8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik

Größe: px
Ab Seite anzeigen:

Download "8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik"

Transkript

1 Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik und nicht ganz einfach zu verstehen, weshalb hier nur auf ein paar wenige Punkte eingegangen werden soll. 8.. Beispiel Noten Das in Kapitel. eingeführte Beispiel der Fachnoten wird hier verwendet, um die drei Begriffe Mittelwert Modalwert Median aufzuzeigen. Die Begriffe werden im einzelnen nachträglich noch besprochen. Median Mittelwert Modalwert Abbildung : Statistische Werte einer Messreihe Das Beispiel zeigt einen Mittelwert von 4.4. Aus Sicht der Lehrperson ein genügender Schnitt, der keinen Anlass geben würde, Unterricht oder Prüfungen zu überdenken. Betrachtet man aber den Median, so beträgt dieser., d.h. dass die eine Hälfte aller Noten. oder tiefer ist und die andere Hälft über. liegt. Aus dieser Sicht kann festgestellt werden, dass die Klasse als ganzes den Stoff nicht verstanden hat oder zumindest das Wissen in den Prüfungen nicht umsetzen konnte. Betrachtet man den Modalwert den Wert der am häufigsten vorkommt so ist dies die Note 6.0 mit Nennungen. Dieser Sachverhalt erklärt auch, warum der Durchschnitt relativ hoch ist im Verhältnis zum Median. Die Klasse ist zweigeteilt in eine gute und eine schwache Hälfte. René Probst Jan

2 Theorie Modul Mittelwerte Der Mittelwert ist einer der häufigsten statistischen Werte, die verwendet werden. Er sagt aus, welcher Wert rein mathematisch sich im Mittel aus allen Werten ergeben würde. Der Begriff Mittelwert ist dabei ungenau, da in der Mathematik verschiedene Mittelwerte existieren, eigentlich müsste man vom arithmetischen Mittel sprechen. Es werden alle Werte der Messreihe addiert und durch die Anzahl der Werte dividiert. (Bei Excel ist dies die Funktion MITTELWERT) Dieses Mass wird bei technischen Messvorgängen erhoben. Zusätzlich ist es aber auch wichtig zu wissen, wie präzise denn dieser Mittelwert ist. Man spricht in diesem Fall von der Standardabweichung. Sie ist ein Mass, das aussagt, wie zuverlässig der Mittelwert erreicht wird. Unter Zuverlässig versteht man, dass 6% aller Messungen innerhalb eines Bereichs um den Mittelwert sind, der durch die Standardabweichung gegeben ist. (Bei Excel ist dies die Funktion STABW) Beispiel : Mittelwert und Standardabweichung einer Messreihe mit 0 Messpunkten Verteilung 8 Mittelwert =. 6 Standardabweichung =.2 4 Reihe Abbildung 20 : Messreihe mit Mittelwert und Standardabweichung Häufig genügt aber zur Charakterisierung einer statistischen Masse die Darstellung der Häufigkeitsverteilung nicht. Man zieht oft zusätzliche Mittelwerte heran, die eine Vorstellung über die mittleren Werte einer Verteilung geben sollen. Diese Mittelwerte werden nach zwei verschiedenen Kriterien charakterisiert: 8-2 Modul 00 V.2b.doc Abteilung Informatik/Technik

3 Informationsbestände analysieren Statistik. Lagetypische Mittelwerte 2. Rechentypische Mittelwerte Die lagetypischen Mittelwerte werden von dem in der Mitte der Verteilung liegenden Wert bestimmt. Es sind dies der häufigste Wert (Modus) und der zentrale Wert (Median). Bei der Berechnung der rechentypischen Mittelwerte wird jeder einzelne Wert der Verteilung berücksichtigt. Rechentypische Mittelwerte sind:. Arithmetisches Mittel 2. Geometrisches Mittel. Harmonisches Mittel (wird in diesem Zusammenhang nicht erklärt) René Probst Jan

4 Theorie Modul Modus 8 Der Modus X Mo ist der, mit der grössten Häufigkeit auftretende Wert einer statistischen Variablen. Er wird auch "dichtester Wert" genannt (Wert mit der größten Dichte). Definition des Modus: X Mo = x i mit f i = max x i ist dabei der i-te Messwert, während f i die Funktion ist, die das Maximum aller i Messwerte sucht. Der Modus kann stets dem Säulendiagramm oder dem Histogramm entnommen werden. (Bei Excel ist dies die Funktion MODALWERT) Verteilung 8 Modalwert = Reihe Abbildung 2 : Modalwert aus Säulendiagramm Das Beispiel zeigt, dass der häufigste Wert 2 in der Messreihe achtmal vorkommt 8 auch Modalwert genannt 8-4 Modul 00 V.2b.doc Abteilung Informatik/Technik

5 Informationsbestände analysieren Statistik 8.4. Median Der Median oder Zentralwert ist jener Wert einer statistischen Variablen, welcher die der Größe nach geordneten Werte in genau zwei Hälften teilt. Es liegen rechts und links des Medians je 0% der Größe nach geordneten Werte. Für die Ermittlung des Medians (xme) sind die Zähl- oder Messergebnisse immer zuerst in eine geordnete Reihe zu bringen. Wenn z.b. Daten vorliegen, sind sie zur Medianbestimmung in folgende Reihenfolge zu bringen: xl <= x2 x2 <= x x <= x4 x4 <= x x <= x6 x6 <= x d.h. die Werte sind aufsteigend zu ordnen, wobei so x4 zum Median oder Zentralwert wird, da links und rechts von ihm 0% der Beobachtungen in diesem Fall sind es Messwerte - liegen. Der Median kann nie bei einem Extremwert einer Verteilung liegen und wird. auch nicht durch die Größe von Extremwerten in seiner Lage beeinflusst. Für die Bestimmung des Medians ist zu unterscheiden, ob die Zahl der vorliegenden Daten, die wir allgemein mit n bezeichnen, gerade oder ungerade ist. Medianbestimmung Fall : ungerade: Fall 2: gerade: x Me = x(n+)/2 x Me = (x(n/2 + x(n+2)/2)/2 Bei ungerader Anzahl an Beobachtungen ist also der Median jener Wert der statistischen Variablen, für den der laufende Index i = (n+ ) : 2 ist Optimale Entfernung Durch den Median kann man jenen Wert bestimmen, von dem aus die Summe der Entfernungen (absolut genommen) zu den anderen Werten der Häufigkeitsverteilung ein Minimum ergibt: xi xme = Min. Will eine Zulieferfirma ein Zentrallager errichten, von dem aus verschiedene, entlang einer Straße liegende, Betriebe beliefert werden sollen, so gibt der Median jenen René Probst Jan

6 Theorie Modul-00 Standort an, von dem aus die Summe der Distanzen zu den Betrieben den kleinsten Wert annimmt. Liegen die Betriebe z.b. bei Kilometer 20,20,260,40 und 60, so ist die kleinste absolute Abstandssumme erreicht, wenn das Auslieferungslager bei km 260, also dem Median, errichtet wird. Im bisher gezeigten Beispiel liegen die Messwerte zwischen und 26. In diesem Fall liegt der Median zwischen und 4. (Bei Excel ist dies die Funktion MEDIAN) Verteilung 8 Median = Reihe Abbildung 22 : Median einer Messreihe 8-6 Modul 00 V.2b.doc Abteilung Informatik/Technik

7 Informationsbestände analysieren Statistik Kapitel 8 : Eigene Notizen René Probst Jan

8 Theorie Modul-00 2 Modul 00 V.2b.doc Abteilung Informatik/Technik

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43 1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 1 45, 39, 44, 48, 42, 39, 40, 31 2 35, 31, 46, 35, 31, 42, 51,

Mehr

benötigen. Die Zeit wird dabei in Minuten angegeben und in einem Boxplot-Diagramm veranschaulicht.

benötigen. Die Zeit wird dabei in Minuten angegeben und in einem Boxplot-Diagramm veranschaulicht. , D 1 Kreuze die richtige Aussage an und stelle die anderen Aussagen richtig. A Das arithmetische Mittel kennzeichnet den mittleren Wert einer geordneten Datenliste. B Die Varianz erhält man, wenn man

Mehr

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit

Mehr

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung?

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 86 8. Lageparameter Leitfragen 1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 2) Was ist der Unterschied zwischen Parametern der Lage und der Streuung?

Mehr

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober 1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte D. Horstmann: Oktober 2014 4 Graphische Darstellung von Daten und unterschiedliche Mittelwerte Eine Umfrage nach der Körpergröße

Mehr

Harry Potter und die Kammer des Schreckens : m, s, g, a, a, a, sg, g, a, g, m, m, g, g, sg, s, a, a, a, g, a, a, g, g, a

Harry Potter und die Kammer des Schreckens : m, s, g, a, a, a, sg, g, a, g, m, m, g, g, sg, s, a, a, a, g, a, a, g, g, a Aufgabe 1: Harry Potters Filmkritik 25 Schüler und Schülerinnen der Klasse 9 sollten die ersten beiden Harry-Potter- Filme mit ausgezeichnet (a), sehr gut (sg), gut (g), mittelprächtig (m), schlecht (s)

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man:

Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: a) Die absoluten Häufigkeit: Sie gibt an, wie oft ein Variablenwert vorkommt b) Die relative Häufigkeit: Sie erhält

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

13,86. Schritt 4: Berechnung des Quartilsabstandes. Unteres Quartil! #5,5.

13,86. Schritt 4: Berechnung des Quartilsabstandes. Unteres Quartil! #5,5. Lösung Aufgabe A1 Detaillierter Lösungsweg: Schritt 1: Prüfung, ob die gegebene Messreihe sortiert ist, In diesem Beispiel ist dies der Fall und wir haben insgesamt 22 Messungen. Schritt 2: Berechnen des

Mehr

Zusammenfassung Mathematik AHS Oberstufe. Lukas Prokop

Zusammenfassung Mathematik AHS Oberstufe. Lukas Prokop Zusammenfassung Mathematik AHS Oberstufe Lukas Prokop 2. Mai 2009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Geometrische Figuren............................. 3 1.2 Zahlensysteme.................................

Mehr

Anwendung A_0801_Quantile_Minimum_Maximum

Anwendung A_0801_Quantile_Minimum_Maximum 8. Lageparameter 63 8.3 Interaktive EXCEL-Anwendungen (CD-ROM) Anwendung A_080_Quantile_Minimum_Maimum Die Anwendung besteht aus einem Tabellenblatt Simulation : In der Simulation wird aus einer Urliste

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 07052013 Mittelwerte und Lagemaße II 1 Anwendung und Berechnung

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl

Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl Höhere Mathematik 2 (Weihenstephan) 1. Die Gemeinde Fronhausen besteht aus drei Ortsteilen: Neudorf, Wulling und Marking.

Mehr

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben?

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben? Thema: Mittelwert einer Häufigkeitsverteilung Beispiel: Im Mittel werden deutsche Männer 75,1 Jahre alt; sie essen im Mittel pro Jahr 71 kg Kartoffel(-produkte) und trinken im Mittel pro Tag 0.35 l Bier.

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Beschreibende Statistik

Beschreibende Statistik Beschreibende Aufgaben der beschreibenden : Erhebung von Daten Auswertung von Daten Darstellung von Daten Erhebung von Daten Bei der Erhebung von Daten geht es um die Erfassung von Merkmalen (Variablen)

Mehr

Mittelwert und Standardabweichung

Mittelwert und Standardabweichung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mittelwert und Standardabweichung Überblick Mittelwert Standardabweichung Weitere Maße

Mehr

Aufbau des Experiments Reihung von Versuchsitems und Distraktoren

Aufbau des Experiments Reihung von Versuchsitems und Distraktoren Reihung von Versuchsitems und Distraktoren Reihung von Versuchsitems und Distraktoren Hinweis D1 (Verhältnis Distraktoren:Versuchsitems): Es sollten Distraktoren eingebaut werden, im Falle von Sprecherbefragungen

Mehr

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Prof. Dr. Günter Hellmig Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Erstes Kapitel Die Feingliederung des ersten Kapitels, welches sich mit einigen

Mehr

Fehler- und Ausgleichsrechnung

Fehler- und Ausgleichsrechnung Fehler- und Ausgleichsrechnung Daniel Gerth Daniel Gerth (JKU) Fehler- und Ausgleichsrechnung 1 / 12 Überblick Fehler- und Ausgleichsrechnung Dieses Kapitel erklärt: Wie man Ausgleichsrechnung betreibt

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung

Mehr

Mathematische Statistik. Zur Notation

Mathematische Statistik. Zur Notation Mathematische Statistik dient dazu, anhand von Stichproben Informationen zu gewinnen. Während die Wahrscheinlichkeitsrechnung Prognosen über das Eintreten zufälliger (zukünftiger) Ereignisse macht, werden

Mehr

Maße der zentralen Tendenz

Maße der zentralen Tendenz UStatistische Kennwerte Sagen uns tabellarische und graphische Darstellungen etwas über die Verteilung der einzelnen Werte einer Stichprobe, so handelt es sich bei statistischen Kennwerten um eine Kennzahl,

Mehr

2. Beschreibung von eindimensionalen (univariaten) Stichproben

2. Beschreibung von eindimensionalen (univariaten) Stichproben 1 2. Beschreibung von eindimensionalen (univariaten) Stichproben Bei eindimensionalen (univariaten) Daten wird nur ein Merkmal untersucht. Der Fall von zwei- oder mehrdimensionalen Daten wird im nächsten

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

Dr. Barbara Lindemann. Fragebogen. Kolloquium zur Externen Praxisphase. Dr. Barbara Lindemann 1

Dr. Barbara Lindemann. Fragebogen. Kolloquium zur Externen Praxisphase. Dr. Barbara Lindemann 1 Dr. Barbara Lindemann Fragebogen Kolloquium zur Externen Praxisphase Dr. Barbara Lindemann 1 Überblick 1. Gütekriterien quantitativer Forschungen 2. Fragebogenkonstruktion 3. Statistische Datenanalyse

Mehr

Expertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung)

Expertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung) Epertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung) Im Folgenden wird mit Hilfe des Programms EXEL, Version 007, der Firma Microsoft gearbeitet. Die meisten

Mehr

Berechnung von W für die Elementarereignisse einer Zufallsgröße

Berechnung von W für die Elementarereignisse einer Zufallsgröße R. Albers, M. Yanik Skript zur Vorlesung Stochastik (lementarmathematik) 5. Zufallsvariablen Bei Zufallsvariablen geht es darum, ein xperiment durchzuführen und dem entstandenen rgebnis eine Zahl zuzuordnen.

Mehr

3.5 Beschreibende Statistik. Inhaltsverzeichnis

3.5 Beschreibende Statistik. Inhaltsverzeichnis 3.5 Beschreibende Statistik Inhaltsverzeichnis 1 beschreibende Statistik 26.02.2009 Theorie und Übungen 2 1 Die Darstellung von Daten 1.1 Das Kreisdiagramm Wir beginnen mit einem Beispiel, welches uns

Mehr

6. a) 12 3 = 36 b) 14 = Median, weil die Datenmenge eine ungerade Zahl ist. c) 7, 14, 15 oder 6, 14, 16 oder 5; 14, 17.

6. a) 12 3 = 36 b) 14 = Median, weil die Datenmenge eine ungerade Zahl ist. c) 7, 14, 15 oder 6, 14, 16 oder 5; 14, 17. 127 187 189 4. a) siehe c) b) Arithmetische Mittel x Teilnehmerzahl = gelaufene Gesamtstrecke 2596,4 23 = 59 096,2 m 59,1 km. Der Median ist der mittlere Wert (Zentralwert) aller Daten. Er beträgt 2400

Mehr

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken...

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken... I. Deskriptive Statistik 1 1. Einführung 3 1.1. Die Grundgesamtheit......................... 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................ 10

Mehr

Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen

Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen Ziel: Charakterisierung der Verteilung einer Variablen. Je nach Variablentyp geschieht dies durch Häufigkeitsauszählung und Modus (Nominale

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8 Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Univ.-Prof. Dr. Georg Wydra

Univ.-Prof. Dr. Georg Wydra Univ.-Prof. Dr. Georg Wydra Methoden zur Auswertung von Untersuchungen 1 SKALENTYPEN UND VARIABLEN 2 ZUR BEDEUTUNG DER STATISTIK IN DER FORSCHUNG 3 STATISTIK ALS VERFAHREN ZUR PRÜFUNG VON HYPOTHESEN 4

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen. Wir besprechen hier die zwei in Kapitel 1.1 thematisierten

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

Ulrich Rohland. Statistik. Erläuterung grundlegender Begriffe und Verfahren

Ulrich Rohland. Statistik. Erläuterung grundlegender Begriffe und Verfahren Ulrich Rohland Statistik Erläuterung grundlegender Begriffe und Verfahren Berichte aus der Sportwissenschaft Ulrich Rohland Statistik Erläuterung grundlegender Begriffe und Verfahren. Shaker Verlag Aachen

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Korrelation, Regression und Signifikanz

Korrelation, Regression und Signifikanz Professur Forschungsmethodik und Evaluation in der Psychologie Übung Methodenlehre I, und Daten einlesen in SPSS Datei Textdaten lesen... https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://d15cw65ipcts

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

Statistik I für Humanund Sozialwissenschaften

Statistik I für Humanund Sozialwissenschaften Statistik I für Humanund Sozialwissenschaften 1 Übung Lösungsvorschlag Gruppenübung G 1 Auf einer Touristeninsel in der Karibik wurden in den letzten beiden Juliwochen morgens zur gleichen Zeit die folgenden

Mehr

Statistik Klausur. 1. a) Wie erfolgt die Erkennung systematische Fehler im Labor? b) Wie erfolgt die Erkennung zufälliger Fehler im Labor?

Statistik Klausur. 1. a) Wie erfolgt die Erkennung systematische Fehler im Labor? b) Wie erfolgt die Erkennung zufälliger Fehler im Labor? Statistik Klausur 1. a) Wie erfolgt die Erkennung systematische Fehler im Labor? b) Wie erfolgt die Erkennung zufälliger Fehler im Labor? a) durch Richtigkeitskontrolle b) durch Präzisionskontrolle 2.

Mehr

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter, hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Ziele 2. Lageparameter 3.

Mehr

Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5

Mehr

Einführung in die computergestützte Datenanalyse

Einführung in die computergestützte Datenanalyse Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

Beschreibende Statistik Eindimensionale Daten

Beschreibende Statistik Eindimensionale Daten Mathematik II für Biologen 16. April 2015 Prolog Geordnete Stichprobe Rang Maße für die mittlere Lage der Daten Robustheit Quantile Maße für die Streuung der Daten Erkennung potentieller Eindimensionales

Mehr

Exemplar für Prüfer/innen

Exemplar für Prüfer/innen Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2015 Mathematik Kompensationsprüfung Angabe für Prüfer/innen Hinweise zur Kompensationsprüfung

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt

Mehr

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale)

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) PROC MEAS zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) Allgemeine Form: PROC MEAS DATA=name Optionen ; VAR variablenliste ; CLASS vergleichsvariable ; Beispiel und Beschreibung der

Mehr

Grundlagen der Statistik I

Grundlagen der Statistik I NWB-Studienbücher Wirtschaftswissenschaften Grundlagen der Statistik I Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 10. Auflage Verlag Neue Wirtschafts-Briefe Herne/Berlin Inhaltsverzeichnis

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

Deskriptive Statistik & grafische Darstellung

Deskriptive Statistik & grafische Darstellung Deskriptive Statistik & grafische Darstellung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Deskriptive

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

KGS-Stoffverteilungsplan RS-Zweig Mathematik 7 (Grundlage Kerncurricula) Lehrbuch: Schnittpunkt 7, Klett

KGS-Stoffverteilungsplan RS-Zweig Mathematik 7 (Grundlage Kerncurricula) Lehrbuch: Schnittpunkt 7, Klett erläutern die Notwendigkeit der Zahlbereichserweiterung auf die rationalen Zahlen anhand von Beispielen besitzen Vorstellungen negativer Zahlen als Abstraktion verschiedener Sachverhalte des täglichen

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Maßzahlen für zentrale Tendenz, Streuung und andere Eigenschaften von Verteilungen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

5. Statistische Auswertung

5. Statistische Auswertung 5. Statistische Auswertung 5.1 Varianzanalyse Die Daten der vorliegenden Versuchsreihe zeigen eine links steile, rechts schiefe Verteilung. Es wird untersucht, ob sich die Meßdaten durch Transformation

Mehr

Univariate Kennwerte mit SPSS

Univariate Kennwerte mit SPSS Univariate Kennwerte mit SPSS In diesem Paper wird beschrieben, wie eindimensionale Tabellen und Kennwerte mit SPSS erzeugt werden. Eine Herleitung der Kennwerte und eine inhaltliche Interpretation der

Mehr

Stoffverteilungsplan Mathematik Klasse 7 RS,

Stoffverteilungsplan Mathematik Klasse 7 RS, Stoffverteilungsplan Mathematik Klasse 7 RS, 04.12.2006 Inhalte Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Methoden 1 Rationale Zahlen Unter Null 1 Ganze Zahlen 2 Rationale Zalen 3 Anordnung

Mehr

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen 6.10.2016 Hochschule Esslingen Übungsblatt 2 Statistik Stichworte: arithmetischer Mittelwert, empirische Varianz, empirische Standardabweichung, empirischer

Mehr

Leseprobe. Michael Sachs. Wahrscheinlichkeitsrechnung und Statistik. für Ingenieurstudenten an Fachhochschulen. ISBN (Buch):

Leseprobe. Michael Sachs. Wahrscheinlichkeitsrechnung und Statistik. für Ingenieurstudenten an Fachhochschulen. ISBN (Buch): Leseprobe Michael Sachs Wahrscheinlichkeitsrechnung und Statistik für Ingenieurstudenten an Fachhochschulen ISBN (Buch): 978-3-446-43797-5 ISBN (E-Book): 978-3-446-43732-6 Weitere Informationen oder Bestellungen

Mehr

STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich)

STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) WS 07/08-1 STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) Nur die erlernbaren Fakten, keine Hintergrundinfos über empirische Forschung etc. (und ich übernehme keine Garantie) Bei der Auswertung von

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Vergleichsarbeit Chemie Schuljahrgang 8 im Schuljahr 2007/2008 Ergebnisse im Überblick

Vergleichsarbeit Chemie Schuljahrgang 8 im Schuljahr 2007/2008 Ergebnisse im Überblick Vergleichsarbeit Chemie Schuljahrgang 8 im Schuljahr 2007/2008 Ergebnisse im Überblick Dr. M. Pötter, LISA Halle 0. Vorbemerkungen Mit der vielschichtigen Auswertung der Vergleichsarbeit Chemie Schuljahrgang

Mehr

Hydrologie und Flussgebietsmanagement

Hydrologie und Flussgebietsmanagement Hydrologie und Flussgebietsmanagement o.univ.prof. DI Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Gliederung der Vorlesung Statistische Grundlagen Etremwertstatistik

Mehr

Wahrscheinlichkeitsrechnung und Stochastik

Wahrscheinlichkeitsrechnung und Stochastik Wahrscheinlichkeitsrechnung und Stochastik 2-stündige Vorlesung für den Bachelor-Studiengang Angewandte Informatik Vorläufige Version Gerhard Freiling und Hans-Bernd Knoop Inhalt Inhalt..........................................................................

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Physikalische Übungen für Pharmazeuten

Physikalische Übungen für Pharmazeuten Helmholtz-Institut für Strahlen- und Kernphysik Seminar Physikalische Übungen für Pharmazeuten Ch. Wendel Max Becker Karsten Koop Dr. Christoph Wendel Übersicht Inhalt des Seminars Praktikum - Vorbereitung

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Wolf-Gert Matthäus, Jörg Schulze. Statistik mit Excel. Beschreibende Statistik für jedermann. 3./ überarbeitete und erweiterte Auflage.

Wolf-Gert Matthäus, Jörg Schulze. Statistik mit Excel. Beschreibende Statistik für jedermann. 3./ überarbeitete und erweiterte Auflage. Wolf-Gert Matthäus, Jörg Schulze Statistik mit Excel Beschreibende Statistik für jedermann 3./ überarbeitete und erweiterte Auflage Teubner Inhaltsverzeichnis Einleitung 11 1 Grundlagen 17 1.1 Statistische

Mehr

Rtattiematische Zenchem) und Abkürzungen 11

Rtattiematische Zenchem) und Abkürzungen 11 Inhaltsverzeichnis Rtattiematische Zenchem) und Abkürzungen 11 1 Grundbegriffe der Mengenlehre 13 1.1 Mengen und Elemente von Mengen 13 1.2 Beziehungen zwischen Mengen 16 1.2.1 Gleiche und gleichmächtige

Mehr

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum Einführungsseminar S1 Elemente der Fehlerrechnung Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum Literatur Wolfgang Kamke Der Umgang mit experimentellen Daten,

Mehr

Statistische Auswertung von Meß- und Versuchsdaten mit Taschenrechner und Tischcomputer

Statistische Auswertung von Meß- und Versuchsdaten mit Taschenrechner und Tischcomputer Siegfried Noack Statistische Auswertung von Meß- und Versuchsdaten mit Taschenrechner und Tischcomputer Anleitungen und Beispiele aus dem Laborbereich W DE G Walter de Gruyter Berlin New York 1980 Inhaltsverzeichnis

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Bauingenieure und Geodäten Übung 6: statistische Auswertung ungleichgenauer Messungen Milo Hirsch Hendrik Hellmers Florian Schill Institut für Geodäsie Fachbereich 13 Inhaltsverzeichnis

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr

Arbeitsblatt: Erstellen von Boxplots. Aufgabe: Frisörbesuch (Lernstandserhebung NRW 2008)

Arbeitsblatt: Erstellen von Boxplots. Aufgabe: Frisörbesuch (Lernstandserhebung NRW 2008) Arbeitsblatt: Erstellen von Boxplots Aufgabe: Frisörbesuch (Lernstandserhebung NRW 2008) Aufgabe: Klimazonen (Hinweis: Löst die Aufgabe arbeitsteilig in Kleingruppen.) Aus vier en in Europa liegen Durchschnittstemperaturen

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

1 Grundprinzipien statistischer Schlußweisen

1 Grundprinzipien statistischer Schlußweisen Grundprinzipien statistischer Schlußweisen - - Grundprinzipien statistischer Schlußweisen Für die Analyse zufallsbehafteter Eingabegrößen und Leistungsparameter in diskreten Systemen durch Computersimulation

Mehr

So lügt man mit Statistik

So lügt man mit Statistik So lügt man mit Statistik Anita Maas 06. August 2004 Was ist Statistik? Statistik ist die Gesamtheit aller Methoden, die für die Untersuchung einer Vielzahl von Einzeltatsachen verwendet werden. Sie ist

Mehr

Die zweite Form ist die Profillinie, in der die Mittelwerte aller Skalafragen in einer Übersicht übereinander dargestellt werden.

Die zweite Form ist die Profillinie, in der die Mittelwerte aller Skalafragen in einer Übersicht übereinander dargestellt werden. PDF-REPORT INTERPRETIEREN. ABER WIE? Immer wieder kamen in der Vergangenheit Fragen zu den PDF-Reports auf, die von Eva- Sys automatisch erstellt werden. Insbesondere betrafen diese Rückfragen die Grafiken,

Mehr

Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops

Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops Auswertung: Irina Zamfirescu Auftraggeber: Mag. Klaus Brehm Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops Fragestellung: Wirkt sich

Mehr