Inhaltsverzeichnis Grundbegriffe. 2. Einführung in die statistische Mechanik. 3. Normalmoden. 4. Molekulardynamik

Größe: px
Ab Seite anzeigen:

Download "Inhaltsverzeichnis 12.01.2015. 1. Grundbegriffe. 2. Einführung in die statistische Mechanik. 3. Normalmoden. 4. Molekulardynamik"

Transkript

1 Inhaltsverzeichnis 1. Grundbegriffe 2. Einführung in die statistische Mechanik 3. ormalmoden 4. Molekulardynamik 5. Monte -Carlo Simulationen 6. Finite-Elemente Methode 1 Casino in Monte Carlo, Monaco 2 1

2 Ursprung des amens Simulation von stochastischen Prozessen mit Hilfe von (quasi) Zufallszahlen - Monte-Carlo Casino Roulette Zufall - Zuerst verwendet 1949 bei Metropolis und Ulam MC wird im Allgemeinen verwendet, um - Thermodynamische Eigenschaften: Ensemblemittelwerte zu berechnen (keine Zeitmittelwerte, keine Dynamik) - Simulieren von dynamischen Prozessen mit Zeitskalen, die über diejenigen der MD hinausreichen (kinetic MC) Warum kmc: Eine deterministische Beschreibung von komplexen Vielteilchensystemen über lange Zeiten ist nicht durchführbar - Typische MD Simulationszeitskalen < 10-6 sec - Relevante Zeitskalen bei vielen Werkstoffprozessen: 10-3 bis 10 5 sec Übergang zu einer probabilistischen Beschreibung - Berücksichtigung von nur wenigen relevanten Freiheitsgraden, z. B. von Leerstellen - Alle übrigen Freiheitsgrade thermisches Rauschen, z.b Gitterschwingungen 3 Typische Anwendungen von MC Strahlungstransport in Festkörpern - z. B. eutronentransport (, Absorption, Kernreaktionen) Wechselwirkung von geladenen Teilchen mit Festkörpern - Ionenimplantation Simulation von Wachstumsprozessen - Ballistische und diffusionskontrollierte Aggregationsprozesse Transportprozesse in Festkörpern - sprozesse Kritische Phänomene, Phasenübergänge - Perkolation - Ordnungs-Unordnungsübergänge - Magnetische Phasenübergänge (Verhalten am kritischen Punkt) 4 2

3 Crystal Growth by Molecular Beam Epitaxy 5 Zufallsbewegung (Random walk) auf dem Gitter Übergangswahrscheinlichkeiten sind von vorhergehenden Sprüngen unabhängig z. B. Leerstellediffusion im Festkörper Wenn der walker zum Zeitpunkt t=0 sich bei x=0 befand, welche wird seine Position zum Zeitpunkt t=t? FALSCHE FRAGE Was ist die Wahrscheinlichkeit, dass zum Zeitpunkt t=t der Wanderer sich im Abstand X vom Ursprung befindet? 6 3

4 Das 1D Random Walk Was ist der mittlere Abstand, dass der Wanderer nach Schritten zurückgelegt hat? Definiere l n =±l als die Verschiebung des Wanderers beim n-ten Schritt. Das Hüpfen nach rechts (links ) geschieht mit Wahrscheinlichkeit p (q), p+q=1 ach Schritten, der vom Wanderer zurückgelegte Abstand beträgt: x l n n1 x l ( pq) l ( pq) l n n1 n n n j ( 1)( ) n1 n j ( ) ~ x l l l l p q l x x x 7 Beispiele von Wahrscheinlichkeitsverteilungen Gauss sche ormalverteilung 1 ( x ) exp X 2, X 2 X 2 Poisson-Verteilung: Seltene Ereignisse (Telefonanrufe, die in einem Call Center ankommen, Zerfall radioaktiver Kernen, Blitzhäufigkeit ) k e, k! Binomialverteilung (random walk) n k p (1 p) k nk Stetige Gleichverteilung 1/( b a) 0 X if x [ a, b] otherwise X 2 X 2 8 4

5 Quasi-Zufallszahlen Als Zufallszahlengenerator bezeichnet man ein Verfahren, das eine Folge von Zufallszahlen erzeugt. Man unterscheidet grundsätzlich zwischen nicht-deterministischen und deterministischen Zufallszahlengeneratoren. icht-deterministische ZZG liefern bei gleichen Ausgangsbedingungen unterschiedliche Werte. Ein deterministischer Zufallszahlengenerator liefert bei gleichen Ausgangsbedingungen dagegen immer die gleiche Folge von Zahlen. Die Implementierung einer Software-Prozedur arbeitet immer deterministisch. 9 Quasi-Zufallszahlen quasi-random numbers generator = deterministischer Algorithmus, der Sequenzen von Zufallszahlen R i generiert. (erwünschte) Eigenschaften - Maximal verteilte (pseudo-)zufallszahlen - lange Periodizität - schnell - ubertragbar auf verschiedene Softwares - reproduzierbar Beispiel: linearer Kongruenzgenerator R i 1 ( ar i b) (modulo ) 0a 1,0b 1 R0 [0, 1]... Ganze Zahlen Ri ri [0,1) Ri a5, b1, 8, R 2 0 2, 3, 0, 1, 6, 7, 4, 5, 2, 3, 0, 1 schlechte Wahl! 10 5

6 Alternative Abschätzung einer deterministischen Grösse (Integral) durch den Mittelwert einer stochastischen Grösse Beispiel: Fläche eines Kreises (Berechnung von π) y Zufällige Verteilung von Punkten auf einem Quadrat mit der Seitenlänge 1. Aufzählung der Punkte, die innerhalb des Einheitskreises liegen. Dann gilt A (2 R) circle 2 oncircle total x Algorithmus für mehrdimensionale Integrale dx dx... dx f ( x, x,... x ) 1 2 d 1 2 1/ 2 Relativer Fehler MC method 1/, 2/ d Simpson rule 1/, A dr d pa( r, p ) f( r, p ) i d d 4, d - Dimension 3 3 i i i i i i i... Anzahl der Versuche... Gesamtzahl der Stützstellen i=1,,10 3-5!! 11 Erinnerung: Das makroskopische Verhalten von einem komplexen Vielteilchensystem kann im thermodynamischen Gleichgewicht durch Mittelwerte charakterisiert werden A( r i, pi ) Molekulardynamik Zeitmittelwerte max tmax 1 A lim A( ri( t), pi( t) ) dt t tmax t t min tmin Remember: Vorlesungen 3-4 A L AW j j1 j Monte Carlo Ensemblemittelwerte A dr dpa( r, p ) f( r, p ) i 3 3 i i i i i i i 12 6

7 MC-Methode im thermodynamischen Gleichgewicht Der Zustand des Systems sei durch einen Vektor X im Phasenraum beschrieben Beispiele: System von Punktmassen X Ortsvektoren und Impulse( rj, pj) Spinsysteme X Binäre Legierungen X AAABBABBBBBAA Die Gesamtenergie des Systems (Hamilton-Funktion) hängt von X ab Die Verteilungsfunktion (bei konstanter Temperatur, d.h. im kanonischen Ensemble), die angibt, mit welcher Wahrscheinlichkeit die Konfiguration X auftreten wird, ist gegeben durch: 1 H( X) H( X) Weq ( X) exp, Z exp Z kt allx kt Summe/Integration über alle Zustände Für grosse Systeme ( Teilchen) ist die Berechnung der Zustandssumme Z, selbst auf einem Supercomputer technisch unmöglich! Zustandssumme 13 MC-Methode im thermodynamischen Gleichgewicht "Simple Sampling" ( ) ( A W ) eq X A X allx Der Mittelwert (über das kanonische Ensemble) einer physikalischen Grösse is definiert als Um (*) zu berechnen kann man einen Zufallsweg (random walk) erzeugen, d.h. verschiedene Zustände werden mit gewissen Wahrscheinlichkeiten ausgewählt. Erzeuge eine Konfiguration X und akzeptiere sie mit Wahrscheinlichkeit W eq (X), z.b. Austausch zweier Atome auf einem Gitter (*) A( X ) SEHR IEFFIZIET Abschätzung der Summe in Gleichung. (*) durch Generierung von Zufallskonfigurationen, wobei i.a. viel kleiner als die Gesamtzahl von möglichen Konfigurationen ist A A W ( X ) A( X ) eq k k k

8 MC-Methode im thermodynamischen Gleichgewicht Problem: Bei einer rein zufälligen Auswahl der Zustände, werden sehr oft Konfigurationen mit hoher Energie gewählt ihre Wahrscheinlichkeit ist sehr gering infolge der exp-abhängigkeit der Zustandssumme H ( X ) Weq( X)~exp kt Beispiel: Abschätzung der Gesamtzahl der relevanten Konfiguration (Mikrozustände) im Ising- Model Mögliche Zustände eines einzelnen magnetischen Moments: +1/2, -1/2 (up, down) Quadratisches Gitter Gesamtzahl: 4x4 Gitter: 100x100 Gitter: Ergo: Wegen begrenzter Rechenpower kann in grossen Systemen nur einen sehr kleinen Anteil der relevanten Zustände erreicht werden. "Simple Sampling" kann daher am besten bei hohen Temperaturen effizient sein, wo man mit höherer Wahrscheinlichkeit Zustände mit hoher Energie antreffen kann. Alternative: "Importance Sampling" 15 Importance Sampling - 1 Beispiel: Berechne das Integral Die Funktion g(x) ist nur von ull verschieden in [0,1] Mögliche Auswahl: Uniform(0,1) and Uniform(0,5) Stetige Gleichverteilung Über die Intervalle [0,1] und [0,5] Uniform(0,5) zu nehmen wäre nicht sinnvoll Kluge Wahl der zugrundeliegenden Wahrscheinlichkeitsverteilung ist wichtig 16 8

9 Importance Sampling Um thermodynamische Mittelwerte effizient zu berechnen, ist es wichtig, die Zustände nicht nach gleicher a priori Wahrscheinlichkeit auszuwählen, sondern mit geeigneten statistischen Gewichten Wenn wir die möglichen Zustände X aus der Verteilung W eq (X) auswählen, dann kann man die Mittelwerte folgendermaßen berechnen A A A( X ) 1 k 1 k D.h. die X-Zustände sind nicht mehr völlig zufällig ausgewählt, Kann man eine Prozedur angeben, nach der wir einen Satz von Zuständen erzeugen können, die den grössten Beitrag zum Mittelwert liefern? Ja Metropolis Algorithmus 17 Der Metropolisalgorithmus: Erzeuge die relevanten Zustände nach einer spezifischen Wahrscheinlichkeitsverteilung (Boltzmann-Verteilung) 1. Starte mit beliebiger Konfiguration (Zustand) X 0 2. Führe eine Zustandsänderung durch (bewege ein Atom, flip ein magnetisches Moment, usw.) icholas Metropolis 3. Berechne H H( X ) H( X ) i1 4. Berechne die Übergangswahrscheinlichkeit i H / kt B 1 min i i 1, e Wenn H 0 akzeptiere die neue Konfiguration mit Wahrscheinlichkeit 1 W Wenn H 0 akzeptiere die neue Konfiguration mit Wahrscheinlichkeit Wi i 1 Go to 2 Berechne die entsprechenden MIttelwerte M 1 A A A( Xn) M M Die ersten M 0 Schritte dienen der Equilibrierung des Systems 0 n M

10 Zusammenfassung Man vergleiche eine Trajektorie bei einer thermodynamischen MC-Simulation mit der Trajektorie der MD. Beide Methoden erzeugen diskrete Trajektorien (entweder eine diskrete Zustandskette oder eine in der Zeit diskretisierte MD Trajektorie) Allerdings ist die Zustandskette stochastisch und nicht deterministisch wie die MD-Trajektorie Die MC-Trajektorie ist keine dynamische Trajektorie sondern dient nur zum Abtasten des Phasenraums Geschwindigkeiten spielen keine Rolle bei einer Zustandskette, nur Konfigurationen des gesamten Systems. (Der Beitrag der kinetischen Energie zu der Zustandssumme kann immer analytisch berechnet werden, da er immer quadratisch in den Impulsen ist, und liefert nur einen Vorfaktor) 19 = Simulation kinetischer Prozesse im ichtgleichgewicht Herausforderung: Zeitentwicklung des Systems Beachte: a priori hat die MC-Zeit nichts zu tun mit der reallen physikalischen Zeit Auswahl der elementaren Prozesse (events) Plannung einer kmc Simulation: Charakteristische Zeitskalen E.g.: - Gitterschwingungen char sec Sie werden als thermisches Rauschen berücksichtigt - Leerstellendiffusion im Festkörpern wait 0 exp( E m / kt ) Wartezeiten stark temperaturabhängig sec, E m 1eV...Migrationsenergie wait sec bei 1000 C wait 0.3sec bei 100 C kmc nutzt die Tatsache aus, dass die Langzeitdynamik typischerweise aus diffusiven Hüpfen von Zustand zu Zustand besteht. Statt die Dynamik des Systems über Zeiten in der Grössenordnung einer typischen Schwingungsperiode zu verfolgen, werden nur Zustandsübergänge betrachtet 20 10

11 Hüpfen von Zustand zu Zustand Was ist Hüpfen (hopping)? Was ist ein Zustand? W AB E pot ({R n }) E A ({R A n},{p A n}) E B ({R B n},{p B n}) Einfachster Fall: thermischaktivierter Prozess W AB EB EA ~exp kt 21 Hüpfen findet auf einer hochdimensionalen Hyperfläche statt! Man muss die Gesamtheit der Übergangsraten W ij berechnen! Trennung der Zeitskalen t dwell >>t hop Kein Gedächtnis wenn t dwell >>t vibr Raten W ij hängen nur von i und j ab und nicht von i-1, i-2, usw. Markov-Kette! 22 11

12 R j t R i t D* 1 2d t 1 i1 R i t 2 25 Wähle ein Atom (zufällig) Wähle eine Hüpfrichtung (zufällig) 26 12

13 Wähle ein Atom (zufällig) Wähle eine Hüpfrichtung (zufällig) Berechneexp E b k B T 27 Wähle ein Atom (zufällig) Wähle eine Hüpfrichtung (zufällig) Berechne expe b k B T Min (1, expe b k B T ) Metropolis 28 13

14

15

16

17

18 Für jeden Übergang (Hüpfen) Berechne die Übergangsrate W i * exp E i k B T 37 Für jeden Übergang (Hüpfen) Berechne die Übergangsrate W i * exp E i k B T Wähle zufällig einen Übergang k mit Wahrscheinlichkeit W k 38 18

19 Für jeden Übergang (Hüpfen) Berechne die Übergangsrate W i * exp E i k B T Wähle zufällig einen Übergang k mit Wahrscheinlichkeit W k 1 = Zufallszahl 39 Für jeden Übergang (Hüpfen) Berechne die Übergangsrate W i * exp E i k B T Wähle zufällig einen Übergang k mit Wahrscheinlichkeit W k 1 = Zufallszahl hops k1 k W i 1 W W i W W i i1 i 0 i

20 .wähle zufällig einen Übergang k, mit Wahrscheinlichkeit W k 1 = Zufallszahl S k 1 k k 1 Wi W Wi S W 1 k W i i1 i0 i1 S 1 S 6 S 2 S 3 S 4 S 5 1 W 41 Zeit achdem Übergang k ausgewählt wurde, muss die Zeit aktualisiert werden 2 = Zufallszahl 1 t log 2 W Bemerkung: Zeitschritt hängt nur von der gesamten Übergangsrate W ab 42 20

21 Ziehen eines Zufallszahls t draw aus einer Exponentialverteilung (Poisson) tot pt () e W t Ziehe eine Zufallszahl r aus dem Intervall (0,1), und berechne ln r t W r Diese Zahl ist representativ einer Übergangszeit (escape time) mit Übergangsrate gegeben durch W tot 43 Kinetisches Monte-Carlo oder wo ist die physikalische Zeit? Typischer kmc Ablauf 1. Beginn bei t = 0 2. Berechne die Übergangsraten W ij 3. Ordne sie in einer linearen Reihe, wobei die Länge von jedem Segment proportional zu der entsprechenden Übergangsrate sein soll 4. Ziehe eine Zufallszahl aus ϵ [0, 1] und berechne 1 W 5. Wähle den Übergang wo fällt 1 W 6. Aktualisiere die Übergangsraten W ij 7. Ziehe eine Zufallszahl aus ϵ [0, 1] 8. ln2 Aktualisiere den Zeitschritt t = t + t,,mit t W 9. Gehe zu 2 1 W 44 21

22 Clusterbildung und Ostwaldreifung substrate fast deposition of atoms on a substrate Migrations of atoms at surfaces Cluster formation Cluster dissociation Cluster growth 45 sbegrenztes Wachstum (diffusion-limited aggregation DLA) Lichtenberg Figuren Lichtenberg-Figuren sind baum-, farn- oder sternförmige Muster, die als Resultat elektrischer Hochspannungsentladungen auf oder in isolierenden Materialien (Dielektrikum) entstehen. Kupfersulfat Cluster 46 22

23 sbegrenztes Wachstum: Atomare auf einer Oberfläche. eue Teilchen lagern sich mit größerer Wahrscheinlichkeit an den schon bestehenden Spitzen des Clusters an. Die dabei entstehenden stark verästelten Strukturen ( brownsche Bäume ) sind im Grenzfall unendlich kleiner Teilchen Fraktale. 47 Sintering in Amorphous Systems 48 23

24 Layer-by-Layer Thin Film deposition 49 Selbstassemblierung von Stäben (organische Ketten) in einem Lösungsmittel, das geladene Gruppen (Phosphate) enthält Einfaches Modell: ur Stick-Wahrscheinlichkeiten für die verschiedenen Komponenten definiert. Diese Simulationen sind wichtig um Bildungsmuster (pattern formation) beschreiben in Biosystemen zu 50 24

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet

Mehr

Monte-Carlo-Simulation

Monte-Carlo-Simulation Modellierung und Simulation Monte-Carlo-Simulation Universität Hamburg Johannes Schlundt 7. Januar 2013 Monte-Carlo-Simulation Johannes S. 1/31 Inhalt Motivation Geschichtliche Entwicklung Monte-Carlo-Simulation

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben? 5.1. Kinetische Gastheorie z.b: He-Gas : 3 10 Atome/cm diese wechselwirken über die elektrische Kraft: Materie besteht aus sehr vielen Atomen: gehorchen den Gesetzen der Mechanik Ziel: Verständnis der

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

Diana Lange. GENERATIVE GESTALTUNG Arten des Zufalls

Diana Lange. GENERATIVE GESTALTUNG Arten des Zufalls Diana Lange GENERATIVE GESTALTUNG Arten des Zufalls RANDOM int index = 0; while (index < 200) { float x = random(0, width); float y = random(0, height); float d = random(40, 100); ellipse(x, y, d, d);

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen

Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen rof. G. Kemnitz Institut für Informatik, Technische Universität Clausthal 14. April 2010 1/14 Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen Prof. G. Kemnitz Institut für Informatik, Technische

Mehr

FC1 - Monte Carlo Simulationen

FC1 - Monte Carlo Simulationen FC1 - Monte Carlo Simulationen 16. Oktober 2007 Universität Paderborn - Theoretische Physik Autor: Simone Sanna, Stephan Blankenburg Datum: 16. Oktober 2007 FC1 - Monte Carlo Simulationen 3 1 Das Monte

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011

Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011 Hauptseminar Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit Robert John 1 Inhalt Herkunft Stochastische Schätzung Monte-Carlo-Methode Varianzreduktion Zufallszahlen Anwendungsgebiete

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA

Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Monte-Carlo- Simulation Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Übersicht Einleitung Simulation mit Geant4 generierte Daten Zusammenfassung 2 Simulation Mathematische Modellierung

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

erster Hauptsatz der Thermodynamik,

erster Hauptsatz der Thermodynamik, 1.2 Erster Hautsatz der hermodynamik Wir betrachten ein thermodynamisches System, dem wir eine beliebige Wärmemenge δq zuführen, und an dem wir eine Arbeit da leisten wollen. Werden umgekehrt dem System

Mehr

Aufabe 7: Baum-Welch Algorithmus

Aufabe 7: Baum-Welch Algorithmus Effiziente Algorithmen VU Ausarbeitung Aufabe 7: Baum-Welch Algorithmus Florian Fest, Matr. Nr.0125496 baskit@generationfun.at Claudia Hermann, Matr. Nr.0125532 e0125532@stud4.tuwien.ac.at Matteo Savio,

Mehr

Kapitel 3: Etwas Informationstheorie

Kapitel 3: Etwas Informationstheorie Stefan Lucks 3: Informationstheorie 28 orlesung Kryptographie (SS06) Kapitel 3: Etwas Informationstheorie Komplexitätstheoretische Sicherheit: Der schnellste Algorithmus, K zu knacken erfordert mindestens

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Dolga Olena Otto-von-Guericke-Universität Fakultät für Informatik Seminar-Das virtuelle Labor Inhaltsverzeichnis Überblick Geschichte Anwendung -Bereiche -Spezielle Methoden Mathematische

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

Was können Schüler anhand von Primzahltests über Mathematik lernen?

Was können Schüler anhand von Primzahltests über Mathematik lernen? Was können Schüler anhand von Primzahltests über Mathematik lernen? Innermathematisches Vernetzen von Zahlentheorie und Wahrscheinlichkeitsrechnung Katharina Klembalski Humboldt-Universität Berlin 20.

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

A Lösungen zu Einführungsaufgaben zu QueueTraffic

A Lösungen zu Einführungsaufgaben zu QueueTraffic A Lösungen zu Einführungsaufgaben zu QueueTraffic 1. Selber Phasen einstellen a) Wo im Alltag: Baustelle, vor einem Zebrastreifen, Unfall... 2. Ankunftsrate und Verteilungen a) poissonverteilt: b) konstant:

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Informatik Aufgaben. 1. Erstelle ein Programm zur Berechnung der Summe der Zahlen von 1 bis n, z.b. n = 100.

Informatik Aufgaben. 1. Erstelle ein Programm zur Berechnung der Summe der Zahlen von 1 bis n, z.b. n = 100. Informatik Aufgaben 1. Erstelle ein Programm zur Berechnung der Summe der Zahlen von 1 bis n, z.b. n = 100. 2. Erstelle ein Programm, das die ersten 20 (z.b.) ungeraden Zahlen 1, 3, 5,... ausgibt und deren

Mehr

Modellbildungssysteme: Pädagogische und didaktische Ziele

Modellbildungssysteme: Pädagogische und didaktische Ziele Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

11. Rent-Seeking 117

11. Rent-Seeking 117 117 Definitionen Gewinnstreben: Vorhandene Ressourcen werden so eingesetzt, dass Einkommen entsteht und die Differenz aus Einkommen und Kosten maximal wird. Rent-Seeking: Vorhandene Ressourcen werden eingesetzt,

Mehr

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 09

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 09 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Lösung. Prüfungsteil 1: Aufgabe 1

Lösung. Prüfungsteil 1: Aufgabe 1 Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)

Mehr

1.3 Ein paar Standardaufgaben

1.3 Ein paar Standardaufgaben 1.3 Ein paar Standardaufgaben 15 1.3 Ein paar Standardaufgaben Einerseits betrachten wir eine formale und weitgehend abgeschlossene mathematische Theorie. Sie bildet einen Rahmen, in dem man angewandte

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 2010

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 2010 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Fibonacci Retracements und Extensions im Trading

Fibonacci Retracements und Extensions im Trading Fibonacci Retracements und Extensions im Trading Einführung Im 12. Jahrhundert wurde von dem italienischem Mathematiker Leonardo da Pisa die Fibonacci Zahlenfolge entdeckt. Diese Zahlenreihe bestimmt ein

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

(1) Problemstellung. (2) Kalman Filter

(1) Problemstellung. (2) Kalman Filter Inhaltsverzeichnis (1) Problemstellung...2 (2) Kalman Filter...2 Funktionsweise... 2 Gleichungen im mehrdimensionalen Fall...3 Schätzung des Systemzustands...3 Vermuteter Schätzfehler... 3 Aktualisierung

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de 1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht

Mehr

Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz

Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Andreas Aigner email: andreasa@sbox.tu-graz.ac.at. Januar 00 Inhaltsverzeichnis Theorie. Stromfunktion...........................

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Mechanismus Design Auktionen

Mechanismus Design Auktionen Mechanismus Design Auktionen Universität Hohenheim Alexander Staus Mechanismus Design Universität Hohenheim 1/25 Welche Auktionen kennen Sie? traditionelle Auktionshäuser ebay Immobilien Fahrräder Blumen

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich.

Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Kapitel 1 Animation (Belebung) Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Anwendungen findet die

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von

Mehr

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7.

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. Semestralklausur zur Vorlesung Web Mining Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. 2004 Name: Vorname: Matrikelnummer: Fachrichtung: Punkte: (1).... (2)....

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

Jedes Umfeld hat seinen perfekten Antrieb. Individuelle Antriebslösungen für Windenergieanlagen.

Jedes Umfeld hat seinen perfekten Antrieb. Individuelle Antriebslösungen für Windenergieanlagen. Jedes Umfeld hat seinen perfekten Antrieb. Individuelle Antriebslösungen für Windenergieanlagen. 1 2 3 3 4 1 2 3 4 Generator Elektromechanische Bremse Azimutantriebe Rotorlock-Antrieb (im Bild nicht sichtbar)

Mehr

Wir arbeiten mit Zufallszahlen

Wir arbeiten mit Zufallszahlen Abb. 1: Bei Kartenspielen müssen zu Beginn die Karten zufällig ausgeteilt werden. Wir arbeiten mit Zufallszahlen Jedesmal wenn ein neues Patience-Spiel gestartet wird, muss das Computerprogramm die Karten

Mehr

Bewertung von Barriere Optionen im CRR-Modell

Bewertung von Barriere Optionen im CRR-Modell Bewertung von Barriere Optionen im CRR-Modell Seminararbeit von Susanna Wankmueller. April 00 Barriere Optionen sind eine Sonderform von Optionen und gehören zu den exotischen Optionen. Sie dienen dazu,

Mehr

Multicheck Schülerumfrage 2013

Multicheck Schülerumfrage 2013 Multicheck Schülerumfrage 2013 Die gemeinsame Studie von Multicheck und Forschungsinstitut gfs-zürich Sonderauswertung ICT Berufsbildung Schweiz Auswertung der Fragen der ICT Berufsbildung Schweiz Wir

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse Kursthemen 12. Sitzung Folie I - 12-1 Spezielle Verteilungen: Warteprozesse Spezielle Verteilungen: Warteprozesse A) Die Geometrische Verteilung (Folien 2 bis 7) A) Die Geometrische Verteilung (Folien

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Inhaltsverzeichnis Physikalisches Praktikum Versuchsbericht M4 Stoßgesetze in einer Dimension Dozent: Prof. Dr. Hans-Ilja Rückmann email: irueckm@uni-bremen.de http: // www. praktikum. physik. uni-bremen.

Mehr

Elektrische Energie, Arbeit und Leistung

Elektrische Energie, Arbeit und Leistung Elektrische Energie, Arbeit und Leistung Wenn in einem Draht ein elektrischer Strom fließt, so erwärmt er sich. Diese Wärme kann so groß sein, dass der Draht sogar schmilzt. Aus der Thermodynamik wissen

Mehr

Vektoren mit GeoGebra

Vektoren mit GeoGebra Vektoren mit GeoGebra Eine Kurzanleitung mit Beispielen Markus Hohenwarter, 2005 In GeoGebra kann mit Vektoren und Punkten konstruiert und gerechnet werden. Diese Kurzanleitung gibt einen Überblick über

Mehr