2. Repräsentationen von Graphen in Computern

Größe: px
Ab Seite anzeigen:

Download "2. Repräsentationen von Graphen in Computern"

Transkript

1 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen zwei Knoten Eigenwertprobleme und lineare Differenzengleichungen Anwendung von Differenzengleichungen für Graphen Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 69

2 Adjazenzmatrix Definition 2.1. Gegeben sei ein Graph G = (V,E) mit V = {v 1,...,v n },n 1. Dann kann E in Form einer n n-matrix repräsentiert werden. Es sei { 1 falls {vi,v a ij = j } E 0 sonst A G = (a ij ) i,j {1,...,n} heißt die Adjazenzmatrix (adjacency matrix) von G. Bemerkung 2.1. A G ist symmetrisch und a ii = 0,1 i n. Analog kann die Adjazenzmatrix für die Darstellung gerichteter Graphen verwendet werden. Sie ist dann i.d.r. nicht symmetrisch. Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 70

3 Adjazenzmatrix (2) v 3 G = v 2 v 4 A G = v 1 v 5 Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 71

4 Adjazenzmatrix (3) Es kann in Zeit O(1) überprüft werden, ob zwei Knoten v i und v j adjazent sind. deg(v i ) ist gleich der Zeilensumme der i-ten Zeile (bzw. der Spaltensumme der i-spalte). Aufwand: O( V ) Ermittlung der Nachbarn zu einem Knoten v i : Suche in der i-ten Zeile/Spalte notwendiger Speicherplatz: O( V 2 ) Platzverbrauch ineffizient für bestimmte Graphklassen, z.b. Bäume, planare Graphen (siehe Kapitel 6) Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 72

5 Beispiel: Adjazenzmatrix für gerichtete Graphen A = Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 73

6 Adjazenzmatrix für nicht schlichte Graphen Für nicht schlichte Graphen gibt a ij die Anzahl der Kanten zwischen v i und v j an. Wenn Schlingen vorliegen, sind die Diagonalelemente der entsprechenden Knoten ungleich 0. Das Element a ii gibt dann die Anzahl der Schlingen am Knoten v i an. Bei der Gradermittlung müssen die Diagonalelemente doppelt gezählt werden: n deg(v i ) = 2 a ii + k=1,k i a ik Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 74

7 Beispiel: Adjazenzmatrix für nicht schlichte Graphen A = Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 75

8 Adjazenzmatrix: gerichtet und nicht schlicht Prinzipiell können natürlich auch gerichtete Graphen nicht schlicht sein, d.h. an Knoten existieren Schlingen oder zwischen zwei Knoten a und b gibt es mehrere Kanten mit der gleichen Richtung (von a nach b). Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 76

9 Beispiel: gerichtet und nicht schlicht A = Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 77

10 Adjazenzliste Definition 2.2. Gegeben sei ein Graph G = (V,E) mit V = {v 1,...,v n },n 1. Dann kann E in Form einer Liste von n-listen A i repräsentiert werden. Für 1 i n seien v i1,v i2,...,v ni die mit v i V adjazenten Knoten. Die Liste heißt die Adjazenzliste von v i V. A i = (v i1,v i2,...,v ni ) Die Liste L G = (A 1,...,A n ) ist die Adjazenzlistendarstellung von G. Für einen gerichteten Graphen G = (V,A) enthält die Adjazenzliste A i die Knoten w V, für die (v i,w) A gilt. Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 78

11 Adjazenzliste (2) v 1 v 2 v 5 v 3 v 2 v 1 v 3 v 4 v 2 v 4 L G = v 3 v 2 v 4 G = v 4 v 2 v 3 v 5 v 5 v 1 v 4 v 1 v 5 Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 79

12 Adjazenzliste (3) Um zu überprüfen, ob zwei Knoten v i und v j adjazent sind, muss die Adjazenzliste von v i durchsucht werden. Dies ist nicht in O(1) möglich, der genaue Aufwand hängt von der Implementierung der Adjazenzliste ab. Der Knotengrad entspricht der Länge der Adjazenzliste. Die Nachbarn zu einem Knoten liegen direkt in der Adjazenzliste vor. notwendiger Speicherplatz: O( V + E ) Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 80

13 2. Repräsentationen von Graphen in Computern Anzahl der Kantenzüge zwischen zwei Knoten Beispiel: Anzahl Wege zwischen zwei Knoten (1) Wir betrachten als Beispiel den folgenden gerichteten Graphen G mit seiner Adjazenzmatrix: A = Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 81

14 2. Repräsentationen von Graphen in Computern Anzahl der Kantenzüge zwischen zwei Knoten Beispiel: Anzahl Wege zwischen zwei Knoten (2) Wir bilden die Potenzen der Adjazenzmatrix A: A 2 = A 3 = Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 82

15 2. Repräsentationen von Graphen in Computern Anzahl der Kantenzüge zwischen zwei Knoten A 4 = A k = für k 5 Das Element a i,j der Matrizen A k gibt hier die Anzahl der (einfachen) Wege der Länge k von i nach j an. Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 83

16 2. Repräsentationen von Graphen in Computern Anzahl der Kantenzüge zwischen zwei Knoten Anzahl der Kantenzüge zwischen zwei Knoten Satz 2.1. Es sei G = (V,E) ein Graph mit der Adjazenzmatrix A = (a ij ). Dann gibt das Element a (r) ij der Matrix A r die Anzahl der Kantenzüge der Länge r von v i nach v j an. Beweis: Induktion über r. r = 1 : Damit gilt A r = A. Die Adjazenzmatrix gibt genau die Kantenzüge der Länge 1 an. r r +1: Jeder Kantenzug der Länge r+1 zwischen zwei Knoten v i und v j besteht Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 84

17 2. Repräsentationen von Graphen in Computern Anzahl der Kantenzüge zwischen zwei Knoten aus einem Kantenzug der Länge r zwischen v i und einem Knoten v k sowie der Kante {v k,v j }. Nach I.V. gibt A r die Anzahl der Kantenzüge der Länge r zwischen zwei Knoten an. Es gilt a (r+1) ij = V k=1 a (r) ik a kj Da a kj = 1 gdw. zwischen v i und v j eine Kante ist, beschreibt diese Formel die Anzahl der Möglichkeiten, einen Kantenzug der Länge r + 1 zwischen v i und v j aus einem Kantenzug der Länge r zwischen v i und einem Knoten v k sowie der Kante {v k,v j } zu bilden. Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 85

18 2. Repräsentationen von Graphen in Computern Anzahl der Kantenzüge zwischen zwei Knoten Korollar 2.2. Es sei G = (V,E) ein Graph mit der Adjazenzmatrix A = (a ij ). Dann gibt das Element b ij der Matrix B = A+A 2 + +A p die Anzahl der Kantenzüge mit einer Länge p von v i nach v j an. Korollar 2.3. Es sei G = (V,E) ein Graph mit der Adjazenzmatrix A = (a ij ) und es sei B = A+A 2 + +A V 1 Dann gilt: G ist genau dann zusammenhängend, wenn b ij > 0 für alle i j gilt. Beweis: Wenn G zusammenhängend ist, Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 86

19 2. Repräsentationen von Graphen in Computern Anzahl der Kantenzüge zwischen zwei Knoten gibt es zwischen zwei beliebigen Knoten v i und v j mindestens einen Weg, damit auch mindestens einen einfachen Weg. Ein einfacher Weg hat eine Länge V 1. Damit liefert der einfache Weg (als Kantenzug) einen Beitrag zu b ij. Also folgt b ij > 0. Andererseits folgt aus b ij > 0, dass es mindestens einen Kantenzug und damit auch einen Weg von v i nach v j gibt. Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 87

20 2. Repräsentationen von Graphen in Computern Anzahl der Kantenzüge zwischen zwei Knoten Somit folgt aus b ij > 0 für alle i j, dass es zwischen je zwei Knoten von G einen Weg gibt. Damit ist G zusammenhängend. Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 88

21 2. Repräsentationen von Graphen in Computern Anzahl der Kantenzüge zwischen zwei Knoten Bemerkungen Weil in Dags jeder Kantenzug ein gerichteter einfacher Weg ist, liefert A r dort sogar die Anzahl der einfachen Wege der Länge r. Auch können wir mit diesem Ansatz prinzipiell testen, ob ein gerichteter Graph kreisfrei ist (für p = V müssen die b ii alle ungleich 0 sein). Sowohl für die Kreisfreiheit als auch für den Zusammenhang sind diese Berechnungsansätze aber ineffizient. Im nächsten Kapitel werden wir effizientere Algorithmen für diese Probleme kennenlernen. Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 89

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 3: Einführung in die Graphentheorie - Teil 3 Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 2. März 2018 1/72 ZUSAMMENHANG

Mehr

6. Planare Graphen und Färbungen

6. Planare Graphen und Färbungen 6. Planare Graphen und Färbungen Lernziele: Den Begriff der Planarität verstehen und erläutern können, wichtige Eigenschaften von planaren Graphen kennen und praktisch einsetzen können, die Anzahl von

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Graphentheorie. Peter Becker Fachbereich Informatik, Hochschule Bonn-Rhein-Sieg Vorlesung Wintersemester 2014/15

Graphentheorie. Peter Becker Fachbereich Informatik, Hochschule Bonn-Rhein-Sieg Vorlesung Wintersemester 2014/15 Graphentheorie Peter Becker Fachbereich Informatik, Hochschule Bonn-Rhein-Sieg peter.becker@h-brs.de Vorlesung Wintersemester 2014/15 Allgemeines zur Vorlesung Es gibt eine Homepage zur Vorlesung: http://www2.inf.h-brs.de/~pbecke2m/graphentheorie/

Mehr

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296 Kapitel 7 Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 256 / 296 Inhalt Inhalt 7 Färbungen Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 257 / 296 Jordankurve Zentrale Frage

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 24-6. Sitzung Marcus Georgi tutorium@marcusgeorgi.de 04.12.2009 1 Repräsentation von Graphen im Rechner Adjazenzlisten Adjazenzmatrizen Wegematrizen 2 Erreichbarkeitsrelationen

Mehr

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung

Mehr

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 9 Graphen Version vom 13. Dezember 2016 1 / 1 Vorlesung Fortsetzung 13. Dezember

Mehr

4. Kreis- und Wegeprobleme Abstände in Graphen

4. Kreis- und Wegeprobleme Abstände in Graphen 4. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 4.4. Es sei G = (V,E) ein Graph. Der Abstand d(v,w) zweier Knoten v,w V ist die minimale Länge eines Weges von v nach w. Falls

Mehr

Naiver Algorithmus für Hamiltonkreis

Naiver Algorithmus für Hamiltonkreis Naiver Algorithmus für Hamiltonkreis Algorithmus HAMILTON EINGABE: G = ([n], E) in Adjazenzmatrixdarstellung 1 Für alle Permutationen π : [n] [n]. 1 Falls (π(1), π(2),..., π(n)) ein Kreis in G ist, AUSGABE

Mehr

Am Dienstag, den 15. Dezember, ist Eulenfest. 1/60

Am Dienstag, den 15. Dezember, ist Eulenfest. 1/60 Am Dienstag, den 15. Dezember, ist Eulenfest. 1/60 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester

Mehr

Vier-Farben-Vermutung (1)

Vier-Farben-Vermutung (1) Vier-Farben-Vermutung (1) Landkarten möchte man so färben, dass keine benachbarten Länder die gleiche Farbe erhalten. Wie viele Farben braucht man zur Färbung einer Landkarte? Vier-Farben-Vermutung: Jede

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Foliensatz 16 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 45 Graphen TU Ilmenau Seite 2 / 45 Graphen 1 2 3 4 5 6 7 8

Mehr

Berechnung von Abständen

Berechnung von Abständen 3. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 3.4. Es sei G = (V, E) ein Graph. Der Abstand d(v, w) zweier Knoten v, w V ist die minimale Länge eines Weges von v nach w.

Mehr

8. Übung Algorithmen I

8. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Grundlagen

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 16: Erste Algorithmen in Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für

Mehr

1. Einführung. Grundbegriffe und Bezeichnungen. Beispiele. gerichtete Graphen. 1. Einführung Kapitelübersicht

1. Einführung. Grundbegriffe und Bezeichnungen. Beispiele. gerichtete Graphen. 1. Einführung Kapitelübersicht 1. Einführung Kapitelübersicht 1. Einführung Grundbegriffe und Bezeichnungen Beispiele Bäume gerichtete Graphen Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 15 Das Königsberger Brückenproblem Beispiel

Mehr

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 5 Graphen 5.1 Gerichtete Graphen Definition 5.1 (V, E) heißt gerichteter Graph (Digraph), wenn V Menge von Knoten

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Nachbarschaft, Grad, regulär, Inzidenz

Nachbarschaft, Grad, regulär, Inzidenz Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad

Mehr

Tutorium 23 Grundbegriffe der Informatik (7. Sitzung)

Tutorium 23 Grundbegriffe der Informatik (7. Sitzung) Tutorium 3 Grundbegriffe der Informatik (7. Sitzung) Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität

Mehr

Lernmodul 7 Algorithmus von Dijkstra

Lernmodul 7 Algorithmus von Dijkstra Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer

Mehr

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter WS 2009/10 Isomorphie Zwei Graphen (V 1, E 1 ) und (V 2, E 2 ) heißen isomorph, wenn es eine bijektive, Kanten erhaltende und Kanten

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil II Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University of Leipzig 07.

Mehr

Graphen. Graphen und ihre Darstellungen

Graphen. Graphen und ihre Darstellungen Graphen Graphen und ihre Darstellungen Ein Graph beschreibt Beziehungen zwischen den Elementen einer Menge von Objekten. Die Objekte werden als Knoten des Graphen bezeichnet; besteht zwischen zwei Knoten

Mehr

Graphen Jiri Spale, Algorithmen und Datenstrukturen - Graphen 1

Graphen Jiri Spale, Algorithmen und Datenstrukturen - Graphen 1 Graphen 27 Jiri Spale, Algorithmen und Datenstrukturen - Graphen Motivation Einsatz: Berechnung von Entfernungen Auffinden von Zyklen in Beziehungen Ermittlung von Verbindungen Zeitmanagement Konzept:

Mehr

6. Transitive Hülle. 6.1 Min-Plus-Matrix-Produkt und Min-Plus-Transitive Hülle Ring Z(+, ) Semiring N(+, )

6. Transitive Hülle. 6.1 Min-Plus-Matrix-Produkt und Min-Plus-Transitive Hülle Ring Z(+, ) Semiring N(+, ) 6. Transitive Hülle 6.1 Min-Plus-Matrix-Produkt und Min-Plus-Transitive Hülle Ring Z(+, ) Semiring N(+, ) Gruppe Halbgruppe Halbgruppe Halbgruppe Wir betrachten den (kommutativen) Semiring über R { } mit

Mehr

Ziel Geklärt werden soll die Frage nach der Anzahl an Spannbäumen, die ein gegebener Graph G hat.

Ziel Geklärt werden soll die Frage nach der Anzahl an Spannbäumen, die ein gegebener Graph G hat. Ziel Geklärt werden soll die Frage nach der Anzahl an Spannbäumen, die ein gegebener Graph G hat. Definition Sei G = (V, E) ein beliebiger Graph. Dann bezeichne T (G) die Anzahl seiner Spannbäume, d.h.

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2 1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)

Mehr

4. Kreis- und Wegeprobleme

4. Kreis- und Wegeprobleme 4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 8

Mehr

Dieser Graph hat 3 Zusammenhangskomponenten

Dieser Graph hat 3 Zusammenhangskomponenten Vl 2, Informatik B, 19. 04. 02 1.1.3 Definitionen und wichtige Graphen Sei im folgenden G =(V;E) ein schlichter ungerichteter Graph. Definition: Der Grad eines Knoten v in einem ungerichteten Graphen ist

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,

Mehr

Graphenalgorithmen I

Graphenalgorithmen I enalgorithmen I Tobias Pröger 21. Dezember 2016 Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch auf Vollständigkeit und Korrektheit. Wir sind froh über

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10 D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)

Mehr

Kürzeste Wege in Graphen. Orte mit Straßenverbindungen. Coma I Rolf Möhring

Kürzeste Wege in Graphen. Orte mit Straßenverbindungen. Coma I Rolf Möhring Kürzeste Wege in Graphen Orte mit Straßenverbindungen Orte als Knoten eines Graphen Straßenverbindungen als Kanten eines Graphen Ungerichteter Graph G = (V,E) Kanten Knoten Knotenmenge V = {,,n} oder {,,n

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Graphen und Bäume Prof. Dr. Nikolaus Wulff Weitere Datentypen Als wichtige abstrakte Datentypen (ADT) kennen wir bis lang die Liste, den Stapel und die Warteschlange. Diese

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen

Mehr

1 Datenstrukturen Datenstrukturen und Algorithmen

1 Datenstrukturen Datenstrukturen und Algorithmen 1 Datenstrukturen 1.1 Abstrakte Datentypen 1.2 Lineare Strukturen 1.3 Bäume 1.4 Prioritätsschlangen 1.5 Graphen 1 1.5 Graphen Darstellung allgemeiner Beziehungen zwischen Objekten/Elementen Objekte = Knoten:

Mehr

Motivation Kap. 6: Graphen

Motivation Kap. 6: Graphen Motivation Kap. 6: Graphen Warum soll ich heute hier bleiben? Graphen sind wichtig und machen Spaß! Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Was gibt es

Mehr

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke Theoretische Informatik 1 WS 2007/2008 Prof. Dr. Rainer Lütticke Inhalt der Vorlesung Grundlagen - Mengen, Relationen, Abbildungen/Funktionen - Datenstrukturen - Aussagenlogik Automatentheorie Formale

Mehr

κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965).

κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965). 5. Graphenprobleme Im folgenden bezeichnen G = (E, K) einen endlichen Graphen mit der Eckenmenge E und der Kantenmenge K. G kann ungerichtet, gerichtet, schlicht oder nicht schlicht sein. 5.1 Spannende

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind.

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind. 3.5 Gerichteter Pfad Definition 291 Eine Folge (u 0, u 1,..., u n ) mit u i V für i = 0,..., n heißt gerichteter Pfad, wenn ( i {0,..., n 1} ) [ (u i, u i+1 ) A]. Ein gerichteter Pfad heißt einfach, falls

Mehr

Kapitel IV Minimale Spannbäume

Kapitel IV Minimale Spannbäume Kapitel IV Minimale Spannbäume. Grundlagen Ein Graph G = (V, E) besteht aus einer Menge V von Knoten und einer Menge E von Kanten. Wir werden nur endliche Knoten- (und damit auch Kanten-) Mengen betrachten.

Mehr

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung)

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Graphen. Definitionen

Graphen. Definitionen Graphen Graphen werden häufig als Modell für das Lösen eines Problems aus der Praxis verwendet, wie wir im Kapitel 1 gesehen haben. Der Schweizer Mathematiker Euler hat als erster Graphen verwendet, um

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)

Mehr

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss.

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. (a, b)-bäume / 1. Szenario: Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. Konsequenz: Kommunikation zwischen Hauptspeicher und Festplatte - geschieht nicht Byte für Byte,

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

ADS 2: Algorithmen und Datenstrukturen

ADS 2: Algorithmen und Datenstrukturen ADS 2: Algorithmen und Datenstrukturen Teil 2 Prof. Peter F. Stadler & Sebastian Will Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität Leipzig 16. April

Mehr

durch Einfügen von Knoten konstruiert werden kann.

durch Einfügen von Knoten konstruiert werden kann. Satz von Kuratowski Definition Unterteilung eines Graphen Sei G = (V, E) und e = {u, v} E. 1 Das Einfügen eines neuen Knoten w in die Kante e führt zum Graphen G = (V {w}, E \ e {{u, w}, {w, v}}). 2 Der

Mehr

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

12. Graphen. Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap ,Cormen et al, Kap.

12. Graphen. Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap ,Cormen et al, Kap. 254 12. Graphen Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap. 9.1-9.4,Cormen et al, Kap. 22 Königsberg 1736 255 Königsberg 1736 255 Königsberg 1736 255

Mehr

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung)

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) Wintersemester 2005/06 Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Ecken des Zuordnungsproblems

Ecken des Zuordnungsproblems Total unimodulare Matrizen Ecken des Zuordnungsproblems Definition.6 Ein Zuordnungsproblem mit den Vorzeichenbedingungen 0 apple x ij apple für i, j =,...,n statt x ij 2{0, } heißt relaxiertes Zuordnungproblem.

Mehr

Die Verbindung von Linearer Programmierung und Graphentheorie

Die Verbindung von Linearer Programmierung und Graphentheorie Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII

Mehr

Kodieren Von Graphen

Kodieren Von Graphen Kodieren Von Graphen Allgemeine Anwendungen: Routenplaner Netzpläne Elektrische Schaltungen Gebäudeerkennung aus Luftaufnahmen Definitionen:? Graph Ein Graph G besteht aus einem geordneten Paar G = (V,E)

Mehr

Diskrete Strukturen WS 2005/06. Ernst W. Mayr. 27. Januar Fakultät für Informatik TU München

Diskrete Strukturen WS 2005/06. Ernst W. Mayr. 27. Januar Fakultät für Informatik TU München WS 2005/06 Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2005ws/ds/ 27. Januar 2006 Ernst W. Mayr 2.16 Inzidenzmatrix 3. Definitionen für gerichtete Graphen 3.1 Digraph

Mehr

Zählen perfekter Matchings in planaren Graphen

Zählen perfekter Matchings in planaren Graphen Zählen perfekter Matchings in planaren Graphen Kathlén Kohn Institut für Mathematik Universität Paderborn 25. Mai 2012 Inhaltsverzeichnis Motivation Einführung in Graphentheorie Zählen perfekter Matchings

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 25. Januar 2012 ZÜ DS ZÜ XIII

Mehr

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Kapitel 7 Fortgeschrittene Datenstrukturen Motivation: Lineare Liste: Suchen eines Elements ist schnell O(log n) Einfügen eines Elements ist langsam

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Wir nennen einen Pfad in einem gerichteten Graphen Zyklus, wenn der Pfad im gleichen Knoten beginnt und endet, d. h.

Wir nennen einen Pfad in einem gerichteten Graphen Zyklus, wenn der Pfad im gleichen Knoten beginnt und endet, d. h. aaacmxicdvdlsgmxfl1t3/vv69jntaiuyowubbdcwy1lbfuqwkomtwuyzgri7ltgwa9wa7/cr+lo3potpq2c9xegcdjnxu7j8wmpdlru2mktlc4tr6yu5dc3nre2czvfhlgjzrzolfs65vpdpyh4hqvk3oo1p6evedmpzid+c8i1esq6xjtmnzaoitexjkkvbozdl5yrytfofkpu+bhacu+q5dfxyu4updp+pkobwgv3xyne9hrlqh4hk9sytufg2mmorsekf8zfjobhlav0wnuwrjtkppnnez+sq6v0sf9p+yiku/x7rkzdy9lqt5mhxtvz05uif3q+ugfs38zdz1aedznlwqtwndwpjarvvfmrfpuvtiaioeeesvnqfiijkjkpj/se5gxlagllwti/enzhnwvos87bfr+qiv+txnhzc8velveqvwcgvdidazgcd06hbhdwcxvgemitpmpiexhgzqvznhvnoz87uzah5/0djy+sia==

Mehr

Relationen und Graphentheorie

Relationen und Graphentheorie Seite Graphentheorie- Relationen und Graphentheorie Grundbegriffe. Relationen- und Graphentheorie gehören zu den wichtigsten Hilfsmitteln der Informatik, die aus der diskretenmathematik stammen. Ein Graph

Mehr

Kapitel IV Minimale Spannbäume

Kapitel IV Minimale Spannbäume Kapitel IV Minimale Spannbäume 1. Grundlagen Ein Graph G = (V, E) besteht aus einer Menge V von Knoten und einer Menge E von Kanten. Wir werden nur endliche Knoten- (und damit auch Kanten-) Mengen betrachten.

Mehr

12. Graphen. Königsberg Zyklen. [Multi]Graph

12. Graphen. Königsberg Zyklen. [Multi]Graph Königsberg 76. Graphen, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap. 9. - 9.,Cormen et al, Kap. [Multi]Graph Zyklen C Kante Gibt es einen Rundweg durch die Stadt

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 2: Einführung in die Graphentheorie - Teil 2 Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 2. März 2018 1/48 OPERATIONEN

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 2. Februar 2011 ZÜ DS ZÜ XIII 1. Übungsbetrieb:

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

3. Die Datenstruktur Graph

3. Die Datenstruktur Graph 3. Die Datenstruktur Graph 3.1 Einleitung: Das Königsberger Brückenproblem Das Königsberger Brückenproblem ist eine mathematische Fragestellung des frühen 18. Jahrhunderts, die anhand von sieben Brücken

Mehr

8. Übung zu Algorithmen I 15. Juni 2016

8. Übung zu Algorithmen I 15. Juni 2016 8. Übung zu Algorithmen I 15. Juni 2016 Lisa Kohl Lisa.Kohl@kit.edu (mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag, Christian Staudt und Christoph Striecks) Nachtrag: Quicksort, alternative

Mehr

Algorithmen und Datenstrukturen 13

Algorithmen und Datenstrukturen 13 19. Juli 2012 1 Besprechung Blatt 12 Fragen 2 Bäume AVL-Bäume 3 Graphen Allgemein Matrixdarstellung 4 Graphalgorithmen Dijkstra Prim Kruskal Fragen Fragen zu Blatt 12? AVL-Bäume AVL-Bäume ein AVL-Baum

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr

Notizen zu Transformationen und Permutationen. T (A) = {f : A A}

Notizen zu Transformationen und Permutationen. T (A) = {f : A A} Transformationen Notizen zu Transformationen und Permutationen Ist A eine Menge, so ist die Menge T (A) = {f : A A} bezüglich der Komposition (Hintereinanderausführung) als Operation und der identischen

Mehr