2D-Abbildungen mit wxmaxima

Größe: px
Ab Seite anzeigen:

Download "2D-Abbildungen mit wxmaxima"

Transkript

1 Kapitel 4 D-Abbildungen mit wxmaxima 4. Eingabe von Matrizen Die Matrix zur Abbildungsvorschrift Abb 4 aus Kapitel. erzeugen wir so: abb4 : matrix ( [ /, ], [, / ] ; Das Ergebnis ist die Matrix: Abb 4 = (4. Hier wird der Variablen abb4 eine Matrix zugewiesen. dies geschieht mit der Funktion matr i x(. Als Argument werden die Funktion die Werte der Matrix zeilenweise in eckigen Klammern übergeben. Die einzelnen werte in den Klammern und die eckigen Klammern werden durch Kommata getrennt. 4. Punkte Das Haus könnten wir auch gleich als Matrix eingeben, wir wählen aber einen anderen Weg und definieren die Punkte einzeln: pa : [, ] ; pb : [ 7, ] ; pc : [ 7, 5 ] ; pd: [ 6, 7 / 3 ] ; \ \ pe : [ 6, 7 ] ; pf : [ 5, 7 ] ; pg: [ 5, 9 / 3 ] ; ph: [ 4, 7 ] ; pi : [, 5 ] ; 4.3 eine Liste zum Zeichnen wxmaxima/gnuplot sind in der Lage, eine Liste von Punkten als Vorlage zum Zeichnen zu benutzen: 4-

2 Diff M/Inf (ht Perspektiven und Matrizen Also erzeugen wir eine Liste mit: z L i s t : [ pa, pb, pc,pd, pe, pf,pg,ph, pi, pa ] ; und lassen mit plotd ( [ [ discrete, f l o a t ( z L i s t ] ] ; Abbildung 4.: D-Haus -.Versuch das Haus zeichnen. Das Ergebnis ( Abb. 4.ist enttäuschend. Das zu zeichnende Objekt nutzt die Zeichenfläche optimal aus - die hat aber hier zur Folge, dass nur das Dach erkennbar ist. Auch hier helfen wir uns mit einem Kunstgriff: z l i s t _ a x : [ [ 0, 0 ], [ 0, 0 ], [ 0, 0 ], [ 0, 0 ], [ 0, 0 ] ] ; legt eine zweite Liste zum Zeichen eines Koordinaten-Kreuzes fest. Der Befehl plotd ( [ [ discrete, f l o a t ( z L i s t ], [ discrete, f l o a t ( z l i s t _ a x ] ] ; liefert schon ein besseres Ergebnis ( Abb die vier Matrizen zum D-Haus Jetzt wird es Zeit die vier Matrizen aus. zu definieren: abb : matrix ( [, 0 ], [ 0, ] ; abb : matrix ( [, 0 ], [ 0, ] ; 3 abb3 : matrix ( [ /, 0 ], [ 0, ] ; 4 abb4 : matrix ( [ /, ], [, / ] ; Zur Definition der Matrix des Hauses benutzen wir die schon festgelegten Punkte: 4-

3 Diff M/Inf (ht Perspektiven und Matrizen Abbildung 4.: D-Haus -.Versuch haus : matrix (pa, pb, pc,pd, pe, pf,pg,ph, pi ; 4.5 die Bild-Matrix und die Zeichnung Die Bild-Matrix wird wieder mit der bekannten Matrizen-Multiplikation berechnet - allerdings nimmt uns wxmaxima die Arbeit ab: bild : haus. abb ; Beachte! Als Multiplikationszeichen für die Matrizenmultiplikation dient der Punkt! Das Ergebnis ist die Matrix der Bildpunkte. Um wieder eine Liste zum Zeichnen zu bekommen, müssen wir diese Matrix aber zerlegen und die Punkte erzeugen. Dazu dient der Befehl pa : part ( bild, Die erste Zeile der Matrix wird extrahiert und dem Objekt pa zugewiesen. (Ich habe den Originalpunkt mit pa, das dazugehörige Bild mit pa bezeichnet - du siehst daran, dass Maxima Groß-Klein-Schreibung ernst nimmt! Also: \ l abel { eq : punkte } pa : part ( bild, ; pb : part ( bild, ; pc : part ( bild, 3 ; 3 pd : part ( bild, 4 ; pe : part ( bild, 5 ; pf : part ( bild, 6 ; 4 pg : part ( bild, 7 ; ph : part ( bild, 8 ; pi : part ( bild, 9 ; und blist : [ pa, pb, pc, pd, pe, pf, pg, ph, pi, pa ] ; 4-3

4 Diff M/Inf (ht Perspektiven und Matrizen Dann können wir mit: plotd ( [ [ discrete, f l o a t ( z l i s t _ a x ], [ discrete, f l o a t ( z L i s t ], [ discrete, f l o a t ( blist ] ] ; Achsen und die beiden Bilder (Abb. 4.3 zeichnen. Abbildung 4.3: D-Haus - 3.Versuch 4.5. Aufgabe Erzeuge ein Bild mit dem Original-Haus und den vier Bildern! Noch ein Hinweis: Sobald Du blist erzeugt hast, brauchst du die Matrix Bild und die Einzel-Punkte nicht mehr. Du kannst also mit Pfeiltaste-hoch die Befehle (4.5 und wieder in die Eingabe holen, bearbeiten und nutzen Aufgabe Erfinde weitere Abbildungsmatrizen! Untersuchen, was sie bewirken! Versuche Schemata zu erkennen! Aufgabe :Das Haus des Nikolaus Zeichne das Haus des Nikolaus. und seine Bilder mit den o.a. Abbildungen! Versuche dazu die gespeicherte Sitzung so zu verändern, dass dies klappt! 4.6 Erste Klassifizierungen Nachdem wir einiges an Vorarbeit geleistet haben, sollst du nun weitere Abbildungsmatrizen untersuchen. Ich habe die Beispiele so gewählt, dass immer vier zusammengehören. 4-4

5 Diff M/Inf (ht Perspektiven und Matrizen Abbildung 4.4: D-Haus - alle 4 Abbildungen Nimm bitte wieder das Haus mit Schornstein als Vorlage. Da das Haus des Nikolaus achsensymmetrisch ist, ist es hier oft nicht geeignet. ( 0 A = 0 ( 0 A = 0 ( 0 A 3 = 0 ( 0 A 4 = 0 (4. Abbildung 4.5: Zu Aufgabe 4.6 (A Was bemerkst du? Wenn du dir nicht sicher bist, kannst kannst du deine Vermutung testen, indem du dir weitere geeignete Beispiele erzeugst. 4-5

6 Diff M/Inf (ht Perspektiven und Matrizen Ein Tipp: Falls du durch die Überlagerung zu wenig erkennst, solltest du eventuell die Werte geringfügig ändern, z.b. die ( in 0.9 ( oder.. Und schon die nächsten Beispiele: ( 0 B = 0 ( 0 B = 0 ( 0 B 3 = 0 ( 0 B 4 = 0 (4.3 Abbildung 4.6: Zu Aufgabe 4.6 (B Die ersten beiden Abbildungen zu erkennen, dürfte einfach sein. Die dritte ist nur unwesentlich schwieriger. Um die vierte Abbildung zu analysieren, solltest du ihre Matrix mit der dritten vergleichen. Trotzdem wird es nicht ganz einfach sein erste Klassifizierungen Du wirst sicher bemerkt haben, dass die vier Matrizen A, A, A 3 und A 4 zu zentrischen Streckungen gehören. Zentrum der Streckung ist der Ursprung des Koordinatensystems. Dies ist auch leicht nachvollziehbar, wenn man die Abbildungsgleichungen ausschreibt : ( a 0 ( ( 0 a x y ax ay 4-6

7 Diff M/Inf (ht Perspektiven und Matrizen Für die Koordinaten der Bildpunktes P(x y gilt damit : x = ax y = ay Die Matrizen B und B gehören zu Spiegelungen an den Koordinatenachsen. Wenn wir wie im obigen Beispiel vorgehen, erhalten wir für B : x = x y = y und für B : x = x y = y Die zur Matrix B 3 gehörende Abbildung vertauscht die x und y-koordinaten; es ist also wirklich die Spiegelung an der Winkelhalbierenden des I. und III. Quadranten: x = y y = x Die gleiche Rechnung, auf die Matrix B 4 angewandt, liefert: x = y y = x Hier ist wahrscheinlich doch der Blick auf das Bild des Hauses aufschlussreicher: Es wurde an der Winkelhalbierenden des II: und IV. Quadranten ( der Geraden mit der Gleichung y = -x gespiegelt. Die nahe liegende Frage, welche Matrix zu einer beliebigen Geraden-Spiegelung gehört heben wir uns für später auf Drehungen Dies Kapitel (4.6. ist hier kein Unterrichtsstoff. Für unseren Kurs kannst du einfach das Ergebnis (siehe Gleichung 4.4 nehmen. Sinus- und Cosinuswerte bestimmst Du dann mit dem Taschenrechner. Bei den nächsten Abbildungen solltest du zuerst überlegen, ob dir die krummen Zahlen aus der Trigonometrie bekannt vorkommen: ( 0 C = 0 ( C = 3 3 ( 0 C = 0 C = ( 4-7

8 Diff M/Inf (ht Perspektiven und Matrizen Abbildung 4.7: zu Kap.4.6. (C Die Abbildungen sind eindeutig Drehungen, und zwar um 90,70,30 und 45 Wir werden nun versuchen, die zu einer beliebigen Drehung um den Ursprung gehörende Matrix zu ermitteln. Dazu überlegen wir uns, wohin die Drehung um den Winkel ϕ einen Punkt P(x y abbildet. Zuerst ermitteln wir die Bilder der Punkte P x ( 0 und P y (0. Der nebenstehenden Zeichnung entnimmt man: P x (cosϕ si nϕ P y ( si nϕ cosϕ (4 Da die Drehung an einem Beispiel besser nachvollziehbar ist, erläutere ich nun die Drehung des Punktes P(3 um den Winkel ϕ. In der Zeichnung wird das Viereck mit den Eckpunkten O(0 0 und P(3 um den Ursprung gedreht (die obere Seite ist nicht gezeichnet. Wir haben gerade die Drehung der Punkte P x ( 0 und P y (0 behandelt. Um die Drehung der Punkte P 3 (3 0 und P (0 zu berechnen, müssen wir die obigen Ergebnisse nur mir 3 bzw. multiplizieren. Beachtet man nun noch, dass die beiden kurzen Seiten des Rechtecks parallel und gleichlang sind, können wir die Koordinaten des Bildpunktes P ermitteln: P(3 P (3cosϕ si nϕ 3si nϕ + cosϕ 4-8

9 Diff M/Inf (ht Perspektiven und Matrizen Abbildung 4.8: dreh (5 Auf dem gleichen Weg kann man das Bild bei der Drehung eine beliebigen Punktes P(x y bestimmen : P(x y P (xcosϕ y si nϕ xsi nϕ + ycosϕ (6 Damit erhalten wir die Matrix die die Drehung mit dem Winkel ϕ um den Ursprung als Drehpunkt beschreibt: ( cosϕ si nϕ D ϕ = si nϕ cosϕ (

10 Diff M/Inf (ht Perspektiven und Matrizen Abbildung 4.9: xxx Spiegeln an (Ursprungs-Geraden Dies Kapitel (4.6.3 ist hier kein Unterrichtsstoff. Für unseren Kurs kannst du einfach das Ergebnis (siehe Gleichung 4. nehmen. Ich habe in diesem Abschnitt nicht alle Rechenschritte vollständig aufgeschrieben. Inder mathematischen Literatur gibt es die (gefürchtete Floskel Eine einfache Rechnung zeigt. In solchen Fällen empfiehlt es sich fast immer die betreffenden Schritte selbst nach zurechnen Du kannst leicht überprüfen, dass die Matrix ( 3 spg = (4.5 die Spiegelung an der Geraden mit der Gleichung g : y = x beschreibt. Wir werden nun herleiten, welche Matrix zu der Spiegelung an einer beliebigen Ursprungs-geraden gehört. Wir wissen schon, dass es ausreicht, die Bilder der Einheitspunkte zu bestimmen. Es sei P x (x y das Bild des Punktes P( 0. Er liegt einerseits auf der Geraden h x durch P, die zur Geraden g senkrecht ist.außerdem sind die Abstände von P und P x zur Geraden g gleich. Aufgrund des Kongruenz-Satzes SWS sind auch die Strecken OP und OP x gleichlang. 4-0

11 Diff M/Inf (ht Perspektiven und Matrizen Die Gerade h x hat (da sie zu g senkrecht ist die Steigung m den Punkt P( 0. Damit ergibt sich die Gleichung und läuft durch h x : y = m x + m (4.6 somit gilt für den Punkt P x : P x (x m x + m = P x(x ( x (4.7 m Weiter ist OP x = = x + m m x + m x (4.8 Diese einfache quadratische Gleichung lösen wir jetzt: quadratische Ergänzung: x = ( x m + m + + x ( m + m x = m m (4.9 x x m + = m m + (4.0 (4. = m m + + (m + = m4 + (m + = m 4 (m + (4. m m + = m + m + = x = einsetzen in Gleichung (4.6 liefert: m + m m + = m m + (4.3 y = 0 y = m m m + + m = m + m (4.4 Die Lösung y = 0 liefert den Punkt P. Mit der quadratischen Gleichung bestimmen wir schließlich alle Punkte, die von (0 0 den Abstand haben und auf der Geraden h x liegen. Ähnlich ermittelt man mit Hilfe der Geraden h y : y = m x + (4.5 4-

12 Diff M/Inf (ht Perspektiven und Matrizen die Koordinaten des Bildpunktes P y zum Punkt P(0 : wir setzen in Gleichung (4.5 ein und erhalten: = x + x m x m (4.6 0 = x ( + m x m = 0 (4.7 ( m + x = 0 x m = (4.8 m x = 0 x = m + m (4.9 y = y = m m + m + = m m + Damit haben die beiden Bildpunkte die Koordinaten ( m P x m + m ( m + m undp y + m m + m (4.0 (4. und wir erhalten damit die Matrix zur Spiegelung an der Geraden,mit der Gleichung y=mx : spg m = ( m m +m +m m m +m +m (4. Weiter oben in diesem Abschnitt (4.5 hatten wir bereits die Spiegelung an der Geraden mit der Gleichung y = x behandelt. Unser jetziges Ergebnis stimmt damit überein. Auch die Matrizen B, B, B 3 und B 4 (Kap:4.6. beschreiben Spiegelungen an den Ursprungs-geraden. Der Fall der Spiegelung an der y-achse (Matrix B ist wegen der unendlichen Steigung hier nicht handhabbar. Die anderen Beispiele ( m=0, m=, m=- zeigen ebenfalls Übereinstimmung. Versuche bitte noch einige weitere Spiegelungen mit wxmaxima darzustellen, um unser Ergebnis zu testen. Im folgenden Bild werden noch einmal die Spiegelungen an den Ursprungsgeraden mit den Steigungen m=0, m=, m= und m=- und zusätzlich die Spiegel- Achse mit der Steigung m= dargestellt. (4.3 4-

13 Diff M/Inf (ht Perspektiven und Matrizen D D-Abbildungen (Übersicht Matrix ( 0 0 ( z 0 0 z ( 0 0 ( 0 0 ( 0 0 ( 0 0 ( m m +m +m m m +m +m ( 0 0 ( 0 0 ( cosϕ si nϕ si nϕ cosϕ ( ( ( a 0 0 b Abbildungsgleichungen x = x y = y x = zx y = z y x = x y = y x = x y = y x = y y = x x = y y = x x = m x + m y +m +m y m = x m y +m +m x = x y = y x = y y = x x = x cosϕ y si nϕ y = x si nϕ + y cosϕ x = x y = x = 0 y = y x = ax y = by geometrische Wirkung der Matrix identische Abbildung zentrische Streckung mit dem Faktor z Spiegelung an der x-achse Spiegelung an der y-achse Spiegelung an der Winkelhalbierenden des I./III. Quadranten Spiegelung an der Winkelhalbierenden des II./IV. Quadranten Spiegelung an der Geraden mit der Gleichung y=mx Punktspiegelung am Ursprung Drehung um den Ursprung Drehung mit dem Winkel ϕ um den Ursprung Orthogonale Projektion auf die x-achse Orthogonale Projektion auf die y-achse Neue Skalierung der Achsen (a,b 0

14 Diff M/Inf (ht Perspektiven und Matrizen Aufgaben 4.7. Ein Hammer wird durch die Punkte pa:[,]; pb:[7,]; pc:[7,3/]; pd:[8,/]; pe:[9,3/]; pf:[9,4]; pg:[7,4]; ph:[7,3]; pi:[,3]; definiert. Bilde diesen Hammer durch die Matrizen ab. abb bis abb4 (Kap. 4.4 A bis A 4 (Gl. 4. B bis B 4 (Gl. 4.3 C bis C 4 (Kap Weise nach, dass eine lineare Abbildung im zweidimensionalen meist schon vollständig festgelegt wurde, wenn das Bild ( von zwei Punkten bekannt ist. Bilde a b dazu den Punkt P(x y durch die Matrix ab. c d Bestimme die Matrix der Abbildung, die folgende Bilder erzeugt: P( 3 P ( 6 P( 4 P (

3D-Darstellungen mit Maxima

3D-Darstellungen mit Maxima Kapitel 5 3D-Darstellungen mit Maxima 5.1 noch einmal: Kavalier-Perspektive 5.1.1 Würfel Wir haben schon festgestellt, dass die Matrix einer Abbildung schon durch die Bilder der drei Einheitspunkte (1

Mehr

Kapitel 1. Koordinaten im Raum. 1.1 Schrägbilder - Kavalier-Perspektive Koordinaten

Kapitel 1. Koordinaten im Raum. 1.1 Schrägbilder - Kavalier-Perspektive Koordinaten Kapitel Koordinaten im Raum Schrägbilder - Kavalier-Perspektive Koordinaten Im Raum benötigt man drei Angaben, um die Lage eines Punktes zu beschreiben So beschreiben Geographen durch N5 0"E07 38 7"H5m

Mehr

6.1 Welche Matrix gehört zu der Abbildung?

6.1 Welche Matrix gehört zu der Abbildung? Kapitel 6 Gleichungssysteme Bisher haben wir nur für spezielle Fälle (Drehungen, Spiegelungen ) die zu einer bekannten Abbildung gehörende Matrix gesucht. Da uns die Abbildung in allen Einzelheiten bekannt

Mehr

Perspektiven und Matrizen

Perspektiven und Matrizen Perspektiven und Matrizen Friedrich Hattendorf Vorbemerkung Dieses Skript entsteht parallel zum Unterricht im Kurs Mathematik/Informatik des Differenzierungsbereiches der Klasse 10 am Lüdenscheid Dieses

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra Hinweis: Alle Grafiken dieser Lösung finden Sie auch als GeoGebra-Dateien zum Ausprobieren. 1. Verschiebung: Zeichnen Sie einen beliebigen Vektor zwischen 2 Punkten. a) Verschieben Sie den Graphen von

Mehr

4 Lineare Abbildungen

4 Lineare Abbildungen 17. November 2008 34 4 Lineare Abbildungen 4.1 Lineare Abbildung: Eine Funktion f : R n R m heißt lineare Abbildung von R n nach R m, wenn für alle x 1, x 2 und alle α R gilt f(αx 1 ) = αf(x 1 ) f(x 1

Mehr

( ) sind. Für einen einzelnen. ( ) berechnet werden: ( )

( ) sind. Für einen einzelnen. ( ) berechnet werden: ( ) 23 4 Abbildungen von Funktionsgraphen Der Graph zu einer gegebenen Funktion f ist die Menge aller ( ) sind. Für einen einzelnen Punkte, deren Koordinaten ; f () Punkt des Graphen gibt man einen Wert aus

Mehr

Lineare (affine) Abbildung

Lineare (affine) Abbildung Lineare affine Abbildung A e 2 b a e Wir überziehen die Ebene neben dem vertrauten Quadrat-Gitternetz, das durch die Basisvektoren e und e 2 festgelegt ist, mit einem Parallelogramm-Gitternetz, dessen

Mehr

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra Hinweis: Alle Grafiken dieser Lösung finden Sie auch als GeoGebra-Dateien zum Ausprobieren. 1. Verschiebung: Zeichnen Sie einen beliebigen Vektor zwischen 2 Punkten. a) Verschieben Sie den Graphen von

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNSCHE UNVERSTÄT MÜNCHEN Zentrum Mathematik PROF DRDR JÜRGEN RCHTER-GEBERT, VANESSA KRUMMECK, MCHAEL PRÄHOFER Höhere Mathematik für nformatiker Wintersemester 23/24 Aufgabenblatt 2 23 Januar 24 Präsenzaufgaben

Mehr

1.5 Kongruenz und Ähnlichkeit

1.5 Kongruenz und Ähnlichkeit 19 1.5 Kongruenz und Ähnlichkeit Definition Sei A n der affine Standardraum zum Vektorraum R n. Eine Abbildung F : A n A n heißt Isometrie, falls d(f (X), F (Y )) = d(x, Y ) für alle X, Y A n gilt. Es

Mehr

IV. Affine Abbildungen

IV. Affine Abbildungen IV. Affine IV. Abbildungen Affine Abbildungen 2 22 IV. Af ne Abbildungen. Kongruenzabbildungen Bei einer Kongruenzabbildung wird jedem Punkt P( der zweidimensionalen Ebene R 2 in eindeutiger Weise ein

Mehr

Die Parabel als Ortskurve

Die Parabel als Ortskurve Die Parabel als Ortskurve Autor: Andreas Nüesch, Gymnasium Oberwil/BL, Schweiz Idee: Gegeben ist eine Konstruktionsvorschrift für einen Punkt P im Koordinatensystem. 1. Konstruieren der Ortskurve mit HIlfe

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) = Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation

Mehr

3 Abbildungen von Funktionsgraphen

3 Abbildungen von Funktionsgraphen 32 3 Abbildungen von Funktionsgraphen In Kapitel 1 dieses Workshops haben wir uns mit der Transformation von geometrischen Figuren im Achsenkreuz beschäftigt: mit Verschiebungen, Spiegelungen, Achsenstreckungen

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

1.1 Geradenspiegelungen

1.1 Geradenspiegelungen 1.1 Geradenspiegelungen 1.1.1 Eigenschaften Definition 1.1 Eine Abbildung der Ebene ist eine Vorschrift, die jedem Punkt P der Ebene einen Bildpunkt P zuordnet. Beispiel 1.1 Zentrische Streckung mit Zentrum

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 5. Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Aufgabe 5: Analytische Geometrie (WTR)

Aufgabe 5: Analytische Geometrie (WTR) Abitur Mathematik: Nordrhein-Westfalen 203 Aufgabe 5 a) () PARALLELOGRAMMEIGENSCHAFTEN NACHWEISEN Zu zeigen ist, dass die gegenüberliegenden Seiten parallel sind, d. h. und. Zunächst ist 0 0 2 0, 3 2 0

Mehr

3.3. Drehungen und Spiegelungen

3.3. Drehungen und Spiegelungen 3.3. Drehungen und Spiegelungen Drehungen und Spiegelungen in der Ebene Die Multiplikation einer komplexen Zahl z = x + i y (aufgefaßt als Punkt oder Ortsvektor der Ebene) mit der Zahl w = e ( ) = i φ

Mehr

3 Abbildungen in der Ebene

3 Abbildungen in der Ebene 18 3 Abbildungen in der Ebene Wir behandeln in diesem Kapitel Abbildungen von Punkten der Ebene auf Punkte. Ziel dieser Betrachtung ist, Funktionsgraphen mit diesen Abbildungen (punktweise) abzubilden

Mehr

Fit in Mathe. Musterlösung. September Klassenstufe 10 Kongruenzabbildungen

Fit in Mathe. Musterlösung. September Klassenstufe 10 Kongruenzabbildungen Thema Kongruenzabbildungen Wie sieht das nächste Bild aus?? Die szahl ist natürlich 5, denn die rechte Hälfte obiger symmetrischer Figuren sind die Zahlen von 1 bis 4, danach folgt 5, also das Buchstabenpaar

Mehr

3 Abbildungen von Funktionsgraphen

3 Abbildungen von Funktionsgraphen 27 3 Abbildungen von Funktionsgraphen In Kapitel 1 dieses Workshops haben wir uns mit der Transformation von geometrischen Figuren im Achsenkreuz beschäftigt: mit Verschiebungen, Spiegelungen, Achsenstreckungen

Mehr

Teil 3 Abbildungen in der Ebene

Teil 3 Abbildungen in der Ebene Vektor-Geometrie für die Mittelstufe (Sekundarstufe 1) Teil 3 Abbildungen in der Ebene Für Realschulen in Bayern! (Prüfungsstoff!) und für moderne Geometrie-Kurse am Gymnasium Auch in der berstufe zur

Mehr

Abgleich mit dem Kerncurriculum 2016 für die gymnasiale Oberstufe Stoffverteilungsplan Mathematik Leistungskurs

Abgleich mit dem Kerncurriculum 2016 für die gymnasiale Oberstufe Stoffverteilungsplan Mathematik Leistungskurs Q2.1 Lineare Gleichungssysteme (LGS) Einführung und Lösungsverfahren: Beispiele für LGS (auch über- und unterbestimmte), Darstellen von LGS mithilfe von Koeffizientenmatrizen, systematisches Lösen von

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Dynamische Geometrie

Dynamische Geometrie Dynamische Geometrie 1) Die Mittelsenkrechten, die Seitenhalbierenden, die Höhen und die Winkelhalbierenden eines beliebigen Dreiecks schneiden sich jeweils in einem Punkt. a) Untersuchen Sie die Lage

Mehr

Abbildungen im Koordinatensystem

Abbildungen im Koordinatensystem Klasse 0 I. Drehe die Gerade g mit y = x um O(0/0) mit α = 5. Bestimme die Gleichung der Bildgeraden g. Berechne das Maß des Winkels zwischen g und g.. Die Gerade g mit y = x + 5 soll um O(0/0) so gedreht

Mehr

Abgleich mit dem Kerncurriculum 2016 für die gymnasiale Oberstufe Stoffverteilungsplan Mathematik Grundkurs

Abgleich mit dem Kerncurriculum 2016 für die gymnasiale Oberstufe Stoffverteilungsplan Mathematik Grundkurs Lambacher Schweizer Q2.1 Lineare Gleichungssysteme (LGS) Einführung und Lösungsverfahren: Beispiele für LGS (auch über- und unterbestimmte), Darstellen von LGS mithilfe von Koeffizientenmatrizen, systematisches

Mehr

8. Übungsblatt zur Mathematik I für Maschinenbau

8. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 8. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS / 6..-.. Aufgabe G (Matrixinversion mit Gauß-Algorithmus

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

1.4 Steigung und Steigungsdreieck einer linearen Funktion

1.4 Steigung und Steigungsdreieck einer linearen Funktion Werner Zeyen 1. Auflage, 2013 ISBN: 978-3-86249-250-3 Mathe mit GeoGebra 7/8 Dreiecke, Vierecke, Lineare Funktionen und Statistik Arbeitsheft mit CD RS-MA-GEGE2 1.4 Steigung und Steigungsdreieck einer

Mehr

Ermitteln Sie das Verhältnis der Inhalte der beiden Teilflächen. 5 BE. A_gA1 (zur Musteraufgabe A1_2) Beispielaufgaben S. 4

Ermitteln Sie das Verhältnis der Inhalte der beiden Teilflächen. 5 BE. A_gA1 (zur Musteraufgabe A1_2) Beispielaufgaben S. 4 A1_ Musteraufgaben S. 5 Das Rechteck ABCD mit A 1 0, B 4 0, C 4 und 1 Funktion f mit IR 0 f x x x, x in zwei Teilflächen zerlegt. D wird durch den Graphen der Ermitteln Sie das Verhältnis der Inhalte der

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Definition, Abbildungsmatrix, Spiegelung, Projektion

Definition, Abbildungsmatrix, Spiegelung, Projektion Bau und Gestaltung, Mathematik 2, T. Borer Aufgaben 5-2/ Aufgaben 5 Lineare Abbildungen Definition, Abbildungsmatrix, Spiegelung, Projektion Lernziele - beurteilen können, ob eine gegebene Abbildung linear

Mehr

t = 1 x- und y-werte sind direkt proportional zueinander mit dem Prortionalitätsfaktor m = y. x

t = 1 x- und y-werte sind direkt proportional zueinander mit dem Prortionalitätsfaktor m = y. x Lineare Funktionen und lineare Gleichungen ================================================================== Lineare Funktionen Eine Funktion f : x y = mx + t, D = D max, mit zwei Zahlen m und t heißt

Mehr

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen Das rechtwinklige (kartesische) Koordinatensystem Funktionen Funktion: Eine Funktion ist eine eindeutige Zuordnung. Jedem x D wird genau eine reelle Zahl zugeordnet. Schreibweise: Funktion: f: x f (x)

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $ Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =

Mehr

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 )

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 ) IX. Normalformen ================================================================== 9.1 Die Normalenform einer Geradengleichung im 2-dimensionalen Punktraum ----------------------------------------------------------------------------------------------------------------

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

Übung (5) 2x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0

Übung (5) 2x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0 Übung (5) 1. Lösen Sie folgendes lineare Gleichungssystem - sagen Sie zuvor, wie die Lösungsmenge aussehen sollte bzw. geometrisch zu interpretieren wäre: x y +u v =1 x u + v =0 x +y u +v =0. Sagen Sie

Mehr

Eigentlich löst man n Gleichungen mit n Unbekannten (die. normalerweise eindeutig lösbar sind) am besten mit Hilfe der

Eigentlich löst man n Gleichungen mit n Unbekannten (die. normalerweise eindeutig lösbar sind) am besten mit Hilfe der Eigentlich löst man n Gleichungen mit n Unbekannten (die normalerweise eindeutig lösbar sind) am besten mit Hilfe der Determinantenmethode (die aber in den Schulen nicht mehr gelernt wird) bzw. am allerschnellsten

Mehr

x 1 Da y nur in der 2.Potenz vorkommt, ist die Kurve achsensymmetrisch zur x-achse.

x 1 Da y nur in der 2.Potenz vorkommt, ist die Kurve achsensymmetrisch zur x-achse. .6. Klausur Kurs Ma Mathematik Lk Lösung Gegeben ist die Gleichung x y y x. [] Verschaffen Sie sich einen Überblick über den Kurvenverlauf, indem Sie die Kurve auf Asymptoten und waagrechte sowie senkrechte

Mehr

MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte

MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte (c) A( 1 1 ) geht. 1 MATHEMATIK G10 GERADEN (1) Bestimme die Gleichung der Geraden durch die beiden Punkte P und Q: a) P ( 5), Q(4 7) b) P (3 11), Q(3, 1) c) P (3 5), Q( 1 7) d) P ( 0), Q(0 3) e) P (3

Mehr

Vorkurs Mathematik (Allgemein) Übungsaufgaben

Vorkurs Mathematik (Allgemein) Übungsaufgaben Justus-Liebig-Universität Gießen Fachbereich 07 Mathematisches Institut Vorkurs Mathematik (Allgemein) Übungsaufgaben PD Dr. Elena Berdysheva Aufgabe. a) Schreiben Sie die folgenden periodischen Dezimalzahlen

Mehr

Hans Delfs. Übungen zu Mathematik III für Medieninformatik

Hans Delfs. Übungen zu Mathematik III für Medieninformatik Hans Delfs Übungen zu Mathematik III für Medieninformatik 1 RÄUMLICHE DARSTELLUNGEN VON OBJEKTEN 1 1 Räumliche Darstellungen von Objekten Der Einheitswürfel ist der achsenparallele Würfel in A 3, der von

Mehr

3 Analytische Geometrie der Kongruenzabbildungen

3 Analytische Geometrie der Kongruenzabbildungen 3 Analytische Geometrie der Kongruenzabbildungen 4 3 Analytische Geometrie der Kongruenzabbildungen 3. Grundlagen, Begriffe, Schreibweisen 3.. Achsenkreuz Die Achsen heißen in dieser Darstellung x und

Mehr

4.1. Aufgaben zu linearen Funktionen

4.1. Aufgaben zu linearen Funktionen .. Aufgaben zu linearen Funktionen Aufgabe : Koordinatensystem a) Gib die Koordinaten der Punkte P - P 8 in dem rechts abgebildeten Koordinatensystem an. b) Markiere die Punkte A( ); B( ); C( ); D( );

Mehr

Kursstufe K

Kursstufe K Kursstufe K 6..6 Schreiben Sie die Ergebnisse bitte kurz unter die jeweiligen Aufgaben, lösen Sie die Aufgaben auf einem separaten Blatt. Aufgabe : Berechnen Sie das Integral Lösungsvorschlag : exp(3x

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Mathematik Semester 3 / Arbeitsblatt f (x) = x x 3 4 x. 5 x 3 20 x. x 2 1

Mathematik Semester 3 / Arbeitsblatt f (x) = x x 3 4 x. 5 x 3 20 x. x 2 1 9.2 Aufgaben Aufgabe 16.39 aus dem Buch. 1. f (x) = x4 + 1 x 3 + x 4. f (x) = x4 1 2 x 3 8 x 2. f (x) = x3 + 1 x 3 4 x 5. f (x) = x5 + 1 5 x 3 20 x 3. f (x) = 4 x2 x 2 + 1 6. f (x) = x2 2 x 2 7. f (x)

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester 9 Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 7 Vektoren Aufgabe 7 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Mögliche Lösung. Ebenen im Haus

Mögliche Lösung. Ebenen im Haus Lineare Algebra und Analytische Geometrie XX Ebenen im Raum Ebenen im Haus Ermitteln Sie die Koordinaten aller bezeichneten Punkte. Erstellen Sie für die Dachflächen E und E jeweils eine Ebenengleichung

Mehr

Transformation - 3. Für "übliche" Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche

Transformation - 3. Für übliche Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche Transformation - 3 Wiederholung und spezielle Angaben im Zusammenhang mit Kreis-Berechnungen 1. Problemstellung Im Zusammenhang mit der Berechnung von Schnittflächen kann es sinnvoll sein, die Berechnung

Mehr

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:

Mehr

Unterrichtsreihe zur Parabel

Unterrichtsreihe zur Parabel Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Modulabschlussklausur

Modulabschlussklausur Sommersemester 2010 Dr. Reimund Albers Modul EM1: Mathematisches Denken in Arithmetik und Geometrie Modulabschlussklausur Name: Mat.Nr.: Schulschwerpunkt: Grund- oder Sekundarbitte ankreuzen Aufgabe 1

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Die Gruppe der affinen Abbildungen A

Die Gruppe der affinen Abbildungen A H. Burkhardt, Institut für Informatik, Universität Freiburg ME-I, Kap. 2b 1 Die Gruppe der affinen Abbildungen A Die Gruppe der affinen Abbildungen entsteht durch Wahl einer beliebigen regulären Matrix

Mehr

2.6. Aufgaben zu Kongruenzabbildungen

2.6. Aufgaben zu Kongruenzabbildungen Aufgabe.6. Aufgaben zu Kongruenzabbildungen Gegeben sind die Dreiecke ABC mit A(0 ), B( 0) und C(3 0) sowie A B C mit A ( ), B (3 ) und C ( ). Beschreibe die Abbildung, die das Dreieck ABC auf das Dreieck

Mehr

} Symmetrieachse von A und B.

} Symmetrieachse von A und B. 5 Symmetrieachsen Seite 1 von 6 5 Symmetrieachsen Gleicher Abstand von zwei Punkten Betrachtet man zwei fest vorgegebene Punkte A und B, drängt sich im Zusammenhang mit dem Abstandsbegriff eine Frage auf,

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c

Mehr

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems Transformation - 1 1. Allgemeines 2. Zwei durch eine Translation verknüpfte gleichartige Basissysteme 3. Zwei durch eine Translation verknüpfte verschiedenartige Basissysteme (noch gleiche Orientierung)

Mehr

Lösungen zum Arbeitsblatt: y = mx + b Alles klar???

Lösungen zum Arbeitsblatt: y = mx + b Alles klar??? I. Zeichnen von Funktionen a) Wertetabelle x -4-3 - -1 0 1 3 4 y =,5x -10-7,5-5 -,5 0,5 5 7,5 10 y = - x,7 1,3 0,7 0-0,7-1,3 - -,7 3 y = x 1,5-9,5-7,5-5,5-3,5-1,5 0,5,5 4,5 6,5 y = - 1 x + 4 3,5 3,5 1,5

Mehr

Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017

Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017 Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017 Übersicht: Q2.3 im Raum Q2.4 Matrizen zur Beschreibung von Q2.6 Vertiefung der Analytischen Geometrie (nur Grundkurs) verbindlich:

Mehr

mentor Lernhilfe: Mathematik 7. Klasse Baumann

mentor Lernhilfe: Mathematik 7. Klasse Baumann mentor Lernhilfen mentor Lernhilfe: Mathematik 7. Klasse Geometrie: Achsen- und Punktspiegelung, Drehung, Verschiebung, Winkelgesetze von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 7. Klasse

Mehr

Mathematik I für MB/ME

Mathematik I für MB/ME Mathematik I für MB/ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 25/26 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2

Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2 Seite http://www.realschulrep.de/ Seite 2 Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2 Aufgabe B2. Der Punkt A 2 2 ist gemeinsamer Eckpunkt von Rauten A B n C n D n. Die Eckpunkte B n 3 liegen auf

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

Lineare Funktionen und Funktionenscharen

Lineare Funktionen und Funktionenscharen . Erkläre folgende Begriffe: a) Ursprungsgerade b) Steigung bzw. Steigungsdreieck c) Steigende u. fallende Gerade d) Geradenbüschel, Parallelenschar e) y- Achsenabschnitt f) Lineare Funktion g) Normalform

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n Kapitel Vektorräume Josef Leydold Mathematik für VW WS 07/8 Vektorräume / 4 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit x R n =. : x i R, i n x n und wird als n-dimensionaler

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Kapitel 3 Vektorräume Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit R n = x 1. x n : x i R, 1 i n und

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung http://www.fersch.de Klemens Fersch. September 8 Inhaltsverzeichnis 6 6. Vektorrechung in der Ebene.............................................. 6.. Vektor - Abstand - Steigung - Mittelpunkt.................................

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover Dozent: Prof. Dr. Wolfgang Ebeling Übungsleiter: Dr. Detlef Wille Klausur zur Vorlesung Lineare Algebra B im SS an der Universität Hannover Joachim Selke 9. Februar Lineare Algebra B SS Klausur zur Vorlesung

Mehr

Herbstsemester a b 1. c d. e 0 f B = (iii) e = 0 (iv) ) 2 + ( 1. Das Skalarprodukt des ersten und zweiten Spaltenvektors muss null ergeben:

Herbstsemester a b 1. c d. e 0 f B = (iii) e = 0 (iv) ) 2 + ( 1. Das Skalarprodukt des ersten und zweiten Spaltenvektors muss null ergeben: Dr V Gradinaru D Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5 Multiple Choice: Online abzugeben Gegeben sei die orthogonale Matrix

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Übersicht zu den Textinhalten

Übersicht zu den Textinhalten Abbildungen Übersicht zu den Textinhalten Zum Thema Abbildungen gibt es mehrere Texte. Hier wird aufgelistet, wo man was findet. Datei Nr. 11050 Stand 3. Oktober 2013 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK

Mehr

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen Kapitel 2 Lineare Algebra II 21 Lineare Abbildungen Die mit der Vektorraumstruktur verträglichen Abbildungen zwischen Vektorräumen werden als linear bezeichnet Genauer definiert man: 21 Definition Eine

Mehr

Gruppenarbeit zu geometrischen Abbildungen Gruppe A: Verschiebungen

Gruppenarbeit zu geometrischen Abbildungen Gruppe A: Verschiebungen Gruppe A: Verschiebungen Eine Abbildung heißt Verschiebung v r, wenn für jeden Punkt P und seinen Bildpunkt P jeweils gilt: r OP' = OP + v. Eine Figur heißt verschiebungssymmetrisch, wenn sie durch eine

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen Lineare Algebra I 4 Tutorium Lineare Abbildungen und Matrizen Fachbereich Mathematik WS / Prof Dr Kollross 7 Februar Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Bewegungen im ) Als Bewegung

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr