12. Vorlesung. I Mechanik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "12. Vorlesung. I Mechanik"

Transkript

1 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene Wellen und Kugelwellen Dopplereffekt Resonanzboden

2 Bei klassischer Welle wird keine Materie aber lokale Schwingung (Dichteschwankung, Moleküloszillation etc) des Mediums und somit Energie transportiert. Versuch Wellenkette beim letzten Mal zeigte Ausbreitung der Schwingung von Stäben, an einem (elastischen) Draht befestigt. Die Ausbreitungsgeschwindigkeit hängt vom Medium (Kopplungsstärke, Trägheit) ab. Die Schwingung kann pulsförmig oder periodisch (z.b. sinusförmig) sein. Longitudinale Welle (z.b. Schall): Transversale Welle (wie bei Versuch Wellenkette): Ausbreitungsrichtung

3 Transversale und longitudinale Wellen Nehmen wir an, die Welle breitet sich z.b. in z-richtung aus. Geschwindigkeit c Die Bewegungsrichtung der lokalen Schwingungen, z.b. von Molekülen des Medium um ihre Ruhelage ( Amplitude A(z,t)) kann in z, x oder y Richtung sein. Richtung der Amplituden in z oder z: c Longitudinale Welle (Beispiel Schallwellen ) A Richtung = Polarisation in Richtung x oder y, senkrecht zu z: Transversalwelle (Beispiel Licht, Welle auf Saite,.. c A

4 Wasserwellen besonders kompliziert: Kombination beider Typen, Kreisbahnen, deren Radien mit der Tiefe abnehmen. Ebene Wellen und Elementarwellen: Versuche Wasserwanne Wellenfronten (WF) = Flächen in 3 (Linien in 2) Dimensionen, deren Punkte gleichphasig schwingen Ausbreitungsrichtung senkrecht zu WF sind WF Ebenen Bei ebenen Wellen Bei Elementarwellen sind WF Kugeloberflächen Huygens Prinzip: 1) Jeder Punkt einer WF ist Ausgangspunkt einer neuen Elementarwelle 2) Die Einhüllenden (Tangentenflächen) aller Elementarwellen bilden neue WF

5 Wellenausbreitung, graphische Darstellung: Entweder Momentaufnahme, feste Zeit t; oder fester Ort, Amplitude als Funktion der Zeit. Hier: Ebene Welle in z Richtung: z z z t

6 Mathematische Darstellung einer in z-richtung laufenden ebenen*, harmonischen** Welle: A (z,t) = A 0 sin(ωt-kz), d.h. gleiche Phase für alle Punkte x,y der Ebene z z = const., d.h. z= 0 Schwingung t = const., d.h. t=0 Schnappschuss Kreisfrequenz ω wie bei Schwingung Neu : Wellenzahl (oder Wellenvektor) k = Wellenlänge λ 2π λ * eben: A hängt nur von einer Raum-Koordinate ab, z in unserem Beispiel ** harmonisch: sin( ) oder cos( )

7 Phase φ= ωt-kz (= das Argument der Sinus-oder Cosinusfunktion) Phasendifferenz φ = φ 2 φ 1 = ωt 2 -kz 2 (ωt 1 -kz 1 ) = ω t-k z Periode T = t für φ =ω t-k z =2π mit z=0 ωt= 2π ω= 2π/T Wellenlänge λ= z für φ =ω t-k z =-2π mit t=0 kλ = 2π k = 2π/λ Phasengeschwindigkeit c ph =Geschwindigkeit von Orten gleicher Phase, d.h. insbesondere auch, Orte gleicher Amplitude Aus φ = ω t-k z = 0 ω t = k z c ph z ω ω = = = = f t k 2π / λ λ c ph = f λ Wichtige Beziehung zwischen c, f, λ Ausbreitungs - = Phasen- geschwindigkeit bei ebener Welle Im Fall der Akustik ist c ph die Schallgeschwindigkeit (c Schall ) Im Fall der Optik ist c ph die Lichtgeschwindigkeit (c)

8 Superposition =Überlagerung = Interferenz von Wellen Wellen überlagern sich ungestört, d.h. eine Welle läuft weiter, auch wenn es Bereiche mit destruktiver Interferenz (lokaler Auslöschung) gibt. Zwei ebene Wellen treffen sich. Wir betrachten Überlagerung an zwei benachbarten Orten P 1, P 2 Z P 1 P 2 Z

9 Superposition von Wellen entgegengesetzter c ph - stehende Wellen zwei gegenläufige Wellen gleicher Frequenz und Amplitude A(z,t) = A 0 cos(ωt - kz) + A 0 cos(ωt + kz ) = 2A 0 cos (kz ) cos (ωt ) Stationäres Wellenbild, wenn Gleiche Frequenz (sonst Schwebung) Feste Phasenbeziehung (Kohärenz) entweder durch Reflexion wie bei Versuch mit Wellenkette oder bei phasenstarren Quellen

10 Doppler-Effekt Bewegte Quelle: Doppler-Effekt Bewegt sich die Quelle auf den Empfänger zu, so nimmt dieser eine höhere Frequenz wahr (c ph = v ph im Bild) f E = f 0 c ph c ph v Q aufeinander zu : f E > f 0 voneinander weg : f E < f 0 VERSUCH Überschallgeschwindigkeit: -Bei v Q > v ph = c ph überholt die Quelle die von ihr ausgesandten Wellen. - Es bildet sich eine kegelförmige Wellenfront aus (Mach-Kegel). - Sinus des Öffnungswinkels: c ph /v Q (=Mach-Zahl)

11 Bemerkung zum Dopplereffekt Herleitung der Formel: Wie aus der Skizze hervorgeht, ist λ E = λ 0 v Q T Da c ph = λ 0 f = λ 0 /T, ist λ E = λ 0 (1- Q ) = λ 0 Mit f 0(E) = c ph / λ o(e) folgt f E = f 0 c ph c ph v c v Die Formel gilt auch für eine sich entfernende Quelle. Dann ist v Q eine negative Größe, d.h. im Nenner der Formel steht c ph + v Q und f E ist kleiner als f 0. Anwendungen des Dopplereffekts: Messung der Blutgeschwindigkeit (Ultraschall dopplerverschoben) Radarkontrolle (gleiches Prinzip) Rotverschiebung des Spektrums sich schnell entfernender Sterne dient der Geschwindigkeitsermittlung v c Q ph ph c ph Q

12 Superposition von Wellen - stehende Wellen nach Reflexion (Siehe Versuch Wellenkette am ) Je nach Art der Reflexion kann eine zusätzliche Phase auftreten: Freies, weiches Ende -> kein Phasensprung Festes, hartes Ende -> Phasensprung um π (senkrechte Kraft) λ = 2L Bei zwei festen Enden (schwingende Saite) ergeben sich aus den Randbedingungen feste Schwingungsmoden (sonst Auslöschung), Grundton (n=1) und Obertöne (n>1) n

13 9. Akustik, Schallwellen Schallwellen: wellenförmige Fortpflanzung von Druck- oder Dichteschwankungen in elastischen Medien wie Gasen,Flüssigkeiten, Festkörpern. In Fluiden: longitudinal (Orientierung der Bewegungsamplitude von Molekülen parallel zur Ausbreitungsrichtung) In Festkörpern: transversal (Bewegungsamplitude senkrecht zur Ausbreitungsrichtung), oder longitudinal wie bei Fluiden. Einteilung nach Frequenzen: Infraschall : ν <= 16 Hz Hörbarer Schall: 16 Hz < ν < 16 khz Versuch Ultraschall : 16 khz < ν Hyperschall : 10 MHz < ν P: Druck S: Auslenkung der Moleküle aus Ruhelage

14 Schall-Erzeugung: Schallerzeugung durch stehende Wellen auf Festkörpern: schwingende Saite Stimmgabel Orgelpfeife Lautsprechermembran Beispiel 1: beidseitig eingespannte Saite l -> stehendes Wellenfeld bei bestimmten Eigen- oder Resonanzfrequenzen λ l = n, n = 1,2,3,... 2 = n f, n 1,2,3,.. f n 1 =

EPI WS 2008/09 Dünnweber/Faessler

EPI WS 2008/09 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen gekoppelte Pendel 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Schwebung gekoppelte

Mehr

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus 7. Wellen Ausbreitung von Schwingungen -> Wellen Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus Welle entsteht durch lokale Anregung oder Störung eine Mediums, die sich

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik 12. Vorlesung EP I Mechanik 7. Schwingungen 8. Wellen 9.Akustik Versuche: Stimmgabel und Uhr ohne + mit Resonanzboden Pfeife Schallgeschwindigkeit in Luft Versuch mit Helium Streichinstrument Fourier-Analyse

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

13. Mechanische Wellen Darstellung harmonischer Wellen Überlagerung von Wellen, Interferenz und Beugung. 13.

13. Mechanische Wellen Darstellung harmonischer Wellen Überlagerung von Wellen, Interferenz und Beugung. 13. 13. Mechanische Wellen 13.1 Darstellung harmonischer Wellen 13.2 Überlagerung von Wellen, Interferenz und Beugung 13.33 Stehende Wellen 13.4 Schallwellen 13.5 Wellen bei bewegten Quellen Schematische Darstellung

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Mechanische und Wellen Inhalt 1. 2.Überlagerung von 3.Entstehung und Ausbreitung von Wellen 4.Wechselwirkungen von Wellen 2 Voraussetzungen Schwingfähige Teilchen Energiezufuhr Auslenkung Rücktreibende

Mehr

Wellen. Experimentalphysik. B. Baumann Physik für Ingenieure Bachelor Basics Kapitel 5

Wellen. Experimentalphysik. B. Baumann Physik für Ingenieure Bachelor Basics Kapitel 5 Experimentalphysik Wellen B. Baumann Physik für Ingenieure Bachelor Basics Kapitel 5 Pendelkette www.berndbaumann.de info@berndbaumann.de page 2 Elongation Amplitude Wellenzahl Nullphase Kreisfrequenz

Mehr

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her)

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Mechanik Wellen 16. Wellen 16.1. Einleitung Beispiele: gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Was passiert? Das schwingende Medium/Teilchen bewegt sich nicht fort, sondern schwingt

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

Einführung in die Physik I. Schwingungen und Wellen 3

Einführung in die Physik I. Schwingungen und Wellen 3 Einführung in die Physik Schwingungen und Wellen 3 O. von der Lühe und U. Landgraf Elastische Wellen (Schall) Elastische Wellen entstehen in Flüssigkeiten und Gasen durch zeitliche und räumliche Veränderungen

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.2 Wellen Physik für Mediziner 1 Wellenphänomene Wasserwellen Schallwellen Lichtwellen Physik für Mediziner 2 Definition einer Welle Eine Welle ist ein Vorgang, der sich

Mehr

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen Physik für Pharmazeuten SCHWINGUNGEN WELLEN Schwingungen Resonanz elektrischer Schwingkreis elektromagnetische 51 5.1 Schwingungen Federpendel Auslenkung x, Masse m, Federkonstante k H d xt ( ) Bewegungsgleichung:

Mehr

9. Akustik. I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge. 13. Vorlesung EP

9. Akustik. I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge. 13. Vorlesung EP 13. Vorlesung EP I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge Versuche: Stimmgabel mit u ohne Resonanzboden Pfeife Echolot und Schallgeschwindigkeit in Luft Heliumstimme Bereich hörbarer

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Begriff mechanische Welle Mechanische Schwingungen und Wellen Teil II - Wellen Definition: Eine mech. Welle ist die Ausbreitung einer mech. Schwingung im Raum, bei der Energie übertragen jedoch kein Stoff

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in

Mehr

Experimentalphysik II

Experimentalphysik II Experimentalphysik II Wellenlehre und Optik: Wellen und Wellengleichung, Welle-Teilchen-Dualismus, Licht als Welle (Huygenssches Prinzip, Reflexion, Brechung und Beugung), Optik 3.1. Wellen und Wellengleichung

Mehr

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011 Aufgabe 1) Ein Wellenträger wird mit f = 2,0 Hz harmonisch angeregt, wobei sich Wellen der Länge 30 cm und der Amplitude 3,0 cm bilden. Zur Zeit t o = 0,0 s durchläuft der Anfang des Wellenträgers gerade

Mehr

Das Hook sche Gesetz

Das Hook sche Gesetz Das Hook sche Gesetz Bei einer Feder sind Ausdehnung und Kraft, die an der Feder zieht (z.b. Gewichtskraft einer Masse), proportional 18.04.2013 Wenn man eine Messung durchführt und die beiden Größen gegeneinander

Mehr

Wellen als Naturerscheinung

Wellen als Naturerscheinung Wellen als Naturerscheinung Mechanische Wellen Definition: Eine (mechanische) Welle ist die Ausbreitung einer (mechanischen) Schwingung im Raum, wobei Energie und Impuls transportiert wird, aber kein Stoff.

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

HARMONISCHE SCHWINGUNGEN

HARMONISCHE SCHWINGUNGEN HARMONISCHE SCHWINGUNGEN Begriffe für Schwingungen: Die Elongation γ ist die momentane Auslenkung. Die Amplitude r ist die maximale Auslenkung aus der Gleichgewichtslage (r >0). Die Schwingungsdauer T

Mehr

Inhalt Physik III Teil A: Teil B: Teil C: Teil D:

Inhalt Physik III Teil A: Teil B: Teil C: Teil D: Vorlesung Physik III WS 1/13 Inhalt Physik III Teil A: Wiederholung Mechanik, Analytische Mechanik, d Alembert sches Prinzip, Lagrange-Funktion und -Gleichungen, Kreiselphysik, Lagrange- Hamilton-Formalismus,

Mehr

Brewster-Winkel - Winkelabhängigkeit der Reflexion.

Brewster-Winkel - Winkelabhängigkeit der Reflexion. 5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation

Mehr

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze Seite 1 von 6 Astronomische Weltbilder und Keplersche Gesetze Heliozentrisches Weltbild Die Sonne steht im Mittelpunkt unseres Sonnensystems, die Planeten umkreisen sie. Viele Planeten werden von Monden

Mehr

Das Hook sche Gesetz

Das Hook sche Gesetz Das Hook sche Gesetz Bei einer Feder sind Ausdehnung und Kraft, die an der Feder zieht (z.b. Gewichtskraft einer Masse), proportional Wenn man eine Messung durchführt und die beiden Größen gegeneinander

Mehr

3 Akustik. 3.1 Schallwellen (Versuch 23) 12 3 AKUSTIK. Physikalische Grundlagen

3 Akustik. 3.1 Schallwellen (Versuch 23) 12 3 AKUSTIK. Physikalische Grundlagen 12 3 AKUSTIK 3 Akustik 3.1 Schallwellen (Versuch 23) (Fassung 11/2011) Physikalische Grundlagen Fortschreitende (laufende) Wellen Eine in einem elastischen Medium hervorgerufene Deformation breitet sich

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen

Mehr

Ergänzungen zur Physik I: Wellen (Zusammenfassung)

Ergänzungen zur Physik I: Wellen (Zusammenfassung) Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I: Wellen (Zusammenfassung) U. Straumann, 28. Dezember 2013 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Wellengleichung 2

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 6 - Physik B3 5.3 Energietransport 5.3. Phänomenologie Da schwingungsfähige Systeme Energie enthalten und sie zwischen den gekoppelten Systemen ausgetauscht wird, findet in Wellen ein Transport

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Wellen Eine an einem Draht befestigte Stimmgabel schwinge senkrecht zum Draht und erzeuge so auf diesem eine Transversalwelle. Die Amplitude der Stimmgabelschwingung

Mehr

4. Schwingungen und Wellen

4. Schwingungen und Wellen Bei manchen Systemen (z.b. Fadenpendel) führt die Krafteinwirkung zu sich wiederholenden Vorgängen. Sind diese periodisch, so spricht man von Schwingungsvorgängen (um ortsfeste Ruhelage). Breiten sich

Mehr

Akustik. t 1 > t 0. x = c t

Akustik. t 1 > t 0. x = c t Akustik Wir kehren jetzt von der Wärmestrahlung (im Sinne der Thermodynamik eines Photonengases) zurück zu einem normalen Gas (oder gar einem Festkörper) und betrachten, wie sich eine Störung im Medium

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Aufgaben 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1.1 a) Erdbeben können sich in der Erdkruste sowohl durch Longitudinalwellen

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik (GPh) am 8.0.013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Ruhelage. D: Die Ruhelage nimmt ein Oszillator ein, wenn er nicht am Schwingen ist.

Ruhelage. D: Die Ruhelage nimmt ein Oszillator ein, wenn er nicht am Schwingen ist. WELLENLEHRE 1) Harmonische Schwingung 1.1) Fadenpendel Umkehrpunkt ŷ Umkehrpunkt y Ruhelage D: Ein Oszillator ist ein schwingfähiger Körper. D: Die Ruhelage nimmt ein Oszillator ein, wenn er nicht am Schwingen

Mehr

Aufgaben Mechanische Wellen

Aufgaben Mechanische Wellen I.2 Unterscheidung von Wellen 1. Beschreibe, in welche zwei Arten man Wellenvorgänge einteilen kann. 2. Welche Arten von mechanischen Wellen gibt es in folgenden Medien: a) Luft, b) Wasser, c) Stahl? I.3

Mehr

DER SCHALL ALS MECHANISCHE WELLE

DER SCHALL ALS MECHANISCHE WELLE DER SCHALL ALS MECHANISCHE WELLE I. Experimentelle Ziele Das Ziel der Experimente ist es, die Untersuchung der wesentlichen Eigenschaften von mechanischen Wellen am Beispiel der Schallwellen zu demonstrieren.

Mehr

TO Stuttgart OII 310 (Physik) Inhaltsverzeichnis

TO Stuttgart OII 310 (Physik) Inhaltsverzeichnis Inhaltsverzeichnis 0 Vorwort... 2 1 Eindimensionale mechanische Wellen... 3 1.1 Definition einer mechanischen Welle... 3 1.2 Arten von Wellen... 4 1.3 Beschreibung mechanischer Wellen... 5 1.4 Die Wellengleichung

Mehr

Seminar Akustik. Aufgaben zu Teil 1 des Skripts Uwe Reichel, Phil Hoole

Seminar Akustik. Aufgaben zu Teil 1 des Skripts Uwe Reichel, Phil Hoole Seminar Akustik. Aufgaben zu Teil des Skripts Uwe Reichel, Phil Hoole Welche Kräfte wirken auf ein schwingendes Teilchen?! von außen angelegte Kraft (z.b. Glottisimpulse)! Rückstellkräfte (Elastizität,

Mehr

1 Fouriersynthese und Fourieranalyse

1 Fouriersynthese und Fourieranalyse Schwingungslehre in Kursstufe 5/ 57 Ernst Schreier Fouriersynthese und Fourieranalyse. Stehende Wellen / Eigenschwingungen / Resonanz Bei einfacher Reflexion bildet sich immer eine stehende Welle vor der

Mehr

1 Wellenoptik. 1.1 Wellenausbreitung. 1.2 Huygens sche Prinzip. Da wir die Welle im Vakuum betrachten, ist die Ladungsdichte ρ = 0, und so gilt: (1.

1 Wellenoptik. 1.1 Wellenausbreitung. 1.2 Huygens sche Prinzip. Da wir die Welle im Vakuum betrachten, ist die Ladungsdichte ρ = 0, und so gilt: (1. 1 Wellenoptik 1.1 Wellenausbreitung Da wir die Welle im Vakuum betrachten, ist die Ladungsdichte ρ =, und so gilt: rote = B t rotb E = µ ɛ t (1.1) Sie wird nun im Ladungsfreien Vakuum hergeleitet (µ ɛ

Mehr

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen SCHWINGUNGEN WELLEN Schwingungen Resonanz elektrischer Schwingkreis elektromagnetische 51 5.1 Schwingungen Federpendel Auslenkung x, Masse m, Federkonstante k 2 H d xt ( ) Bewegungsgleichung: m k x t 2

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

1. Auflage 2010 Alle Rechte vorbehaltencopyright Pädagogische Hochschule PHBern

1. Auflage 2010 Alle Rechte vorbehaltencopyright Pädagogische Hochschule PHBern Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Modul: Wellen, Licht und Elektronen. Einführung in die Quantenchemie Korrektorat: Dina Baars, Bern Illustrationen: Christoph

Mehr

Physik für Erdwissenschaften

Physik für Erdwissenschaften Physik für Erdwissenschaften 6. 12. 2005 (VO 18++) Emmerich Kneringer Schwingungen und Wellen Schwebungen, Wellenphänomene, Erdbebenwellen, Wasserwellen Was versteht man unter Physik Naturvorgänge erklären?

Mehr

Anfänge in der Antike

Anfänge in der Antike Akustik Eine wesentliche Grundlage der Musik ist der Schall. Seine Eigenschaften erforscht die Akustik (griechisch: ακουειν = hören). Physikalisch ist Schall definiert als mechanische Schwingungen und

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Wellen, Dispersion, Brechnung, stehende Wellen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 7. Feb. 016 Bernoulli-Gleichung Die Reynoldszahl

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

1 Literatur. 2 Grundlagen. 2.1 Wellen in elastisch deformierbaren Medien. Mechanik. Stand: 12. April 2016 Seite 1. Akustik (AKU)

1 Literatur. 2 Grundlagen. 2.1 Wellen in elastisch deformierbaren Medien. Mechanik. Stand: 12. April 2016 Seite 1. Akustik (AKU) Seite 1 Themengebiet: Mechanik 1 Literatur L. Bergmann, C. Schäfer, Lehrbuch der Experimentalphysik, Band 1, de Gruyter D. Meschede, Gerthsen Physik, Springer 2 Grundlagen 2.1 Wellen in elastisch deformierbaren

Mehr

Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik

Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik für Mediziner und Zahnmediziner Vorlesung 07 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Kontrollfragen Zeichnen Sie den typischen Verlauf einer Verformungskurve

Mehr

2 Mehrdimensionale mechanische Wellen

2 Mehrdimensionale mechanische Wellen TO Stuttgart OII 30 (Physik) Mehrdimensionale mechanische Wellen. Darstellung mehrdimensionaler Wellen Um die Beschreibung von mehrdimensionalen Wellen zu vereinfachen werden in Diagrammen nur die Wellenfronten

Mehr

5.2. Mechanische Wellen

5.2. Mechanische Wellen Dieter Suter - 97 - Physik B 5.. Mechanische Wellen 5..1. Lineare Kette Bereits im Kapitel Schwingungen hatten wir ein Modell diskutiert, in dem Massen durch Federn verbunden sind. Für eine Auslenkung

Mehr

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen 2 Mechanische Schwingungen und Wellen 2.1 Mechanische Schwingungen 2.1.1 Harmonische Schwingungen Federpendel, Fadenpendel 2.1.2 Gedämpfte Schwingungen 2.1.3 Erzwungene Schwingungen 2.2 Wellen 2.2.1 Transversale

Mehr

EINLEITUNG PHYSIKALISCHE CHARAKTERISTIKA

EINLEITUNG PHYSIKALISCHE CHARAKTERISTIKA EINLEITUNG Schall, Schwingungen oder Wellen, die bei Mensch oder Tier über den Gehörsinn Geräuschempfindungen auslösen können. Das menschliche Ohr ist in der Lage, Schall mit Frequenzen zwischen ungefähr

Mehr

Schwingungen & Wellen (Akustik) Physik für Medizin- und Zahnmedizinstudenten

Schwingungen & Wellen (Akustik) Physik für Medizin- und Zahnmedizinstudenten Schwingungen & Wellen (Akustik) Physik für Medizin- und Zahnmedizinstudenten 23. Februar und 1. März 2012 Dr. rer. nat. Thorsten Schweizer, Dipl.-Phys., MHM schweizer.thorsten@mh-hannover.de Hinweis: Version

Mehr

Mechanischen Wellen. 1. Wellenerscheinungen im Alltag - Charakteristische Eigenschaften

Mechanischen Wellen. 1. Wellenerscheinungen im Alltag - Charakteristische Eigenschaften Mechanischen Wellen Literatur Dorn-Bader Physik 12/13 S. 126 ff 1. Wellenerscheinungen im Alltag - Charakteristische Eigenschaften 1.1. Schülerarbeit S. 126/127 Wellen im Alltag Elektromagnetische Wellen

Mehr

Name: PartnerIn in Crime: Datum: Versuch: Ultraschall 1125B

Name: PartnerIn in Crime: Datum: Versuch: Ultraschall 1125B Name: PartnerIn in Crime: Datum: Versuch: Ultraschall 1125B Einleitung Eine Welle wird als ein räumlich und zeitlich verändertes Feld aufgefasst, das in der Lage ist, Energie (aber keine Materie) durch

Mehr

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen Vorbereitung zur Klausur Elektromagnetische Felder und Wellen 1/50 J. Mähnß Stand: 9. August 2016 c J. Mähnß 2/50 Maxwellgleichungen Maxwellgleichungen allgemein 3/50 ( B = µ 0 j V + ε ) E 0 t E = B t

Mehr

Inhalt dieses Vorlesungsteils - ROADMAP

Inhalt dieses Vorlesungsteils - ROADMAP Inhalt dieses Vorlesungsteils - ROADMAP 2 Von der Kavitation zur Sonochemie 21 Industrieller Einsatz von Ultraschall 22 Physikalische Grundlagen I Was ist Ultraschall? 23 Einführung in die Technik des

Mehr

Gekoppelte Schwingkreise verhalten sich wie gekoppelte mechanische Pendel

Gekoppelte Schwingkreise verhalten sich wie gekoppelte mechanische Pendel 1.3.8.5 Gekoppelte Schwingkreise verhalten sich wie gekoppelte mechanische Pendel Zwei induktiv gekoppelte LC-Kreise verhalten sich analog zu zwei gekoppelten Federn/Pendeln. Wie in der Mechanik kommt

Mehr

Einführung. Interferenz. Interferenz gleichlaufender Wellen

Einführung. Interferenz. Interferenz gleichlaufender Wellen kript Mechanische Wellen Interferenz C) 2014 - SchulLV 1 von 5 Einführung Hast du schon einmal etwas von Monsterwellen gehört? Wellen die so hoch sind, wie ein Mehrfamilienhaus? Diese Wellen sind zwar

Mehr

GRUNDLAGEN III, Teil I WELLEN. 1. Was sind Wellen? 2. Warum befaßt man sich mit Wellen? KAPITEL A Einleitung

GRUNDLAGEN III, Teil I WELLEN. 1. Was sind Wellen? 2. Warum befaßt man sich mit Wellen? KAPITEL A Einleitung 6 GRUNDLAGEN III, eil I WELLEN KAPIEL A Einleitung 1. Was sind Wellen? Im weitesten Sinne verstehen wir unter einer Welle die Ausbreitung einer Störung einer physikalischen Größe im Raum. Die entsprechende

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Wellen. Hier nur eindimensionale Wellen. Vorkommen: Schall, Licht, allgemeiner elktromagnetische Wellen, Wasserwellen...

Wellen. Hier nur eindimensionale Wellen. Vorkommen: Schall, Licht, allgemeiner elktromagnetische Wellen, Wasserwellen... Wellen Was sind Wellen? Hier nur eindimensionale Wellen Animation: Transversale und longitudinale Wellen Vorkommen: Schall, Licht, allgemeiner elktromagnetische Wellen, Wasserwellen... F Wie wird man einen

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Zusammenfassung. sin. W m². Einheit

Zusammenfassung. sin. W m². Einheit 17b Akustik 1 Zusammenfassung Schallgeschwindigkeit ist abhängig on den Eigenschaften des ediums ideales Gas (Thema Thermodynamik) Fehler im Skript Wellen kt[ K ] γc p /c V Gas γ gasspezifische m Konstante

Mehr

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Übung 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1. Ein U-förmiger Schlauch ist etwa zur Hälfte mit Wasser gefüllt. Wenn man

Mehr

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

Physik auf grundlegendem Niveau. Kurs Ph

Physik auf grundlegendem Niveau. Kurs Ph Physik auf grundlegendem Niveau Kurs Ph2 2013-2015 Kurze Erinnerung Operatorenliste zu finden unter: http://www.nibis.de/nli1/gohrgs/operatoren/operatoren_ab_2012/op09_10n W.pdf Kerncurriculum zu finden

Mehr

Wellen. 1.Begriffe. Sie breiten sich räumlich aus anders als ein einzelner Schwinger haben sie daher auch eine

Wellen. 1.Begriffe. Sie breiten sich räumlich aus anders als ein einzelner Schwinger haben sie daher auch eine Zeitx Wellen Seite 1 Wellen 1.Begriffe Definition: Welle: Störung, die sich in einem Stoff (in einem Gas, in einer Flüssigkeit oder in einem elastischen Festkörper) in einer, in zwei oder in drei Dimensionen

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Mechanische Schwingungen und Wellen Schwingungen sind zeitlich veränderliche, periodische Veränderung einer phys. Größe Wellen sind zeitlich und räumlich veränderliche periodische Veränd. einer phys. Größe

Mehr

Welche Aussage trifft zu? Schallwellen (A) sind elektromagnetische Wellen hoher Energie (B) sind infrarote, elektromagnetische Wellen (C) können sich im Vakuum ausbreiten (D) sind Schwingungen miteinander

Mehr

Musso: Physik I Teil 16 Stehende Wellen Seite 1

Musso: Physik I Teil 16 Stehende Wellen Seite 1 Musso: Physik I Teil 16 Stehende Wellen Seite 1 Tipler-Mosca 16. Überlagerung und stehende Wellen (Superposition, standing waves) 16.1 Überlagerung von Wellen (Superposition of waves) 16. Stehende Wellen

Mehr

Laser als Strahlungsquelle

Laser als Strahlungsquelle Laser als Strahlungsquelle Arten v. Strahlungsquellen Thermische Strahlungsquellen typisch kontinuierliches Spektrum, f(t) Fluoreszenz / Lumineszenzstrahler typisch Linienspektrum Wellenlänge def. durch

Mehr

Fakultät für Physik Physik und ihre Didaktik Prof. Dr. Bärbel Fromme. Die Sache mit dem Plopp. oder:

Fakultät für Physik Physik und ihre Didaktik Prof. Dr. Bärbel Fromme. Die Sache mit dem Plopp. oder: Universität Bielefeld Fakultät für Physik Physik und ihre Didaktik Prof. Dr. Bärbel Fromme Die Sache mit dem Plopp oder: Wie man die Druckbäuche von stehenden Wellen in einem einseitig geschlossenen Blasinstrument

Mehr

Akustik - Schallausbreitung, stehende Welle

Akustik - Schallausbreitung, stehende Welle Akustik - Schallausbreitung, stehende Welle Versuch im Physikalischen Praktikum des Mathematik/Informatik-Gebäudes Bearbeitet von Sheila Sabock, Andrea Bugl, Dr. Werner Lorbeer Stand 29.10.2012 Inhaltsverzeichnis

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

Physik II im Studiengang Elektrotechnik

Physik II im Studiengang Elektrotechnik Physik II im Studiengang Elektotechnik - Wellenfelde - Pof. D. Ulich Hahn SS 2008 Wellenfelde Auslenkungszustand eines ausgedehnten Mediums Medium: 2 dimensional, 3 dimensional Anegungszentum: 0...2 dimensional

Mehr

Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall

Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall Versuchsziel Geschwindigkeitsmessung mit Hilfe

Mehr

Gekoppeltes Pendel. Abbildung 1: Erdbebenwellen ko nnen große Scha den anrichten. Man unterscheidet longitudinale und transversale Erdbebenwellen.

Gekoppeltes Pendel. Abbildung 1: Erdbebenwellen ko nnen große Scha den anrichten. Man unterscheidet longitudinale und transversale Erdbebenwellen. c Doris Samm 008 1 Gekoppeltes Pendel 1 Der Versuch im U berblick Wasserwellen bereiten Ihnen Vergnu gen, Erdbebenwellen eher nicht, Schallwellen ko nnen manchmal nur Flederma use ho ren (Abb. 1, Abb.

Mehr

Handout zum Workshop. Schwerewellen. M. Fruman & F. Rieper Ein Kurs für die Teilnehmer der StuMeTa

Handout zum Workshop. Schwerewellen. M. Fruman & F. Rieper Ein Kurs für die Teilnehmer der StuMeTa Handout zum Workshop Schwerewellen M. Fruman & F. Rieper Ein Kurs für die Teilnehmer der StuMeTa 2010 Institut für Atmosphäre und Umwelt Theorie der atmosphärischen Dynamik und des Klimas http://user.uni-frankfurt.de/~fruman/stumeta/

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden

Mehr

Korrektorat: Dina Baars, Bern Illustrationen: Christoph Frei, Bern. 1. Auflage 2010 Alle Rechte vorbehalten Copyright Pädagogische Hochschule PHBern

Korrektorat: Dina Baars, Bern Illustrationen: Christoph Frei, Bern. 1. Auflage 2010 Alle Rechte vorbehalten Copyright Pädagogische Hochschule PHBern Günter Baars (unter Mitarbeit von R. Ciorciaro, S. Hitz, F. Lang, R. Schlegel, P. Süess) E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Leitprogramm: Quantenchemie und chemische Bindungen

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

2 AKUSTIK. Physik der Akustikgitarre M. Föller Nord, MECHANISCHE SCHWINGUNGEN OSZILLATOREN HARMONISCHE SCHWINGUNG

2 AKUSTIK. Physik der Akustikgitarre M. Föller Nord, MECHANISCHE SCHWINGUNGEN OSZILLATOREN HARMONISCHE SCHWINGUNG 2 Physik der Akustikgitarre M. Föller Nord, 26.8.9 Physik der Akustikgitarre Ein kleiner Einblick in die Physik der Schallwellen und der Erzeugung von Tönen auf der Akustikgitarre. Die folgenden Abschnitte

Mehr

5. Wellen. 5.1 Allgemeines Grundbegriffe Wellentypen Mathematische Beschreibung harmonischer Wellen 5

5. Wellen. 5.1 Allgemeines Grundbegriffe Wellentypen Mathematische Beschreibung harmonischer Wellen 5 Prof. Dr. Roland Böhmer Physik B SS 03 5. Wellen 5. Wellen 1 5.1 Allgemeines 5.1.1 Grundbegriffe 5.1. Wellentypen 4 5.1.3 Mathematische Beschreibung harmonischer Wellen 5 5. Mechanische Wellen 8 5..1 Seilwellen

Mehr

Harmonische Schwingung die einfachste Schwingung ist die harmonische Schwingung

Harmonische Schwingung die einfachste Schwingung ist die harmonische Schwingung 1. Schwingungen Fast alles schwingt, d.h. der Zustand ändert sich periodisch it der Zeit wie in Kreisbewegung. Bsp. Uhr, Kolben i Autootor, wippende Boote auf de Wasser. Haronische Schwingung die einfachste

Mehr

Akustik. t 1 > t 0. x = c t

Akustik. t 1 > t 0. x = c t Akustik Wir kehren jetzt von der Wärmestrahlung (im Sinne der Thermodynamik eines Photonengases) zurück zu einem normalen Gas (oder gar einem Festkörper) und betrachten, wie sich eine Störung im Medium

Mehr

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr