr

Datensicherheit durch Kryptographie

Datensicherheit durch Kryptographie Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems Michael.Hortmann@gmx.de 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

SOFTWARE FÜR PRG-APPLIKATIONEN

SOFTWARE FÜR PRG-APPLIKATIONEN SOFTWARE FÜR PRG-APPLIKATIONEN Autor: Frank Bergmann Letzte Änderung: 04.12.2014 09:09 1 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis... 2 2 Allgemeines... 3 3 Installation und Programmaufruf... 3 4 Einstellungen...

Mehr

Einführung in die Bayessche Bildanalyse

Einführung in die Bayessche Bildanalyse Seminar: Bayessche Ansätze in der Bildanalyse Fakultät für Mathematik und Wirtschaftswissenschaften Universität Ulm 8.Mai 2006 1 Motivation Beispielbilder 2 Computergrafiken Bildarten 3 Bayes sches Paradigma

Mehr

Skript zur Vorlesung. Numerik stochastischer Differentialgleichungen

Skript zur Vorlesung. Numerik stochastischer Differentialgleichungen Skript zur Vorlesung Numerik stochastischer Differentialgleichungen Wintersemester 13/14 Johannes Schropp Universität Konstanz Fachbereich Mathematik und Statistik Johannes Schropp, 11. Februar 14 Inhaltsverzeichnis

Mehr

Hedging mit Monte Carlo Algorithmen

Hedging mit Monte Carlo Algorithmen Hedging mit Monte Carlo Algorithmen Diplomarbeit von Thomas Höllbacher Fakultät für Mathematik, Physik und Informatik Mathematisches Institut Datum: 30. Oktober 2011 Aufgabenstellung und Betreuung: Prof.

Mehr

2.Tutorium Generalisierte Regression

2.Tutorium Generalisierte Regression 2.Tutorium Generalisierte Regression - Binäre Regression - Moritz Berger: 04.11.2013 und 11.11.2013 Shuai Shao: 06.11.2013 und 13.11.2013 Institut für Statistik, LMU München 1 / 16 Gliederung 1 Erweiterte

Mehr

Dieter SÜSS und Klaus MACHATA

Dieter SÜSS und Klaus MACHATA Globaler Optimierungsalgorithmus für überlagerungsfreie Darstellung von Objekten in der neuen Elektronischen Unfallsteckkarte des Kuratorium für Verkehrssicherheit Dieter SÜSS und Klaus MACHATA Zusammenfassung

Mehr

Zelluläre Automaten als einfache selbstorganisierende Systeme

Zelluläre Automaten als einfache selbstorganisierende Systeme Zelluläre Automaten als einfache selbstorganisierende Systeme René Schlossus Sebastian Walther Dezember 2006 Zusammenfassung Dieser Artikel gibt einen Überblick über die Theorie der zellulären Automaten,

Mehr

Messung der differentiellen Ladungsasymmetrie in Top-Quark-Paar-Ereignissen am CMS-Experiment CMS PAS TOP-12-033

Messung der differentiellen Ladungsasymmetrie in Top-Quark-Paar-Ereignissen am CMS-Experiment CMS PAS TOP-12-033 Messung der differentiellen Ladungsasymmetrie in Top-Quark-Paar-Ereignissen am CMS-Experiment CMS PAS TOP-12-033 Christian Buntin, Thorsten Chwalek, Thomas Müller, Frank Roscher, Jeannine Wagner-Kuhr Institut

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

Generierung von Prozesslogs

Generierung von Prozesslogs Generierung von Prozesslogs Seminar Prozessmodellierungsplattform Sommersemester 2010 Prof. Dr. Mathias Weske, Matthias Kunze Thomas Milde Betreuer: Matthias Weidlich 19.07.2010 Motivation 2 Process Mining:

Mehr

Stochastik Wahrscheinlichkeit

Stochastik Wahrscheinlichkeit Stochastik Wahrscheinlichkeit Dies ist ein Detail, das auf dem letzten 1 DM Schein abgebildet war. Es stellt die wichtigste Wahrscheinlichkeitsverteilung überhaut dar die Normalverteilung. Diese Verteilung

Mehr

Non-Deterministische CFD Simulationen in FINE /Turbo

Non-Deterministische CFD Simulationen in FINE /Turbo Non-Deterministische CFD Simulationen in FINE /Turbo Dipl.-Ing. (FH) Peter Thiel Dr.-Ing. Thomas Hildebrandt NUMECA Ingenieurbüro NUMECA, a New Wave in Fluid Dynamics Überblick 1. Motivation: Warum non-deterministische

Mehr

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 8.1 Schätzer für Lage- und Skalenparameter und Verteilungsmodellwahl Lageparameter (l(x + a) = l(x) + a): Erwartungswert EX Median von X

Mehr

Grundzustandsberechnung von Gross-Pitaevskii Gleichungen

Grundzustandsberechnung von Gross-Pitaevskii Gleichungen Grundzustandsberechnung von Gross-Pitaevskii Gleichungen Christoph Bischko, Lukas Einkemmer, Dominik Steinhauser Fakultät für Mathematik, Informatik und Physik Universität Innsbruck 2. Juli, 2010 Christoph,

Mehr

Seminar zur speziellen Betriebswirtschaftslehre Kreditrisiko. Thema 4 Backtesting von Portfoliomodellen für Kreditrisiko

Seminar zur speziellen Betriebswirtschaftslehre Kreditrisiko. Thema 4 Backtesting von Portfoliomodellen für Kreditrisiko Seminar zur speziellen Betriebswirtschaftslehre Kreditrisiko Thema 4 Backtesting von Portfoliomodellen für Kreditrisiko Vortrag von Igor Grinberg, Kai Hartmanshenn und Stephan Pueschel am 30.01.2002 Gliederung

Mehr

CFD-Simulation von Störkörpern

CFD-Simulation von Störkörpern CFD-Simulation von Störkörpern Arbeitsgruppe 7.52 Neue Verfahren der Wärmemengenmessung Fachgebiet Fluidsystemdynamik - Strömungstechnik in Maschinen und Anlagen Vor-Ort-Kalibrierung von Durchflussmessgeräten

Mehr

Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen

Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen rof. G. Kemnitz Institut für Informatik, Technische Universität Clausthal 14. April 2010 1/14 Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen Prof. G. Kemnitz Institut für Informatik, Technische

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

beispielorientierte Einführung

beispielorientierte Einführung ROOTeine beispielorientierte Einführung Aktuelle Probleme der experimentellen Teilchenphysik WS 2008 / 09 Lehrstuhl für Physik und ihre Didaktik Historie der Programmentwicklung Startpunkt um 1995 mit

Mehr

Theorie und Implementation von parallelisierten Pseudozufallszahlengeneratoren

Theorie und Implementation von parallelisierten Pseudozufallszahlengeneratoren Theorie und Implementation von parallelisierten Pseudozufallszahlengeneratoren Forschungsbeleg von Heiko J. Bauke korrigierte Version vom 29. Juni 2001 Institut für Theoretische Physik Statistische Physik

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen

Mehr

Nichtlebenversicherungsmathematik Aus welchen Teilen besteht eine Prämie Zufallsrisiko, Parameterrisiko, Risikokapital Risikomasse (VaR, ES) Definition von Kohärenz Zusammengesetze Poisson: S(i) CP, was

Mehr

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada Stochastische Analysis für Zufallsmatrizen Roland Speicher Queen s University Kingston, Kanada Was ist eine Zufallsmatrix? Zufallsmatrix = Matrix mit zufälligen Einträgen A : Ω M N (C) Was ist eine Zufallsmatrix?

Mehr

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer 1 Einleitung Im Rahmen des SST wird teilweise vereinfachend angenommen, dass der Zusammenhang zwischen der Veränderung des risikotragenden

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Institut für Betriebswirtschaftslehre Services & Operations Management

Institut für Betriebswirtschaftslehre Services & Operations Management Services & Operations Management Prof. Dr. Helmut Dietl Modulübersicht 1. Operations Strategie 2. Process Analytics 3. Qualitätsmanagement: SPC 4. Plattformmanagement 5. Sportmanagement Seite 2 Lernziele

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Approximation von Warteschlangenkennzahlen mit Künstlichen Neuronalen Netzen

Approximation von Warteschlangenkennzahlen mit Künstlichen Neuronalen Netzen Optimale Echtzeit-Personaleinsatzplanung durch Approximation von Warteschlangenkennzahlen mit Künstlichen Neuronalen Netzen 7.05.2006 Frank Köller koeller@iwi.uni-hannover.de Gliederung Motivation Vorgehensweise

Mehr

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners 1 KAP 15. Spiele unter unvollständiger Information Bisher angenommen: jeder Spieler kennt alle Teile des Spiels seine Gegenspieler, deren Aktionen, deren Nutzen, seinen eigenen Nutzen etc. Oft kennt man

Mehr

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Algorithmen und Software für moderne Finanzmathematik Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Gliederung: Was ist Finanzmathematik? Wie wird man reich? Portfolio-Optimierung

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

Numerische Simulation für Asset-Liability Management. von Lebensversicherungsunternehmen

Numerische Simulation für Asset-Liability Management. von Lebensversicherungsunternehmen für von Lebensversicherungsunternehmen Mathematisches Institut Goethe-Universität Frankfurt am Main 5. Symposium: Neue Herausforderungen an das Risikomanagement Hamburger Zentrum für Versicherungswissenschaft

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

Das LHC-Computing-Grid

Das LHC-Computing-Grid Das LHC-Computing-Grid Von Julian Gethmann WS 11/12 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Überblick Ansprüche an die Rechnerinfrastruktur

Mehr

Kryptographie praktisch erlebt

Kryptographie praktisch erlebt Kryptographie praktisch erlebt Dr. G. Weck INFODAS GmbH Köln Inhalt Klassische Kryptographie Symmetrische Verschlüsselung Asymmetrische Verschlüsselung Digitale Signaturen Erzeugung gemeinsamer Schlüssel

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Cross-Kanal-Werbewirkung die Welt ist keine Badewanne

Cross-Kanal-Werbewirkung die Welt ist keine Badewanne Cross-Kanal-Werbewirkung die Welt ist keine Badewanne Burkhardt Funk Hamburg, 20.02.2013 Eine kurze Geschichte der Werbewirkungsmodelle BAYESIAN FORECASTING ATTRIBUTION MODELS USER JOURNEY IMPACT- RESPONSE

Mehr

Klaus Pötzelberger Department of Statistics and Mathematics Wirtschaftsuniversität Wien

Klaus Pötzelberger Department of Statistics and Mathematics Wirtschaftsuniversität Wien Interdisziplinäres Vertiefungsfach Grundkurs I: Stochastische Grundlagen der Finanzmathematik Wahlfach Mathematical Methods: Wahrscheinlichkeitsrechnung Klaus Pötzelberger Department of Statistics and

Mehr

Mini-Skript Wahrscheinlichkeitstheorie und Statistik

Mini-Skript Wahrscheinlichkeitstheorie und Statistik Mini-Skript Wahrscheinlichkeitstheorie und Statistik Peter Bühlmann Georg Grafendorfer, Lukas Meier Inhaltsverzeichnis 1 Der Begriff der Wahrscheinlichkeit 1 1.1 Rechenregeln für Wahrscheinlichkeiten........................

Mehr

Transformation und Darstellung funktionaler Daten

Transformation und Darstellung funktionaler Daten Transformation und Darstellung funktionaler Daten Seminar - Statistik funktionaler Daten Jakob Bossek Fakultät für Statistik 7. Mai 2012 Übersicht Einleitung Einordnung im Seminar Motivation am Beispiel

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

k-server-algorithmen Alexander Leider 4. Februar 2007

k-server-algorithmen Alexander Leider 4. Februar 2007 k-server-algorithmen Alexander Leider 4. Februar 2007 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Einleitung 3 1.1 Online-Algorithmen....................... 3 1.2 Kompetitive Algorithmen....................

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

Informatik-Sommercamp 2012. Mastermind mit dem Android SDK

Informatik-Sommercamp 2012. Mastermind mit dem Android SDK Mastermind mit dem Android SDK Übersicht Einführungen Mastermind und Strategien (Stefan) Eclipse und das ADT Plugin (Jan) GUI-Programmierung (Dominik) Mastermind und Strategien - Übersicht Mastermind Spielregeln

Mehr

Bildgebende Verfahren in der Medizin Thermographie

Bildgebende Verfahren in der Medizin Thermographie Bildgebende Verfahren in der Medizin Thermographie INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Stadt Karlsruhe VLW, Cnes/Spot Image, GeoEye KIT

Mehr

Das top-quark. Entdeckung und Vermessung

Das top-quark. Entdeckung und Vermessung Das top-quark Entdeckung und Vermessung Inhalt Geschichte Eigenschaften des top-quarks Wie top-paare entstehen Detektion Methoden der Massen-Messung Geschichte Die Vorstellung von Quarks wurde 1961 unabhängig

Mehr

Datenanalyse mit Python. Dr. Wolfram Schroers

Datenanalyse mit Python. Dr. Wolfram Schroers <Wolfram.Schroers - at - Field-theory.org> Datenanalyse mit Python Dr. Wolfram Schroers Problem Beobachtungen Modell (Annahmen, Vereinfachungen) Vorhersagen Vergleich Python: Stärken und Schwächen Anwendung:

Mehr

Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 2014

Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 2014 Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 04 Schwerpunkt: grundlegendes Anforderungsniveau 0 Inhaltsverzeichnis Inhaltsverzeichnis Seite Vorbemerkungen... Aufgabenvariationen und Ergänzungen

Mehr

Zinseszins- und Rentenrechnung

Zinseszins- und Rentenrechnung Zinseszins- und Rentenrechnung 1 Berechnen Sie den Zeitpunkt, an dem sich das Einlagekapital K bei a) jährlicher b) monatlicher c) stetiger Verzinsung verdoppelt hat, wobei i der jährliche nominelle Zinssatz

Mehr

Commercial Banking. Kreditportfoliosteuerung

Commercial Banking. Kreditportfoliosteuerung Commercial Banking Kreditportfoliosteuerung Dimensionen des Portfoliorisikos Risikomessung: Was ist Kreditrisiko? Marking to Market Veränderungen des Kreditportfolios: - Rating-Veränderung bzw. Spreadveränderung

Mehr

Korrelationen in Finanzmärkten

Korrelationen in Finanzmärkten Ausarbeitung des Hauptseminar-Vortrags Korrelationen in Finanzmärkten von Jennifer Lopez Barrilao Inhaltsverzeichnis 1 Grundlagen des Aktienmarktes 2 1.1 Preisentwicklung und Preisunterschiede........................

Mehr

3 Elektrische Leitung

3 Elektrische Leitung 3.1 Strom und Ladungserhaltung 3 Elektrische Leitung 3.1 Strom und Ladungserhaltung Elektrischer Strom wird durch die Bewegung von Ladungsträgern hervorgerufen. Er ist definiert über die Änderung der Ladung

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr