Einführung in die Numerik strukturerhaltender Zeitintegratoren. Leonard Schlag 6. Dezember 2010

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Numerik strukturerhaltender Zeitintegratoren. Leonard Schlag 6. Dezember 2010"

Transkript

1 Einführung in die Numerik strukturerhaltender Zeitintegratoren Leonard Schlag 6. Dezember

2 Inhaltsverzeichnis 1 Einführung in die Numerik strukturerhaltender Zeitintegratoren Häuge Problemstellung: Das N-Körper Problem Grenzen der analytischen Lösungsmethoden Bekannte numerische Verfahren Einfache strukturerhaltende Zeitintegratoren Symplektische Verfahren Beispiele für symplektische Verfahren Numerische Experimente 7 3 Literaturverzeichnis 12 2

3 1 Einführung in die Numerik strukturerhaltender Zeitintegratoren In diesem Kapitel wollen wir die Einführung von strukturerhaltenden numerischen Verfahren motivieren. Später werden wir sehen, dass diese Verfahrensklasse optimal für die Approximation von Hamilton-Systemen ist und es viele Methoden zur Konstruktion solcher Verfahren gibt. 1.1 Häuge Problemstellung: Das N-Körper Problem Energieerhaltende dynamische Systeme, wie sie zum Beispiel in der Molekularphysik oder Astrophysik vorkommen, werden häug durch das klassische N-Körper Problem beschrieben. Hier werden N Punktmassen jeweils ein Anfangswert (Masse m i, Ort q i und Geschwindigkeit v i, vgl. Abbildung 1), zugewiesen. Ebenso werden mittels physikalischer Gesetze (z.b. Newton) die Kräfte formuliert, welche die Punktmassen aufeinander auswirken [1]. Für gegebene Anfangsbedingungen ist man nun daran interessiert, wie sich das System in einem langen Zeitraum verhält. Abbildung 1: Beispiel eines N-Körper Problems Es wird angenommen, dass die Kraft am i-ten Teilchen über den negativen Gradienten einer Funktion V, welche die potentielle Energie des i-ten Teilchens in Abhängigkeit der anderen Teilchen beschreibt, bestimmt werden kann. Also: F i = qi (V (q 1, q 2,..., q N )) (1) In Form einer Dierentialgleichung lässt sich das N-Körper Problem nun wie folgt 3

4 formulieren: d dt q i = v i (2) d m i dt v i = F i i = 1,..., N (3) Die Gesamtenergie E(q, v) entlang der exakten Lösung (q(t), v(t)) eines N-Körper Problems, welche zu jeder Zeit gleich groÿ ist, lässt sich über die Summe aller Energien bestimmen: E(q, v) = 1 2 N m i v i 2 + V (q) i=1 Anmerkung: Diese Gleichung ist insofern wichtig, als dass sie später die Basis für Hamilton-Systeme bildet. Im Folgenden wird stets von einer Problemstellung nach 1.1 ausgegangen 1.2 Grenzen der analytischen Lösungsmethoden Analytische Methoden, welche benutzt werden können um gewöhnliche und partielle Dierentialgleichungen zu lösen, sind bei den meisten physikalischen Problemstellungen der Form (2) nicht anwendbar. Beispiel für ein nicht exakt lösbares Problem: Beispiel 1: Das 3-Körper Problem d dt x i = v i, i {1, 2, 3} (4) d 3 dt v Gm i m l (x i x l ) i = x i x l 3 (5) l=1,l i Anmerkung: In Bsp. 1 ist x i ein Vektor. 1.3 Bekannte numerische Verfahren Aus Numerik 1 sind bereits diverse numerische Verfahren bekannt, um allgemeine Dierentialgleichungen zu lösen. Hierzu gehören zum Beispiel: 1 Expliziter Euler z n+1 = z n + hf(z n ) 2 Impliziter Euler z n+1 = z n + hf(z n+1 ) 4

5 3 Klassisches Runge Kutta k 1 = f(z n ) k 2 = f(z n + h 2 k 1) k 3 = f(z n + h 2 k 2) k 4 = f(z n + hk 3 ) z n+1 = z n + h 6 (k 1 + 2k 2 + 2k 3 + k 4 ) Schwächen der bisherigen Verfahren: ˆ Keines der Verfahren gewährleistet Energieerhaltung / Strukturerhaltung (Theoretisch liefert h 0 Energie- und Strukturerhaltung, jedoch sind sehr kleine Schrittweiten in der Praxis nicht anwendbar) ˆ Meistens steigt der Fehler mit der Gröÿe des Zeitintervalls, jedoch ist ein groÿes Zeitintervall oft von Interesse Die Schwächen der Verfahren lassen sich sehr gut am einfachen Beispiel des 3- Körper Problems (4)&(5) ausmachen (vgl. Kapitel 2). 1.4 Einfache strukturerhaltende Zeitintegratoren Symplektische Verfahren Die Klasse der symplektischen Verfahren eignet sich sehr gut zur Beschreibung von energieerhaltenden dynamischen Systemen. Dies liegt daran, dass sie die Struktur des zugrundeliegenden Anfangwertproblems erhalten. Um einen kleinen Einblick in die Funktionsweise dieser numerischen Methoden zu erhalten, benötigt man die Denition einer symplektischen Funktion. Def. 1: Symplektische Abbildung Eine Lineare Abbildung A : R 2d R 2d heiÿt symplektisch, wenn gilt: mit ω deniert als: ω(av, Aw) = ω(v, w) ω(v, w) = v T Jw J = v, w R 2d ( 0 ) Id I d 0 5

6 Dies ist äquivalent zu A T JA = J [2] Bemerkung 1: Für d = 1 gilt A symplektisch det(a) = 1 Geometrisch interpretiert erhält A angewandt auf 2 Vektoren η, ξ R 2 die Fläche des Parallelograms, welches von η und ξ aufgespannt wird: Abbildung 2: Flächenerhaltung einer symplektischen linearen Abbildung A Def. 2: Eine dierenzierbare Abbildung g : U R 2d mit U R 2d oen heiÿt symplektisch, falls die Jakobi-Matrix g (v) für alle v U symplektisch ist, d.h. g (v) T Jg (v) = J Beispiele für symplektische Verfahren Ein Einschrittverfahren heiÿt symplektisch, falls es, angewandt auf ein Hamilton- System, eine symplektische Abbildung beschreibt [3]. Die genaue Begründung für die Strukturerhaltung symplektischer Verfahren wird in späteren Kapiteln geliefert, jedoch lässt es sich informal dadurch erklären, dass der Fluss von Hamilton-Systemen symplektisch ist und die Verfahren aufgrund ihrer Symplektizität gewisse Gröÿen erhalten. Beispiel 2: Symplektische Euler-Verfahren (q, v wie in (2) und (3)) v n+1 = v n + hf (q n ) q n+1 = q n + hv n+1 Das symplektische Euler-Verfahren kann als Verschmelzung des expliziten und impliziten Euler-Verfahrens gesehen werden. Hierbei bleibt es dennoch explizit, da es die spezielle Form der Dierentialgleichung in 1.1 ausnutzt. Dieses Verfahren hat denselben Aufwand wie das explizite Euler-Verfahren, jedoch kann man den Unterschied am Beispiel des mathematischen Pendels leicht erkennen ( vgl. 6

7 Kapitel 2). Beispiel 3: Störmer-Verlet Verfahren v n+ 1 2 = v n + h 2 F (qn ) q n+1 = q n + hv n+ 1 2 v n+1 = v n h 2 F (qn+1 ) Das Störmer-Verlet Verfahren ist ein symplektisches Verfahren der Ordnung 2 und nutzt ebenfalls die Form der Dierentialgleichung in 1.1 aus. Auch dieses Verfahren ist angewandt auf Bsp. 1 explizit. 2 Numerische Experimente Wir wenden die in 1.3 und genannten Verfahren auf das 3-Körper Problem und das mathematische Pendel an, um die Unterschiede der verschiedenen Verfahren deutlich zu machen. Das mathematische Pendel Das mathematiche Pendel wird durch folgende Dierentialgleichung beschrieben: d dt ϕ = v (6) d dt v = g sin(ϕ(t)) L (7) Verwendete Konstanten: Masse m = 1, g = 1, L = 1 nach Gl. (7) Anfangswerte: ϕ 0 = 50, v 0 = 1 7

8 Abbildung 3: Phasenkurve und Energiefehler für das explizite und implizite Euler Verfahren im Intervall [0,60] Sekunden. Schrittweite h=0.06 In Abbildung 3 lassen sich deutlich die Mängel des impliziten und expliziten Euler-Verfahrens erkennen. Das implizite Verfahren wirkt dämpfend auf das Pendel, was bedeutet, dass (ϕ, v) (0, 0) für groÿe Zeitintervalle. Dies erklärt auch, warum der prozentuale Energiefehler des impliziten Euler-Verfahrens gegen 0 konvergiert. Im Gegensatz dazu wirkt das explizite Verfahren anregend auf das Pendel. Somit erhöht sich der maximale Energiefehler mit der Gröÿe des Zeitintervalls und nach 60 Sekunden liegt der prozentuale Fehler bereits bei über 200%. Wie die echte Phasenkurve des Pendelproblems aussieht erkennt man an der nächsten Abbildung (Abbildung 4). Hier wurde für die Approximation das symplektische Euler-Verfahren mit denselben Anfangsbedingungen verwendet. Dieses Verfahren wirkt weder dämpfend noch anregend auf das System und erhält auch für groÿe Zeiträume die Energie (mit einem kleinen, jedoch bezüglich der Intervallgröÿe konstantem Fehler). 8

9 Abbildung 4: Phasenkurve und Energiefehler für das symplektische Euler- Verfahren im Intervall [0,60] Sekunden. Schrittweite h=0.06 9

10 Das 3-Körper Problem: Starre Sonne-Erde-Jupiter Abbildung 5: Bahnkurve und Energiefehler für das explizite Euler-Verfahren im Intervall [0,64] Jahre. Schrittweite h=2.9 Tage Abbildung 6: Bahnkurve und Energiefehler für das implizite Euler-Verfahren im Intervall [0,64] Jahre. Schrittweite h=2.9 Tage 10

11 Abbildungen 5 und 6 lassen sich analog zu Abbildung 3 interpretieren. Das Verhalten der Erde (innerer Planet) in Abbildung 6 resultiert aus der Dämpfung des impliziten Verfahrens. Da jedoch der Nullpunkt (hier der Mittelpunkt des Graphen) auch eine Singularität des Systems darstellt (vgl. Gleichung 5), wird die Erde beim Annähern an diesen Punkt nach auÿen geschleudert. Im Vergleich dazu wurde in Abbildung 7 das 3-Körper-Problem mit einem symplektischen Verfahren der Ordnung 2 (Störmer-Verlet) approximiert, welches den maximalen Energiefehler auch für einen groÿen Zeitraum klein hält. Abbildung 7: Bahnkurve und Energiefehler für das Störmer-Verlet Verfahren im Intervall [0,64] Jahre. Schrittweite h=2.9 Tage 11

12 3 Literaturverzeichnis Literatur [1] B. Leimkuhler und S. Reich, Simulating Hamiltonian Dynamics, vol. 14 of Cambridge Monographs on Applied and Computional Mathematics, S. 2, Cambridge University Press, Cambridge, UK, 2004 [2] R. Berndt, Einführung in die Symplektische Geometrie, S. 9f, Vieweg, Wiesbaden, 1998 [3] E. Hairer, Geometric Numerical Integrators, Lecture 2: Symplectic integrators, S. 1, TU München, München,

Seminar Strukturerhaltende Zeitintegratoren für Anfangswertprobleme Hamilton Systeme. Andreas Sturm

Seminar Strukturerhaltende Zeitintegratoren für Anfangswertprobleme Hamilton Systeme. Andreas Sturm Seminar Strukturerhaltende Zeitintegratoren für Anfangswertprobleme Hamilton Systeme Andreas Sturm 25. November 2010 Inhaltsverzeichnis 1 Einleitung 2 2 Hamilton Systeme 3 2.1 Definition...............................

Mehr

Strukturerhaltende Integratoren für Hamiltonsysteme

Strukturerhaltende Integratoren für Hamiltonsysteme Strukturerhaltende Integratoren für Hamiltonsysteme Anna Schell 11. Dezember 2010 1 Inhaltsverzeichnis 1 Symplektizität 3 1.1 Symplektizität des Flusses eines Hamiltonsystems......... 3 1.2 Symplektizität

Mehr

Rückwärtsfehleranalyse und Langzeitenergieerhaltung

Rückwärtsfehleranalyse und Langzeitenergieerhaltung Rückwärtsfehleranalyse und Langzeitenergieerhaltung Henrike Köpke 9. Dezember 010 1 Inhaltsverzeichnis 1 Einleitung 3 Rückwärtsfehleranalyse 4.1 Idee der Vorwärts- und der Rückwärtsfehleranalyse..........

Mehr

Mehrschrittverfahren und Strukturerhaltung. Valentin Göbel 03. Februar 2011

Mehrschrittverfahren und Strukturerhaltung. Valentin Göbel 03. Februar 2011 Mehrschrittverfahren und Strukturerhaltung Valentin Göbel 03. Februar 2011 1 Inhaltsverzeichnis 1 Einleitung 3 2 Arten von Mehrschrittverfahren 4 2.1 Wiederholung: Lineare Mehrschrittverfahren............

Mehr

Das klassische N-Körper-Problem Computational Physics-Praktikum WS 2007/08

Das klassische N-Körper-Problem Computational Physics-Praktikum WS 2007/08 Das klassische N-Körper-Problem Computational Physics-Praktikum WS 27/8 Johannes Märkle,Philipp Buchegger Betreuer Roland Speith Tübingen, den 8. November 27 Inhaltsverzeichnis Aufgabenstellung................................................

Mehr

1/15. Das n-körper Problem. Numerische Mathematik 1 WS 2011/12

1/15. Das n-körper Problem. Numerische Mathematik 1 WS 2011/12 1/15 Das n-körper Problem Numerische Mathematik 1 WS 2011/12 Ziel 2/15 Beschreibung der Bewegung von n N Punktmassen im luftleeren Raum (hier R 2 ), wobei jede Masse auf jede andere Masse eine gewisse

Mehr

Zeitentwicklung von Observablen und Zuständen in der klassischen Mechanik

Zeitentwicklung von Observablen und Zuständen in der klassischen Mechanik Zeitentwicklung von Observablen und Zuständen in der klassischen Mechanik Martin Vojta 05.01.2012 1 Hamiltonsche Mechanik Die Hamiltonsche Mechanik befasst sich mit der Bewegung im Phasenraum. Dabei kann

Mehr

ODE-Solver. Inhalt. Einleitung. grundlegende Algorithmen. weiterführende Algorithmen

ODE-Solver. Inhalt. Einleitung. grundlegende Algorithmen. weiterführende Algorithmen Martin Reinhardt angewandte Mathematik 8. Semester Matrikel: 50108 ODE-Solver 11. Mai 2011 Inhalt Einleitung grundlegende Algorithmen weiterführende Algorithmen Martin Reinhardt (TUBAF) 1 Orientierung

Mehr

Seminar Gewöhnliche Dierentialgleichungen

Seminar Gewöhnliche Dierentialgleichungen Seminar Gewöhnliche Dierentialgleichungen Dynamische Systeme II Valentin Jonas 8. 6. 215 1 Einleitung In dem letzten Kapitel "Dynamische Systeme I" ging es vor allem um in t glatte, autonome, dynamische

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Numerische Methoden von gewöhnlichen Differentialgleichungen (AWP) Prof. Dr.-Ing. K. Warendorf, Prof. Dr.-Ing. P. Wolfsteiner Hochschule für Angewandte Wissenschaften München (FH)

Mehr

2. Numerische Verfahren für AWPe 2.1 Das Euler-Verfahren

2. Numerische Verfahren für AWPe 2.1 Das Euler-Verfahren 2.1 Das Euler-Verfahren Wir betrachten das AWP y = f (t, y), y(t 0 ) = y 0. (AWP) Unter den Voraussetzungen von Satz 1.1 besitzt es eine eindeutige Lösung, sagen wir über dem Intervall I. Wir wollen diese

Mehr

Rheinisch-Westfälische Technische Hochschule. Gegeben seien eine gewöhnliche Dierentialgleichung (DGL) und ein Anfangswert. γ l K l.

Rheinisch-Westfälische Technische Hochschule. Gegeben seien eine gewöhnliche Dierentialgleichung (DGL) und ein Anfangswert. γ l K l. Rheinisch-Westfälische Technische Hochschule Institut für Geometrie und Praktische Mathematik Numerische Mathematik II Wintersemester 2009 Priv. Doz. Dr. Helmuth Jarausch Dr. KarlHeinz Brakhage Übung :

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Hamilton-Systeme. J. Struckmeier

Hamilton-Systeme. J. Struckmeier Invarianten für zeitabhängige Hamilton-Systeme J. Struckmeier Vortrag im Rahmen des Winterseminars des Instituts für Angewandte Physik der Johann-Wolfgang-Goethe-Universität Frankfurt a.m. Hirschegg, 04.

Mehr

Strukturerhaltende Verfahren. Hamiltonsysteme, Symplektizität

Strukturerhaltende Verfahren. Hamiltonsysteme, Symplektizität Strukturerhaltende Verfahren Hamiltonsysteme, Symplektizität Seminar Numerik gewöhnlicher Differentialgleichungen bei Prof. Bastian WS 00 Eine Ausarbeitung von Stephan-Marian Piatkowski Inhaltsverzeichnis

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort

Mehr

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 1

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 1 D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 1 Best before: Di. 8.3 / Mi. 9.3, in den Übungsgruppen Koordinatoren: Alexander Dabrowski, HG G 52.1, alexander.dabrowski@sam.math.ethz.ch

Mehr

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit:

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit: C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel

Mehr

PVK Numerische Methoden Tag 1

PVK Numerische Methoden Tag 1 PVK Numerische Methoden Tag 1 Lucas Böttcher ETH Zürich Institut für Baustoffe Wolfgang-Pauli-Str. 27 HIT G 23.8 8093 Zürich lucasb@ethz.ch June 19, 2017 Lucas Böttcher (ETH Zürich) PVK Numerik June 19,

Mehr

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x).

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x). I Neunte Übungseinheit Inhalt der neunten Übungseinheit: Gewöhnliche Differentialgleichungen erster Ordnung I. Gewöhnliche Differentialgleichungen erster Ordnung Aufgabenstellung: Explizite gewöhnliche

Mehr

Hamilton-Jacobi-Formalismus I

Hamilton-Jacobi-Formalismus I Hamilton-Jacobi-Formalismus I 1 Hamilton-Jacobi-Formalismus I Johannes Berger Leonard Stimpfle 05.06.2013 Die Hauptschwierigkeit bei der Integration gegebener Differentialgleichungen scheint in der Einführung

Mehr

Serie 2. D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Luc Grosheintz

Serie 2. D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Luc Grosheintz D-MATH Numerische Methoden FS 206 Dr. Vasile Gradinaru Luc Grosheintz Serie 2 Abgabedatum: Di. 4.3 / Mi. 5.3 oder früher, in den Übungsgruppen Koordinatoren: Luc Grosheintz, HG J 46, luc.grosheintz@sam.math.ethz.ch

Mehr

Computersimulationen in der Astronomie

Computersimulationen in der Astronomie Computersimulationen in der Astronomie Fabian Heimann Universität Göttingen, Fabian.Heimann@stud.uni-goettingen.de Astronomisches Sommerlager 2013 Inhaltsverzeichnis 1 Differentialgleichungen 3 1.1 Beispiele.....................................

Mehr

- Numerik in der Physik - Simulationen, DGL und Co. Max Menzel

- Numerik in der Physik - Simulationen, DGL und Co. Max Menzel - Numerik in der Physik - Simulationen, DGL und Co. Max Menzel 4.1.2011 1 Übersicht Differenzialgleichungen? Was ist das? Wo gibt es das? Lösen von Differenzialgleichungen Analytisch Numerisch Anwendungen

Mehr

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert.

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert. Kapitel 4 Berechnung von Lösungen 41 Die Euler sche Polygonzugmethode Die Grundlage dieser Methode ist die einfache Beobachtung, dass f(u, t) in der Nähe eines Punktes als nahezu konstant angesehen werden

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

TEIL I: KINEMATIK. 1 Eindimensionale Bewegung. 1.1 Bewegungsfunktion und s-t-diagramm

TEIL I: KINEMATIK. 1 Eindimensionale Bewegung. 1.1 Bewegungsfunktion und s-t-diagramm TEIL I: KINEMATIK Unter Kinematik versteht man die pure Beschreibung der Bewegung eines Körpers (oder eines Systems aus mehreren Körpern), ohne nach den Ursachen dieser Bewegung zu fragen. Letzteres wird

Mehr

Adaptive Mehrschrittverfahren

Adaptive Mehrschrittverfahren Adaptive Mehrschrittverfahren Moritz Neumann 21. März 2011 1 Inhaltsverzeichnis 1 Vorwort 3 2 Einführung 3 3 Adaptive Seuerung der Schrittweite und Ordnung 5 3.1 Adams-Verfahren................................

Mehr

Euler-Verfahren. exakte Lösung. Euler-Streckenzüge. Folie 1

Euler-Verfahren. exakte Lösung. Euler-Streckenzüge. Folie 1 exakte Lösung Euler-Verfahren Folie 1 Euler-Streckenzüge Ein paar grundlegende Anmerkungen zur Numerik Die Begriffe Numerik bzw. Numerische Mathematik bezeichnen ein Teilgebiet der Mathematik, welches

Mehr

Burgersgleichung in 1D und 2D

Burgersgleichung in 1D und 2D Burgersgleichung in 1D und 2D Johannes Lülff Universität Münster 5.12.2008 Inhaltsverzeichnis 1 Einführung 2 Numerik 3 Phänomenologie 4 Analytische Ergebnisse 5 Zusammenfassung Herkunft der Burgersgleichung

Mehr

Fragen zu Kapitel III Seite 1 III

Fragen zu Kapitel III Seite 1 III Fragen zu Kapitel III Seite 1 III Grundbegriffe der klassischen Mechanik Fragen 3.1 bis 3.8 Zur Beantwortung der Fragen benötigen Sie folgende Daten Masse der Erde 5,974 10 4 kg Erdradius 6371 km Erdbeschleunigung

Mehr

PVK Probeprüfung FS 2017

PVK Probeprüfung FS 2017 PVK Probeprüfung FS 07 Lucas Böttcher Numerische Methoden ETH Zürich June 3, 07. Radioaktiver Zerfall Gegeben sind zwei radioaktive Substanzen, welche mit den Raten λ = 0.5 und λ = 0. zerfallen: A λ B

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen III (CES) WS 2017/2018 Klausur 23. März 2018

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen III (CES) WS 2017/2018 Klausur 23. März 2018 Prof. Dr. Manuel Torrilhon Prof. Dr. Sebastian Noelle Öffnen Sie den Klausurbogen erst nach Aufforderung! Zugelassene Hilfsmittel: Mathematische Grundlagen III (CES) WS 2017/2018 Klausur 23. März 2018

Mehr

Numerisches Programmieren (IN0019)

Numerisches Programmieren (IN0019) Numerisches Programmieren (IN0019) Frank R. Schmidt Winter Semester 2016/2017 11. Gewöhnliche Differenzialgleichungen................................................................................. 2

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

Gewöhnliche Differentialgleichungen Woche 10. Spezielles für zweite Ordnung

Gewöhnliche Differentialgleichungen Woche 10. Spezielles für zweite Ordnung d Gewöhnliche Differentialgleichungen Woche 0 Spezielles für zweite Ordnung 0. Phasenebene Wenn wir die autonome Differentialgleichung zweiter Ordnung u (t = f (u(t, u (t (0. studieren wollen, ist ein

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen 10. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 22. Mai 2014 Gliederung 1 Aufgabenstellung und Interpretation

Mehr

Dr. R. Käppeli D-ITET, D-MATL Winter Numerische Methoden Punkte

Dr. R. Käppeli D-ITET, D-MATL Winter Numerische Methoden Punkte Dr. R. Käppeli D-ITET, D-MATL Winter 2018 Prüfung Numerische Methoden Wichtige Hinweise Die Prüfung dauert 90 Minuten. Erlaubte Hilfsmittel: 5 A4-Blätter doppelseitig (=10 Seiten) eigenhändig und handschriftlich

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 17 Vektoren Kapitel 15 Vektoren Mathematischer Vorkurs TU Dortmund Seite 13 / 17 Vektoren 151 Denition: Vektoren im Zahlenraum

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Einführung und Beispiele

Einführung und Beispiele Kapitel 7 Gewöhnliche Differentialgleichungen Prof. R. Leithner, E. Zander Einführung in numerische Methoden für Ingenieure 7/2 Einführung und Beispiele Prof. R. Leithner, E. Zander Einführung in numerische

Mehr

Zusammenfassung: Hamilton-Jacobi-Theorie

Zusammenfassung: Hamilton-Jacobi-Theorie Zusammenfassung: Hamilton-Jacobi-Theorie Anwendbar für: Ziel: finde kanonische Transformation, so dass folgende Größen automatisch erhalten sind: Formale Forderung: Bewegungsgleichungen für neue Variablen:

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel;

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; Kapitel Der Satz von Taylor. Taylor-Formel und Taylor-Reihe (Taylor-Polynom; Restglied; Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; die Klasse C ; reell analytische Funktionen) In

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 7 Gewöhnliche

Mehr

Hamilton-Jacobi-Theorie

Hamilton-Jacobi-Theorie Hamilton-Jacobi-Theorie Bewegungsgleichungen werden einfacher, wenn alle (!) neuen Koordinaten zyklisch sind. Dies ist insbesondere dann der Fall, wenn eine zeitabhängige kanonische Transformation existiert,

Mehr

Mathematik A Musterlösung Nachholprüfung Herbstsemester 2016

Mathematik A Musterlösung Nachholprüfung Herbstsemester 2016 Mathematik A Musterlösung Nachholprüfung Herbstsemester 206 Prof. Dr. Enrico De Giorgi 3. Juli 207 Fachbereich für Mathematik und Statistik, Universität St. Gallen, Bodanstrasse 6, 9000 St. Gallen, Schweiz,

Mehr

5.4 Hamilton-Mechanik

5.4 Hamilton-Mechanik 5.4 Hamilton-Mechanik 157 5.4 Hamilton-Mechanik Die Lagrangegleichung ist das Mittel zur Wahl zum Lösen allgemeiner mechanischer Aufgaben, wobei es unerheblich ist, welches konkrete Problem und unter Benutzung

Mehr

2. Anfangswertprobleme 2. Ordnung

2. Anfangswertprobleme 2. Ordnung 2. Anfangswertprobleme 2. Ordnung 2.1 Grundlagen 2.2 Mathematisches Pendel 2.3 Selbstzentrierung Prof. Dr. Wandinger 7. Numerische Methoden Dynamik 2 7.2-1 2.1 Grundlagen Für ein Anfangswertproblem 2.

Mehr

Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung

Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y(x), welche erfüllt y = f(x,y) y(x 0 ) = y 0 Differentialgleichung Anfangsbedingung Wenn f in x stetig

Mehr

Klausur im Fach Numerische Methoden II Universität Siegen; Fachbereich Maschinenbau,

Klausur im Fach Numerische Methoden II Universität Siegen; Fachbereich Maschinenbau, Aufgabe 1 (Polynominterpolation) Abb. 1: Roboter für Positionierungsaufgaben Industrieroboter erledigen oft Positionierungsaufgaben, indem sie einen vorgegebenen Pfad abfahren. Diese Trajektorie entspricht

Mehr

Hybride Systeme. Wolfgang Kleier. 27. Juni Universität Bayreuth

Hybride Systeme. Wolfgang Kleier. 27. Juni Universität Bayreuth Hybride Systeme Wolfgang Kleier Universität Bayreuth 27. Juni 2008 Inhalt 1 Einleitung Was ist ein hybrides System? Hybrider Automat 2 Beispiele Wasserstandskontrollsystem Hüpfender Ball Gehemmtes Pendel

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Differenzialgleichungen

Differenzialgleichungen Mathematik I für Biologen, Geowissenschaftler und Geoökologen 30. Januar 2008 (System von) Differenzialgleichung(en) Schwingungsgleichung Newtonsche Mechanik Populationsdynamik...DGLn höherer Ordnung auf

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differenzialgleichungssysteme 5.1-1 1.1 Grundlagen

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,

Mehr

Symplektische Geometrie

Symplektische Geometrie Symplektische Geometrie Def. Eine symplektische Form auf U R 2n ist eine geschlossene, nichtausgeartete 2-Differentialform. }{{}}{{} d.h. dω = 0 wird gleich definiert Wir bezeichnen sie normalerweise mit

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)

Mehr

Numerische Verfahren für gewöhnliche Differentialgleichungen. Literaturliste. P.Deuflhard, F.Bornemann: Numerische Mathematik II, De Gruyter, 1994.

Numerische Verfahren für gewöhnliche Differentialgleichungen. Literaturliste. P.Deuflhard, F.Bornemann: Numerische Mathematik II, De Gruyter, 1994. Numerische Verfahren für gewöhnliche Differentialgleichungen. Einschrittverfahren I: Einfache Verfahren. Konvergenzordnung. Einschrittverfahren II: Runge Kutta Verfahren 4. Stabilität 5. Schrittweitensteuerung

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Numerische Methoden von gewöhnlichen Differentialgleichungen (AWP) Prof. Dr.-Ing. K. Warendorf, Prof. Dr.-Ing. P. Wolfsteiner Hochschule für Angewandte Wissenschaften München Fakultät

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Burgers Gleichung. Juri Chomé, Olaf Merkert. 2. Dezember J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25

Burgers Gleichung. Juri Chomé, Olaf Merkert. 2. Dezember J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember / 25 Burgers Gleichung Juri Chomé, Olaf Merkert 2. Dezember 2009 J. Chomé, O. Merkert () Burgers Gleichung 2. Dezember 2009 1 / 25 Gliederung 1 Geschichte 2 Herleitung 3 Charakteristiken 4 Numerische Lösung

Mehr

Numerische Verfahren für gewöhnliche Differentialgleichungen

Numerische Verfahren für gewöhnliche Differentialgleichungen Numerische Verfahren für gewöhnliche Differentialgleichungen. Einschrittverfahren I: Einfache Verfahren. Konvergenzordnung. Einschrittverfahren II: Runge Kutta Verfahren 4. Stabilität 5. Schrittweitensteuerung

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite / 50 Kapitel 5 Mathematischer Vorkurs TU Dortmund Seite 54 / 50 Scheitel S Schenkel α Winkelbereich Winkel werden in Grad

Mehr

Mathematische Grundlagen der dynamischen Simulation

Mathematische Grundlagen der dynamischen Simulation Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei

Mehr

Hamilton-Mechanik im erweiterten Phasenraum

Hamilton-Mechanik im erweiterten Phasenraum Hamilton-Mechanik im erweiterten Phasenraum Jürgen Struckmeier Antrittsvorlesung im Rahmen des Physikalischen Kolloquiums des Fachbereichs Physik der Johann Wolfgang Goethe-Universität Frankfurt am Main

Mehr

D-MATH Numerische Methoden FS 2018 Dr. Vasile Gradinaru Kjetil Olsen Lye. Serie 6

D-MATH Numerische Methoden FS 2018 Dr. Vasile Gradinaru Kjetil Olsen Lye. Serie 6 D-MATH Numerische Methoden FS 08 Dr. Vasile Gradinaru Kjetil Olsen Lye Serie 6 Abgabedatum: Di. 08.0 / Mi. 09.0, in den Übungsgruppen, oder im HG J 68. Koordinatoren: Kjetil Olsen Lye, HG G 6. kjetil.lye@sam.math.ethz.ch

Mehr

Wir untersuchen die Bewegungsleichung des mathematischen (gedämpften) Fadenpendels in einer Dimension. = 0, ϕ (0)

Wir untersuchen die Bewegungsleichung des mathematischen (gedämpften) Fadenpendels in einer Dimension. = 0, ϕ (0) 3.1 Beispiel: mathematisches Pendel Wir untersuchen die Bewegungsleichung des mathematischen (gedämpften) Fadenpendels in einer Dimension ϕ+α ϕ+ω 2 0 sinϕ = 0, Ω2 0 = g/l (1) Das äquivalente System 1.

Mehr

Beispiel: Rollender Reifen mit

Beispiel: Rollender Reifen mit Beispiel: Rollender Reifen mit Kinetische Energie: Trägheitsmoment Potenzielle Energie: Zwangsbedingung: konstant nicht-gleitendes Rollen, holonome ZB Erweiterte Lagrange-Fkt.: t-abhängig: Interpretation:

Mehr

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Was sind typische qualitative Aussagen bei gewöhnlichen Differentialgleichungen der Form x (t) = f(t, x)? (1) 1. Andere

Mehr

Exakte Dierentialgleichungen

Exakte Dierentialgleichungen Exakte Dierentialgleichungen Markus Vock Ausarbeitung zum Vortrag im Seminar Mathematische Modellierung (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter Zusammenfassung: Auf exakte bzw. vollständige

Mehr

NUMERIK 1. Sommersemester 2016

NUMERIK 1. Sommersemester 2016 NUMERIK 1 Soerseester 2016 KLAUSUR LÖSUNGSVORSCHLAG Aufgabe 1 (Multiple Choice) (ca. 20 Minuten, 8 Punkte) Kreuzen Sie korrekte Aussagen an. Es können ehrere Antworten richtig sein, indestens eine ist

Mehr

Lösung II Veröentlicht:

Lösung II Veröentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse ist gegeben durch x = 6m 60(m/s)t + 4(m/s 2 )t 2, wobei x in Metern t in Sekunden ist (a) Wo ist das Teilchen zur Zeit t= 0 s? (2 Punkte)

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik Prof. Dr. Th. Feldmann 21. Januar 2014 Kurzzusammenfassung Vorlesung 23 vom 21.1.2014 Satz von Liouville Der Fluß eines Hamilton schen Systems im Phasenraum

Mehr

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten 6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten Dieser Abschnitt ist ein Einschub. Gewöhnliche DGL werden im nächsten Semester behandelt. Unter einer linearen gewöhnlichen DGL

Mehr

2.3.1 Explizite Runge-Kutta-Verfahren

2.3.1 Explizite Runge-Kutta-Verfahren Somit ist y(t + h) = y + hf(t, y ) + h (f t (t, y ) + f y (t, y )f(t, y )) + O(h 3 ) Setzen wir Φ(t, y, h) := f(t, y) + h (f t(t, y) + f y (t, y)f(t, y)), so erhalten wir ein Verfahren mit der Konsistenzordnung

Mehr

Differenzialgleichungen

Differenzialgleichungen Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Differenzialgleichungen Übersicht Grundsätzliches 1 Grundsätzliches Problemstellung Richtungsfeld Beispiel 2 Eulerverfahren Heunverfahren

Mehr

Numerische Lösung von Differentialgleichungen

Numerische Lösung von Differentialgleichungen Numerische Lösung von Differentialgleichungen Matheseminar 2017 Daniel Jodlbauer 9. Juni 2017 Überblick Motivation Voraussetzungen / Wiederholung Differentialgleichungen Lösungsverfahren Differentialgleichungen?

Mehr

T1: Theoretische Mechanik, SoSe 2016

T1: Theoretische Mechanik, SoSe 2016 T1: Theoretische Mechanik, SoSe 2016 Jan von Delft http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik Newtonsche Sätze (Originalformulierung) 1. Jeder Körper verharrt in seinem

Mehr

1.4 Krummlinige Koordinaten I

1.4 Krummlinige Koordinaten I 15 1.4 Krummlinige Koordinaten I (A) Motivation zur Definition verschiedener Koordinatensysteme Oft ist es sinnvoll und zweckmäßig Koordinatensysteme zu verwenden, die sich an der Geometrie und/oder Symmetrie

Mehr

Astrophysikalsiches Numerikum: Gewöhnliche Differentialgleichungen am Beispiel Weißer Zwerge

Astrophysikalsiches Numerikum: Gewöhnliche Differentialgleichungen am Beispiel Weißer Zwerge Astrophysikalsiches Numerikum: Gewöhnliche Differentialgleichungen am Beispiel Weißer Zwerge A. Schweitzer Wintersemester 2005/06 Links, Literatur und weitere Informationen Die Numerical Recepies sind

Mehr

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Name: Wichtige Hinweise D-ITET, D-MATL Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Prüfungsdauer: 90 Minuten. Nur begründete Resultate werden bewertet. Zugelassene Hilfsmittel: 10 A4-Seiten

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

ETHZ, D-MATH. Numerische Methoden D-PHYS, WS 2015/16 Dr. V. Gradinaru

ETHZ, D-MATH. Numerische Methoden D-PHYS, WS 2015/16 Dr. V. Gradinaru ETHZ, D-MATH Prüfung Numerische Methoden D-PHYS, WS 5/6 Dr. V. Gradinaru..6 Prüfungsdauer: 8 Minuten Maximal erreichbare Punktzahl: 6. Der van-der-pol Oszillator ( Punkte) Der van-der-pol Oszillator kann

Mehr

Übungsaufgaben Mathematik III MST

Übungsaufgaben Mathematik III MST Übungsaufgaben Mathematik III MST Lösungen zu Blatt Differentialgleichungen Prof. Dr. B.Grabowski Zu Aufgabe ) Zu a) lassifizieren Sie folgende Differentialgleichungen nach folgenden riterien: -Ordnung

Mehr