Ein Dachfenster ist 1,30m lang. Es ist so aufgeklappt, dass unten ein Spalt von 50cm entsteht.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Ein Dachfenster ist 1,30m lang. Es ist so aufgeklappt, dass unten ein Spalt von 50cm entsteht."

Transkript

1 * Dachfenster Ein Dachfenster ist 1,30m lang. Es ist so aufgeklappt, dass unten ein Spalt von 50cm entsteht. Bestimme die Weite des Öffnungswinkels des Dachfensters. * Der Winkel hat eine Weite von 22,2.

2 Dachgaube Eine Dachgaube hat die in der Zeichnung angegebenen Maße. Bestimme die Weite des Winkels, den die Decke der Dachgaube mit dem Dach bildet. Der Winkel hat eine Weite von 20,7.

3 Feuerwehrweg In einem Waldstück soll ein geradliniger Feuerwehrweg vom Punkt A zum Punkt B angelegt werden. Bestimme, wie groß die Winkelweiten α und β gewählt werden müssen, damit der Feuerwehrweg gerade verläuft, und wie lang der Feuerwehrweg wird. α = 47 β = 55 AB = 1570m

4 Flugrichtung 1 Geschwindigkeiten stellt man in der Physik durch Pfeile dar, Geschwindigkeiten mit verschiedenen Richtungen setzt man zusammen, indem man aus den Geschwindigkeitspfeilen Dreiecke bildet. Das nebenstehende Bild zeigt, wie die Eigengeschwindigkeit des Flugzeugs ve und die Windgeschwindigkeit vw sich zur r r r Geschwindigkeit vb überlagern, die die Bewegung des Flugzeugs über den Boden angibt. α ist der Kompasskurs, β die Windrichtung und γ die Flugrichtung. Ein Flugkapitän steuert den Kompasskurs 75, das Flugzeug hat die Eigengeschwindigkeit 250 km/ h. Der Wind weht aus Nord-West mit der Geschwindigkeit 50 km/ h. Bestimme die Flugrichtung des Flugzeugs und die Geschwindigkeit des Flugzeugs über dem Boden. Tipp: Steuert ein Flugzeug den Kurs 0, so fliegt es genau Richtung Norden, bei einem Kurs von 90 genau Richtung Osten, bei einem Kurs von 180 genau Richtung Süden und bei einem Kurs von 270 genau Richtung Westen. Die Flugrichtung ist 84, die Geschwindigkeit über dem Boden beträgt 278km/h.

5 Flugrichtung 2 Geschwindigkeiten stellt man in der Physik durch Pfeile dar, Geschwindigkeiten mit verschiedenen Richtungen setzt man zusammen, indem man aus den Geschwindigkeitspfeilen Dreiecke bildet. Das nebenstehende Bild zeigt, wie die Eigengeschwindigkeit des Flugzeugs ve und die Windgeschwindigkeit vw sich zur r r r Geschwindigkeit vb überlagern, die die Bewegung des Flugzeugs über den Boden angibt. α ist der Kompasskurs, β die Windrichtung und γ die Flugrichtung. Ein Flugkapitän steuert den Kompasskurs 210, das Flugzeug hat die Eigengeschwindigkeit 320 km/ h. Der Wind weht in Richtung 270 und versetzt das Flugzeug um 2. Bestimme die Windgeschwindigkeit und die Geschwindigkeit des Flugzeugs über dem Boden. Tipp: Steuert ein Flugzeug den Kurs 0, so fliegt es genau Richtung Norden, bei einem Kurs von 90 genau Richtung Osten, bei einem Kurs von 180 genau Richtung Süden und bei einem Kurs von 270 genau Richtung Westen. Die Windgeschwindigkeit beträgt 18km/h, die Geschwindigkeit über dem Boden beträgt 278km/h.

6 Flugrichtung 3 Geschwindigkeiten stellt man in der Physik durch Pfeile dar, Geschwindigkeiten mit verschiedenen Richtungen setzt man zusammen, indem man aus den Geschwindigkeitspfeilen Dreiecke bildet. Das nebenstehende Bild zeigt, wie die Eigengeschwindigkeit des Flugzeugs ve und die Windgeschwindigkeit vw sich zur r r r Geschwindigkeit vb überlagern, die die Bewegung des Flugzeugs über den Boden angibt. α ist der Kompasskurs, β die Windrichtung und γ die Flugrichtung. Ein Flugkapitän möchte die Flugrichtung 100 einhalten. Das Flugzeug fliegt mit der Eigengeschwindigkeit 320 km/ h, der Wind weht mit der Geschwindigkeit 90 km/ h in Richtung 225. Bestimme den Kompasskurs, den der Flugkapitän steuern muss und die Geschwindigkeit des Flugzeugs über dem Boden. Tipp: Steuert ein Flugzeug den Kurs 0, so fliegt es genau Richtung Norden, bei einem Kurs von 90 genau Richtung Osten, bei einem Kurs von 180 genau Richtung Süden und bei einem Kurs von 270 genau Richtung Westen. Der Flugkapitän muss den Kompasskurs 87 steuern, die Geschwindigkeit über dem Boden beträgt 260km/h.

7 Kabel durch See Durch einen See soll vom Punkt B zum Punkt C ein Kabel verlegt werden. Ein Vermessungstrupp soll die Entfernung zwischen der unmittelbar am Ufer gelegenen Punkte B und C bestimmen. Dazu wählen die Vermessungsingenieure im Gelände einen Punkt A, so dass die Entfernungen c = AB und b = AC leicht zu bestimme sind. Außerdem messen sie die Weite α des Winkels BAC. Sie erhalten folgende Messwerte: b = 2km, c = 3km und α = 66. Bestimme die Länge des Kabels. Das Kabel wird 2,849km lang.

8 Kabel zur Insel Vom Punkt A aus soll zum Punkt C auf einer Insel in einem See ein Kabel verlegt werden. Dazu wurde am Ufer eine Strecke von 100m abgemessen und mit einem Vermessungsgerät der Punkt C auf der Insel jeweils von den Punkten A und B angepeilt. Bestimme die Länge des Kabels. Das Kabel wird 76m lang.

9 Kollisionskurs Das Passagierschiff Astor und der Schlepper Bugsier sind auf gleicher Höhe 6 Seemeilen (sm) voneinander entfernt. Die Astor steuert den Kurs 10 und hat eine Geschwindigkeit von 20 Knoten, die Bugsier den Kurs 340 und die Geschwindigkeit 22 Knoten. a) Bestimme, wie weit die beiden Schiffe noch von der möglichen Kollisionsstelle entfernt sind. Tipp: Steuert ein Schiff den Kurs 0, so fährt es genau Richtung Norden, bei einem Kurs von 90 genau Richtung Osten, bei einem Kurs von 180 genau Richtung Süden und bei einem Kurs von 270 genau Richtung Westen. b) Untersuche, ob die beiden Schiffe zusammenstoßen. Tipp: Bei einer Geschwindigkeit von einem Knoten legt ein Schiff in einer Stunde eine Seemeile zurück. a) AC = 11,3sm; BC = 11,8sm b) Die Astor benötigt 33,9min bis zum Schnittpunkt, der Schlepper Bugsier 32,2min. Deshalb treffen sich die Schiffe nicht.

10 Leuchtfeuer A Damit Schiffe Häfen auch fanden, kam man schon früh auf den Gedanken, Richtungszeichen zu schaffen, die den Schiffen bereits draußen auf dem Meer an Untiefen vorbei den Weg wiesen. Die ersten Leuchttürme in Deutschland entstanden Anfang des 12. Jahrhunderts in den Hansestädten. Heute gibt es an den deutschen Küsten über 200 Leuchtfeuer, von denen einige nur noch ein technisches Denkmal sind, andere wiederum nur aus röhrenförmigen modernen Feuerträgern bestehen. Leuchtfeuer B ist von Leuchtfeuer A 3,0sm entfernt und wird in 145 gepeilt. Von einem Schiff aus wird Leuchtfeuer A in 278 und Leuchtfeuer B in 210 gepeilt. Bestimme, wie weit das Schiff von den beiden Leuchtfeuern entfernt ist. Tipp: Steuert ein Schiff den Kurs 0, so fährt es genau Richtung Norden, bei einem Kurs von 90 genau Richtung Osten, bei einem Kurs von 180 genau Richtung Süden und bei einem Kurs von 270 genau Richtung Westen. Entsprechendes gilt, wenn ein Schiff ein Objekt in einem bestimmten Winkel peilt: peilt ein Schiff z.b. ein Objekt in 90, dann befindet sich das Objekt genau im Osten von dem Schiff. Das Schiff ist von Leuchtfeuer A 2,9sm und von Leuchtfeuer B 2,4 sm entfernt.

11 Leuchtfeuer B Damit Schiffe Häfen auch fanden, kam man schon früh auf den Gedanken, Richtungszeichen zu schaffen, die den Schiffen bereits draußen auf dem Meer an Untiefen vorbei den Weg wiesen. Die ersten Leuchttürme in Deutschland entstanden Anfang des 12. Jahrhunderts in den Hansestädten. Heute gibt es an den deutschen Küsten über 200 Leuchtfeuer, von denen einige nur noch ein technisches Denkmal sind, andere wiederum nur aus röhrenförmigen modernen Feuerträgern bestehen. Leuchtfeuer B ist von Leuchtfeuer A 9,8sm entfernt und wird in 68 gepeilt. Von einem Schiff aus wird Leuchtfeuer A in 125 und Leuchtfeuer B in 73 gepeilt. Bestimme, wie weit das Schiff von den beiden Leuchtfeuern entfernt ist. Tipp: Steuert ein Schiff den Kurs 0, so fährt es genau Richtung Norden, bei einem Kurs von 90 genau Richtung Osten, bei einem Kurs von 180 genau Richtung Süden und bei einem Kurs von 270 genau Richtung Westen. Entsprechendes gilt, wenn ein Schiff ein Objekt in einem bestimmten Winkel peilt: peilt ein Schiff z.b. ein Objekt in 90, dann befindet sich das Objekt genau im Osten von dem Schiff. Das Schiff ist von Leuchtfeuer A 1,1sm und von Leuchtfeuer B 10,4 sm entfernt.

12 Leuchttürme Von zwei Leuchttürmen L 1 und L 2, die 7km voneinander entfernt sind, wird ein Schiff S angepeilt. Man misst die Winkelweiten α1 = 42 und α = Bestimme die Entfernungen des Schiffes von den beiden Leuchttürmen. SL = 1 5,777km SL = 2 4,719km

13 Leuchtturm Roter Sand A Der Leuchtturm Roter Sand ist ein unter Denkmalschutz stehendes, historisches Bauwerk in der offenen See. Er steht auf Position N / E in der Außenweser. Der Turm hat eine Gesamthöhe einschließlich des im Meeresgrund stehenden Fundaments von 52,5m. Bei Niedrigwasser erhebt sich der Turm 30,7m über dem Meeresspiegel. Auf einem mit dem Kurs 196 steuernden Schiff wird der Leuchtturm Roter Sand zunächst in 243 und nach einer Fahrt von 6,5sm in 325 gepeilt. Bestimme, wie weit das Schiff bei den beiden Peilungen jeweils vom Leuchtturm Roter Sand entfernt ist. Tipp: Steuert ein Schiff den Kurs 0, so fährt es genau Richtung Norden, bei einem Kurs von 90 genau Richtung Osten, bei einem Kurs von 180 genau Richtung Süden und bei einem Kurs von 270 genau Richtung Westen. Entsprechendes gilt, wenn ein Schiff ein Objekt in einem bestimmten Winkel peilt: peilt ein Schiff z.b. ein Objekt in 90, dann befindet sich das Objekt genau im Osten von dem Schiff. 5,1sm, bei der zweiten Peilung 4,8 sm vom Leuchtturm Roter Sand ent- Das Schiff ist bei der ersten Peilung fernt.

14 Leuchtturm Roter Sand B Der Leuchtturm Roter Sand ist ein unter Denkmalschutz stehendes, historisches Bauwerk in der offenen See. Er steht auf Position N / E in der Außenweser. Der Turm hat eine Gesamthöhe einschließlich des im Meeresgrund stehenden Fundaments von 52,5m. Bei Niedrigwasser erhebt sich der Turm 30,7m über dem Meeresspiegel. Auf einem mit dem Kurs 30 steuernden Schiff wird der Leuchtturm Roter Sand zunächst in 345 und nach einer Fahrt von 9,0sm in 230 gepeilt. Bestimme, wie weit das Schiff bei den beiden Peilungen jeweils vom Leuchtturm Roter Sand entfernt ist. Tipp: Steuert ein Schiff den Kurs 0, so fährt es genau Richtung Norden, bei einem Kurs von 90 genau Richtung Osten, bei einem Kurs von 180 genau Richtung Süden und bei einem Kurs von 270 genau Richtung Westen. Entsprechendes gilt, wenn ein Schiff ein Objekt in einem bestimmten Winkel peilt: peilt ein Schiff z.b. ein Objekt in 90, dann befindet sich das Objekt genau im Osten von dem Schiff. 3,4sm, bei der zweiten Peilung 7,0 sm vom Leuchtturm Roter Sand ent- Das Schiff ist bei der ersten Peilung fernt.

15 Peilung A Ein Küstenmotorschiff steuert den Kurs 293 und hat die Geschwindigkeit 24 Knoten. Es peilt ein Leuchtfeuer L mit der Winkelweite α = 21, 5 an. Nach 10 Minuten wird das selbe Leuchtfeuer mit der Winkelweite β = 34, 5 angepeilt. Bestimme, wie weit das Schiff bei der zweiten Peilung vom Leuchtfeuer entfernt ist. Tipp: Bei einer Geschwindigkeit von einem Knoten legt ein Schiff in einer Stunde eine Seemeile zurück. Steuert ein Schiff den Kurs 0, so fährt es genau Richtung Norden, bei einem Kurs von 90 genau Richtung Osten, bei einem Kurs von 180 genau Richtung Süden und bei einem Kurs von 270 genau Richtung Westen. Das Schiff ist bei der zweiten Peilung 17,78 SM vom Leuchtfeuer entfernt.

16 Peilung B Ein Küstenmotorschiff steuert den Kurs 293 und hat die Geschwindigkeit 24 Knoten. Es peilt ein Leuchtfeuer L mit der Winkelweite α = 21, 5 an. Nach 10 Minuten wird das selbe Leuchtfeuer mit der Winkelweite β = 35, 5 angepeilt. Bestimme, wie weit das Schiff bei der zweiten Peilung vom Leuchtfeuer entfernt ist. Tipp: Bei einer Geschwindigkeit von einem Knoten legt ein Schiff in einer Stunde eine Seemeile zurück. Steuert ein Schiff den Kurs 0, so fährt es genau Richtung Norden, bei einem Kurs von 90 genau Richtung Osten, bei einem Kurs von 180 genau Richtung Süden und bei einem Kurs von 270 genau Richtung Westen. Das Schiff ist bei der zweiten Peilung 16,53 SM vom Leuchtfeuer entfernt.

17 Peilung C Ein Küstenmotorschiff steuert den Kurs 293 und hat die Geschwindigkeit 24 Knoten. Es peilt ein Leuchtfeuer L mit der Winkelweite α = 21, 5 an. Nach 10 Minuten wird das selbe Leuchtfeuer mit der Winkelweite β = 42, 5 angepeilt. Bestimme, wie weit das Schiff bei der zweiten Peilung vom Leuchtfeuer entfernt ist. Tipp: Bei einer Geschwindigkeit von einem Knoten legt ein Schiff in einer Stunde eine Seemeile zurück. Steuert ein Schiff den Kurs 0, so fährt es genau Richtung Norden, bei einem Kurs von 90 genau Richtung Osten, bei einem Kurs von 180 genau Richtung Süden und bei einem Kurs von 270 genau Richtung Westen. Das Schiff ist bei der zweiten Peilung 11,16 SM vom Leuchtfeuer entfernt.

18 * Pultdach In der nebenstehenden Abbildung ist ein sogenanntes Pultdach gezeigt. Die Bauordnung schreibt für die Winkelweiten α und β folgende Wertebereiche vor: α 80 und 35 β 45. Bestimme, wie lang die Dachschrägen mindestens und höchstens werden. * 6,0m a 7,8m 3,8m b 5,6m

19 Querstollen Die Stollen 1 und 2 sollen durch einen vom Punkt A zum Punkt B führenden Querstollen verbunden werden, der gleichzeitig von A und B aus vorangetrieben werden soll. Bestimme, wie groß die Winkelweiten α und β gewählt werden müssen, damit der Querstollen gerade verläuft, und wie lang der Querstollen wird. α = 79 β = 55 Der Querstollen wird 220 m lang.

20 Texel Von Den Helder in Holland kommt man mit einer Fähre zur Insel Texel. A ist die Anlegestelle in Den Helder, B die Anlegestelle in Texel und C ein weiterer Punkt auf dem Festland. Man misst α = 102, 6, γ = 45, 2 und b = 3km. a) Bestimme die Entfernung von Den Helder nach Texel. b) Bestimme die Geschwindigkeit der Fähre, wenn diese für die Überfahrt 15 Minuten benötigt. a) Die Entfernung von Den Helder nach Texel beträgt 4 km. 4km km b) Die Geschwindigkeit der Fähre beträgt v = = h h 4

21 Tunnel A Von A nach B soll durch einen Berg ein Tunnel gebaut werden. Um die Länge der Strecke AB zu bestimmen, wählt man einen dritten Punkt C und misst im Dreieck ABC a = 985m, b = 1160m und γ = 42, 6. Bestimme die Länge des Tunnels. Die Länge des Tunnels beträgt 796 m.

22 * Verbindungsstraße Moorhusen ist mit Fischerholm und Nordstedt durch je eine gerade Straße verbunden. Moorhusen und Fischerholm sind 1,7km voneinander entfernt, Moorhusen und Nordstedt 2,5km. Die Straßen gehen unter einem Winkel der Weite 59 vom Moorhusener Marktplatz ab. Bestimme die Länge der geplanten Verbindungsstraße von Fischerholm nach Nordstedt. * Die geplante Verbindungsstraße hat ein Länge von 2,2km.

23 * Verbindungsweg Die Sackgassen Eulensteig und Amselweg gehen unter einem Winkel der Weite 37º vom Waldplatz ab. Der Eulensteig ist 620m, der Amselweg 430m lang. Zwischen den Enden der beiden Straßen soll ein gerader Verbindungsweg gebaut werden. Bestimme die Länge des Verbindungsweges und die Weiten der Winkel zwischen den beiden Straßen und dem Verbindungsweg. * Der Verbindungsweg ist 379m lang, die Weiten der beiden Winkel betragen 100 und 43.

Baustelle 1. Die Handwerkskammer schreibt für Leitern einen Anstellwinkel von ca. 70 vor. Leitern über 7 m Länge müssen zusätzlich abgestützt werden.

Baustelle 1. Die Handwerkskammer schreibt für Leitern einen Anstellwinkel von ca. 70 vor. Leitern über 7 m Länge müssen zusätzlich abgestützt werden. Baustelle 1 Die Handwerkskammer schreibt für Leitern einen Anstellwinkel von ca. 70 vor. Leitern über 7 m Länge müssen zusätzlich abgestützt werden. Bestimme, wie hoch eine ordnungsgemäß aufgestellte Leiter,

Mehr

Winkel zeichnen. Hilfe. ACHTUNG! Achte immer genau darauf

Winkel zeichnen. Hilfe. ACHTUNG! Achte immer genau darauf Hilfe Winkel zeichnen 1. Zeichne einen Schenkel (die rote Linie) S 2. Lege das Geodreieck mit der Null am Scheitelpunkt an. (Dort wo der Winkel hinkommen soll) S 3. Möchtest du zum Beispiel einen Winkel

Mehr

Bereich Thema Schwierigkeit Geometrie Berechnungen in Rechtwinkligen Dreiecken II ***

Bereich Thema Schwierigkeit Geometrie Berechnungen in Rechtwinkligen Dreiecken II *** Ballon Von einem Freiballon aus werden die Orte A und B, die 2700m voneinander entfernt sind, unter den Tiefenwinkeln mit den Winkelweiten α = 66 und β = 24 angepeilt Bestimme, in welcer Höe der Ballon

Mehr

Kreisfläche wird durch den Kreissektor beschrieben?

Kreisfläche wird durch den Kreissektor beschrieben? Thema: Kurzformaufgaben Pflichtbereich: ) Ergänze die Skizze so, dass ein Würfelnetz entsteht:. ) Bestimme die beiden Winkel, für die gilt: sin α = 0,6990. ) Ein voller Kanister Benzin wiegt 5 kg, ein

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

Ein Lichtstrahl fällt aus der Luft ins Wasser. Man hat den Einfallswinkel α und den Brechungswinkel β gemessen und in folgende Tabelle eingetragen.

Ein Lichtstrahl fällt aus der Luft ins Wasser. Man hat den Einfallswinkel α und den Brechungswinkel β gemessen und in folgende Tabelle eingetragen. 1 Optik 1.1 Brechung des Lichtes Ein Lichtstrahl fällt aus der Luft ins Wasser. Man hat den Einfallswinkel α und den Brechungswinkel β gemessen und in folgende Tabelle eingetragen. α β 0 0 10 8 17 13 20

Mehr

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)

Mehr

Übungsaufgaben Klasse 7

Übungsaufgaben Klasse 7 Übungsaufgaben Klasse 7 2. Oktober 2006 Dreieckskonstruktion Versuche erst, alle Aufgaben zu lösen. Die Lösungen findest du ab Montag auf: http://www.hagener-berg.de/serdar/ unter dem Punkt Schulinfos.

Mehr

Trigonometrie - Sinussatz, Kosinussatz

Trigonometrie - Sinussatz, Kosinussatz Erstelle zu jeder der folgenden Aufgaben zuerst eine maßstäbliche Zeichnung. 1. Berechne die Länge der nicht gegebenen Dreiecksseite im Dreieck ABC: a) b = 6,7 cm c = 5,9 cm α = 63,5 b) b = 2,6 cm c =

Mehr

Berechnungen am Dreieck

Berechnungen am Dreieck 1 Stern Berechnungen am Dreieck Ein fünfzackiger Stern, wie abgebildet, soll völlig symmetrisch sein (alle fünf Linien sind gleich lang und alle gleichartigen Innenwinkel gleich groß) Die Gesamtlänge der

Mehr

7.7. Aufgaben zu Abständen und Winkeln

7.7. Aufgaben zu Abständen und Winkeln 7.7. Aufgaben zu Abständen und Winkeln Aufgabe : Schnittwinkel zwischen Geraden Bestimmen Sie die Innenwinkel und ihre Summe für das Viereck ABCD. Berechnen Sie auch die Koordinatengleichung der Trägerebene,

Mehr

Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis?

Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis? Aufgabe 1: Berechne die Länge der fehlenden Seite. Aufgabe : Peter hat sich eine Leiter gekauft, die er beim Anstreichen seiner Hauswand benötigt. Diese Leiter ist 5,60 m lang. Damit sie nicht umkippt,

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Vorbereitungsaufgaben SA1: Symmetrie und Winkelbetrachtungen

Vorbereitungsaufgaben SA1: Symmetrie und Winkelbetrachtungen Aufgabe 1 a) Welche Eigenschaft besitzen alle Punkte auf der Mittelsenkrechten zu zwei gegebenen Punkten A und B? b) In einem Dreieck sind zwei Winkel gleich groß und der dritte Winkel doppelt so groß.

Mehr

2.6. Prüfungsaufgaben zu Kongruenzabbildungen

2.6. Prüfungsaufgaben zu Kongruenzabbildungen 2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30

Mehr

Aufgabe 1 D C. Skizze nicht maßstäblich

Aufgabe 1 D C. Skizze nicht maßstäblich Aufgabe 1 Am Ufer des Houhai-Sees in Peking wird eine Strecke AB mit der Länge AB 90,0m abgesteckt (siehe Skizze). Die Punkte C und D werden angepeilt und folgende Winkelgrößen ermittelt: BAC 8,0 ; CAD

Mehr

Die gleichförmige Bewegung (Schularbeitsbeispiele von 0974 bis 1095)

Die gleichförmige Bewegung (Schularbeitsbeispiele von 0974 bis 1095) Die gleichförmige Bewegung (Schularbeitsbeispiele von 0974 bis 1095) 1) Eine Kugel rollt gleichförmig und hat nach 7,2 s den Weg 10 m zurückgelegt. Nach welcher Zeit hat sie den Weg 135 m zurückgelegt?

Mehr

Trigonometrie - Sinussatz, Kosinussatz

Trigonometrie - Sinussatz, Kosinussatz Gymnasium / Realschule Trigonometrie - Sinussatz, Kosinussatz Klasse 10 1. Gemäß nebenstehender Zeichnung sind die Stücke AB = c, α und β gegeben. Stelle eine Gleichung für die Strecke AD = x in Abhängigkeit

Mehr

Vorbereitung für die Arbeit

Vorbereitung für die Arbeit Vorbereitung für die Arbeit Trigonometrie: 1. Eine 8 m hohe Fahnenstange wirft einen 13 m langen Schatten. Was ist der Winkel mit dem die Sonne die Fahnenstange trifft? 2. Ein U-Boot wird mit Sonar aufgespürt.

Mehr

Aufgabe1: ohne Taschenrechner (insgesamt 34 P)

Aufgabe1: ohne Taschenrechner (insgesamt 34 P) Rudolf-Steiner-Schulen Hamburg, schriftliche Realschulprüfung Mathematik 0, Lösungen Aufgabe: ohne Taschenrechner (insgesamt P). I II III a) 7,08 b) 87, + 68,5 7,5 + 57,90 6, 867,50 87,59 c) 5,, = 66,08

Mehr

Angaben für Beispiele mit Hinweisen Vektorrechnung

Angaben für Beispiele mit Hinweisen Vektorrechnung Angaben für Beispiele mit Hinweisen Vektorrechnung Beispiel 1 Zeige für das Dreieck ABC [ A(5/5), B(29/15), C(5/15) ] die Richtigkeit von folgender Behauptung: Die drei Verbindungsstrecken der Eckpunkte

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe . Mathematikschulaufgabe 1. Ist das Dreieck mit folgenden Maßen konstruierbar? Begründe! b = 6 cm, β = 76, Außenwinkel γ * = 59.. Ein Draht soll zu einem Dreieck gebogen werden. Eine Seite soll 1m lang

Mehr

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:

Mehr

Ähnlichkeit, Strahlensatz

Ähnlichkeit, Strahlensatz Ähnlichkeit, Strahlensatz Aufgabe 1 Berechne die Strecken x und y. a) links b) rechts Aufgabe 2 Einem Dreieck wurde die Spitze abgeschnitten. Das Reststück in Form eines Trapezes hat Parallelen von 15

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Aufgaben. zu Inhalten der 5. Klasse

Aufgaben. zu Inhalten der 5. Klasse Aufgaben zu Inhalten der 5. Klasse Universität Klagenfurt, Institut für Didaktik der Mathematik (AECC-M) September 2010 Zahlbereiche Es gibt Gleichungen, die (1) in Z, nicht aber in N, (2) in Q, nicht

Mehr

5A 3. Schularbeit Jänner 1999 A

5A 3. Schularbeit Jänner 1999 A 5A 3. Schularbeit - 14. Jänner 1999 A 4x 1 5 1. Löse die Ungleichung < in R! 5x + 2 6 Forme zunächst um, dass auf der linken Seite der Ungleichung ein einziger Bruch steht, auf der rechten Seite 0. Notiere

Mehr

Schüler erfinden Aufgaben zum rechtwinkligen Dreieck

Schüler erfinden Aufgaben zum rechtwinkligen Dreieck Schüler erfinden Aufgaben zum rechtwinkligen Dreieck 1. Ein Dachgiebel hat den Winkel 90 o. Die Höhe des Daches ist 5 m, die Dachseite a ist 10 m. Ein Teilstück der Dachbreite ist q = 3 m. Berechne die

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 150 Minuten Tafelwerk Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler, die einen CAS-Taschencomputer

Mehr

Schriftliche Prüfung Schuljahr: 2002/2003 Schulform: Gesamtschule (Erweiterungskurs) Mathematik

Schriftliche Prüfung Schuljahr: 2002/2003 Schulform: Gesamtschule (Erweiterungskurs) Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jahrgangsstufe 10 Mathematik Schriftliche Prüfung Schuljahr: 2002/2003 Schulform: Gesamtschule (Erweiterungskurs) Allgemeine Arbeitshinweise

Mehr

Fit in Mathe. Juni Klassenstufe 10. Trigonometrie mit Sinus- und Kosinussatz

Fit in Mathe. Juni Klassenstufe 10. Trigonometrie mit Sinus- und Kosinussatz Thema Musterlösungen 1 Trigonometrie mit Sinus- und Kosinussatz Vorbemerkungen Für Winkelangaben wird hier, wenn nicht anders angegeben, das Bogenmaß verwendet. Es gilt 1 rad = 360 π 57, bezeichnet das

Mehr

Koordinatensystem, Strecken, Geraden

Koordinatensystem, Strecken, Geraden Koordinatensystem, Strecken, Geraden Zeichne eine Rechts- und eine Hochachse und trage folgende Punkte ein: P(2 1), Q(10 1), R(10 9), S(2 9), T(4 3), U(8 3), V(8 7), W(4 7). Zeichne die Strecken PQ QR

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

Aufgaben Differentialrechnung. Bergwanderung. Darmerkrankung. Katamaran. Museumsfassade. Konzentration eines Medikaments.

Aufgaben Differentialrechnung. Bergwanderung. Darmerkrankung. Katamaran. Museumsfassade. Konzentration eines Medikaments. Aufgaben Differentialrechnung Bergwanderung Darmerkrankung Katamaran Museumsfassade Konzentration eines Medikaments Schiffsrumpf 1 Bergwanderung Ein Wanderer steigt auf einen Berg, dessen Silhouette durch

Mehr

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3)

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3) Ein Raumviereck ABCD kann eben sein oder aus zwei gegeneinander geneigten Dreiecken bestehen. In einem ebenen Viereck schneiden sich die Diagonalen. Überprüfen Sie, ob die gegebenen Vierecke eben sind.

Mehr

Aufgaben zu sin, cos und tan im rechtwinkligen Dreieck

Aufgaben zu sin, cos und tan im rechtwinkligen Dreieck Aufgaben zu sin, cos und tan im rechtwinkligen Dreieck 1) Eine Leiter ist 3m von einer Wand entfernt. Die Leiter ist 5m lang. In welcher Höhe ist die Leiter an die Wand gelehnt und welchen Neigungswinkel

Mehr

Sinus und Cosinus. Ich kann zu vorgegebenen Daten eine Sinusfunktion entwickeln, die diese Daten näherungsweise beschreibt.

Sinus und Cosinus. Ich kann zu vorgegebenen Daten eine Sinusfunktion entwickeln, die diese Daten näherungsweise beschreibt. Checkliste Sinus und Cosinus Ich kann Winkel in Grad und in Vielfachen von am Einheitskreis veranschaulichen. Ich kann in einem rechtwinkligen Dreieck die Sinus und Cosinuswerte eines Winkels durch die

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 1.4 a) {( 1)} b) { } c) unendlich viele Lösungen d) {(4 )} e) {( 4)} f) { } 1.7 a) x = ; y = b) x = 4; y = c) x = _ ; y = 4 1.8 Zu diesen Aufgaben gibt es jeweils viele mögliche

Mehr

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6) (Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie

Mehr

Liebe Schülerin, lieber Schüler,

Liebe Schülerin, lieber Schüler, Liebe Schülerin, lieber Schüler, Wir gratulieren herzlich, dass Sie in die zweite Runde weitergekommen sind. Der erste Teil der zweiten Runde des Wettbewerbs besteht darin, dass Sie einen Test, wie in

Mehr

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit Realschulabschluss

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit Realschulabschluss Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Realschulabschluss Impressum Herausgeber Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein

Mehr

Kinematik von Punktmassen. Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h.

Kinematik von Punktmassen. Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h. Kinematik von Punktmassen Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h. a. Wie lange braucht der Ball bis ins Tor? Lsg.: a) 0,333s Aufgabe 2. Ein Basketball-Spieler

Mehr

Mathematik Aufnahmeprüfung 2013 Profile m,n,s

Mathematik Aufnahmeprüfung 2013 Profile m,n,s Mathematik Aufnahmeprüfung 2013 Profile m,n,s Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Aufgabe

Mehr

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Die folgenden Arbeitsblätter sind für die Arbeit im Mathematikunterricht Klasse 6 bestimmt. Sie kommen im Verlauf von Lernbereich 3 Dreiecke und Vierecke

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Rainer Hauser September 013 1 Einleitung 1.1 Der Begriff Funktion Eine Funktion ordnet jedem Element m 1 einer Menge M 1 ein Element m einer Menge M zu. Man schreibt dafür f:

Mehr

alte Maturaufgaben zu Folgen+Reihen

alte Maturaufgaben zu Folgen+Reihen Folgen+Reihen 01.0.013 alte Maturaufgaben 1 alte Maturaufgaben zu Folgen+Reihen 1 006/007 1. (5 P.) In ein Quadrat mit der Seitenlänge a wird ein gleichseitiges Dreieck einbeschrieben, in dieses wiederum

Mehr

1. Aufgabe: Grundwissen

1. Aufgabe: Grundwissen NAME: Mathematik 3. Klassenarbeit Klasse 10e- Gr. A 06. Feb. 2007 Trigonometrie für Winkel bis 90 Grad - ups - Teil A: Arbeitsblatt ohne Nutzung von Tafelwerk, Formelsammlung und Taschenrechner 1. Aufgabe:

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Aufgaben. Modul 931 Optik Reflexion. 1) Wie wird diese Art der Reflexion bezeichnet?

Aufgaben. Modul 931 Optik Reflexion. 1) Wie wird diese Art der Reflexion bezeichnet? Aufgaben 1) Wie wird diese Art der Reflexion bezeichnet? 2) Disco-Laser: Ein paralleles Lichtbündel fällt auf einen Ablenkspiegel. Konstruieren sie das ausfallende Lichtbündel mit Hilfe des Winkelmessers:

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

1.2 Räumliche Bewegung. Aufgaben

1.2 Räumliche Bewegung. Aufgaben Technische Mechanik 3 1.-1 Prof. Dr. Wandinger Aufgabe 1 1. Räumliche Bewegung Aufgaben Ein Flugzeug fliegt mit der Geschwindigkeit v F gegenüber der Luft einen angezeigten Kurs von 30. Der Wind weht mit

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 VERMESSUNGSAUFGABEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 VERMESSUNGSAUFGABEN Mathematik Mag. Schmid Wolfgang Arbeitsblatt 4 3. Semester ARBEITSBLATT 4 VERMESSUNGSAUFGABEN Nun wollen wir unser Wissen über recht- und schiefwinkelige Aufgaben an einigen Aufgaben beweisen Beispiel

Mehr

Mathematik Klasse 10. Epoche 1 Maximilian Ernestus

Mathematik Klasse 10. Epoche 1 Maximilian Ernestus athematik lasse 10. poche 1 aximilian rnestus onstruktion von Dreiecken n einem Dreieck bezeichnen wir die länge der seiten mit a,b,c und die Winkel mit α,β,δ gemessen in Grad. C b a B c Frage: Welche

Mehr

Berufsmaturitätsschule naturwissenschaftliche Richtung

Berufsmaturitätsschule naturwissenschaftliche Richtung Name: Aufnahmeprüfung 3. Mai 2008 Berufsmaturitätsschule naturwissenschaftliche Richtung Fach: Mathematik Zeit: 100 Minuten für 15 Aufgaben Die Aufgaben müssen auf den Fragekatalog gelöst werden. Wenn

Mehr

SKS Kurs 2006/2007. Navigation Teil 1

SKS Kurs 2006/2007. Navigation Teil 1 SKS Kurs 2006/2007 Navigation Teil 1 Was heißt Navigieren?? Um das Schiff sicher zum Ziel zu bringen, muss man den Schiffsort und den Kurs bestimmen können! 1. Bestimmen der geografischen Position durch

Mehr

Probeseiten TERRA Kopiervorlagen Die Verkaufsauflage des Bandes ist unter der ISBN erschienen. TERRA. Wir geben Orientierung.

Probeseiten TERRA Kopiervorlagen Die Verkaufsauflage des Bandes ist unter der ISBN erschienen. TERRA. Wir geben Orientierung. Probeseiten TERRA Kopiervorlagen Die Verkaufsauflage des Bandes ist unter der ISBN 978-3-12-105001-7 erschienen. TERRA Wir geben Orientierung. Die Lösung für die Kopiervorlagen finden Sie auf Seite 8.

Mehr

Arbeitsblatt Geometrie / Trigonometrie

Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016

Mehr

Beispiel mit Hinweisen 1 1/2 Vermessungsaufgaben

Beispiel mit Hinweisen 1 1/2 Vermessungsaufgaben eispiel mit Hinweisen 1 1/2 Vermessungsufgben nläßlich einer Erbschft soll ds viereckige Grundstück CD [d = D = 78m, c = CD = 74m, Winkel C = = 45, Winkel CD = = 123, Winkel C = = 79 ] durch eine Gerde

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

Berufsmaturitätsschule für Erwachsene, naturwissenschaftliche Richtung

Berufsmaturitätsschule für Erwachsene, naturwissenschaftliche Richtung Aufnahmeprüfung 5. Mai 2007 Name: Berufsmaturitätsschule für Erwachsene, naturwissenschaftliche Richtung Fach: Mathematik Zeit: 100 Minuten für 15 Aufgaben Die Aufgaben müssen auf den Frageblättern gelöst

Mehr

3.6 Einführung in die Vektorrechnung

3.6 Einführung in die Vektorrechnung 3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................

Mehr

Bei Windstille bilden die Regentropfen am Fenster eines mit einer Geschwindigkeit v z

Bei Windstille bilden die Regentropfen am Fenster eines mit einer Geschwindigkeit v z Aufgabe 1 (Verkehrsschild) a) Unter welchem Winkel steigt die Straße an? Schätze zuerst. b) Die Straße überwindet einen Höhenunterschied von 100m. Wie lang ist die Straße? c) Welchen Höhenunterschied überwindet

Mehr

Gewerbliche Richtung Berufsmaturitätsprüfung Juni 2012 / BMS 2 Mathematik

Gewerbliche Richtung Berufsmaturitätsprüfung Juni 2012 / BMS 2 Mathematik BMS gibb Gewerbliche Richtung Berufsmaturitätsprüfung Juni 2012 / BMS 2 Mathematik KandidatIn (Name, Vorname): Klassen BMS W 2 A Prüfungsdauer: 120 Minuten Die gesamte Prüfung umfasst 8 Aufgaben. Jede

Mehr

MSA Probearbeit. 2. Berechnen Sie: Ein Viertel des Doppelten der Summe aus 4 und 8.

MSA Probearbeit. 2. Berechnen Sie: Ein Viertel des Doppelten der Summe aus 4 und 8. MSA Probearbeit www.mathementor.de Stand 22.5.09 1. Fassen Sie die Terme zusammen soweit es geht: x + 10 (4 2x) = (3x + 4)² (x² + 2x + 15) = 4a²b³ : 2a³bz = 5bz 25z² 2. Berechnen Sie: Ein Viertel des Doppelten

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

Wiederholungsaufgaben Klasse 10

Wiederholungsaufgaben Klasse 10 Wiederholungsaufgaben Klasse 10 (Lineare und quadratische Funktionen / Sinus, Kosinus, Tangens und Anwendungen) 1. In welchem Punkt schneiden sich zwei Geraden, wenn eine Gerade g durch die Punkte A(1

Mehr

6,5 34,5 24,375 46,75

6,5 34,5 24,375 46,75 Teste dich! - (/5) Für eine Taxifahrt zahlt man für jeden gefahrenen Kilometer,60. Zusätzlich wird eine Grundgebühr von 2,50 gezahlt. Stelle den Preis für 20 km (0 km; x km) Fahrt als Term dar. 2,5 +,6

Mehr

SCHRIFTLICHE PRÜFUNG ZUM EINTRITT IN DIE QUALIFIKATIONSPHASE DER GYMNASIALEN OBERSTUFE UND ZENTRALE KLASSENARBEIT AN DEUTSCHEN SCHULEN IM AUSLAND 2013

SCHRIFTLICHE PRÜFUNG ZUM EINTRITT IN DIE QUALIFIKATIONSPHASE DER GYMNASIALEN OBERSTUFE UND ZENTRALE KLASSENARBEIT AN DEUTSCHEN SCHULEN IM AUSLAND 2013 SCHRIFTLICHE PRÜFUNG ZUM EINTRITT IN DIE QUALIFIKATIONSPHASE DER GYMNASIALEN OBERSTUFE UND ZENTRALE KLASSENARBEIT AN DEUTSCHEN SCHULEN IM AUSLAND 2013 MATHEMATIK 5. März 2013 Prüfungsregion WEST Arbeitszeit:

Mehr

Klausur Physik 1 (GPH1) am

Klausur Physik 1 (GPH1) am Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 7.3.08 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab

Mehr

DOWNLOAD. Mathematik lebensnah: Rund um Fahrzeuge aller Art. Differenzierte Unterrichtsmaterialien. fürs Gymnasium

DOWNLOAD. Mathematik lebensnah: Rund um Fahrzeuge aller Art. Differenzierte Unterrichtsmaterialien. fürs Gymnasium DOWNLOAD Nathalie Mang Mathematik lebensnah: Rund um Fahrzeuge aller Art Differenzierte Unterrichtsmaterialien fürs Gymnasium Downloadauszug aus dem Originaltitel: Bergedorfer Unterrichtsideen Differenzierte

Mehr

Themenbereich: Besondere Dreiecke Seite 1 von 6

Themenbereich: Besondere Dreiecke Seite 1 von 6 Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften

Mehr

1 Woche sicher im Greifswalder Bodden

1 Woche sicher im Greifswalder Bodden 1 20 sm Törnvorschlag 1 Sie chartern zum ersten Mal eine Yacht? Oder Sie trauen sich noch nicht gleich den Hochseetörn zu? Oder möchten Sie einfach nur relaxen? Oder Ihre neue Crew langsam an das Segeln

Mehr

Arbeitsblatt Mathematik: Bewegungsaufgaben

Arbeitsblatt Mathematik: Bewegungsaufgaben Arbeitsblatt Mathematik: Bewegungsaufgaben Seite 1 von 12 Arbeitsblatt Mathematik: Bewegungsaufgaben Bewegungsaufgaben enthalten Angaben zu mindestens einem Objekt, das entlang einer Bahn bewegt wird bzw.

Mehr

Vorschlag informeller Test zu den Themen Die Grundlagen der Erde sowie Orientierung und Karten

Vorschlag informeller Test zu den Themen Die Grundlagen der Erde sowie Orientierung und Karten Vorschlag informeller Test zu den Themen Die Grundlagen der Erde sowie Orientierung und Karten Ziele Erklären können, warum es Tag und Nacht gibt Die Drehbewegungen der Erde erläutern können Über das Gradnetz

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:

Mehr

29. Essener Mathematikwettbewerb 2013/2014

29. Essener Mathematikwettbewerb 2013/2014 Klasse 5 Ein Kreis und ein Dreieck können einander auf verschiedene Arten schneiden. Im Folgenden sollen immer Punkte betrachtet werden, wo Kreis und Dreieck einander richtig schneiden und nicht nur berühren;

Mehr

Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner

Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner Stoff für den Einstufungstest Mathematik in das 2. Jahr AHS 1) Gleichungen/ Gleichungssysteme/ Terme Lineare Gleichungen

Mehr

Deutschsprachiger Wettbewerb 2012/2013 Physik Jahrgang 1 2. Runde

Deutschsprachiger Wettbewerb 2012/2013 Physik Jahrgang 1 2. Runde Deutschsprachiger Wettbewerb 2012/2013 Physik Jahrgang 1 2. Runde Liebe Schülerin, lieber Schüler, diese Runde des Wettbewerbs hat 20 Fragen, Sie sollen von den vorgegebenen Lösungsmöglichkeiten immer

Mehr

Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc.

Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc. AB 25, Seite 1 Satz von Thales 8e 08.03.2012 Aus alten Klassenarbeiten: 1) Trapez: Gegeben ist ein Trapez mit den gegenüber liegenden Seiten a und c und der Höhe h a auf a. Erläutere mit einer Skizze,

Mehr

GEOMETRIE (4a) Kurzskript

GEOMETRIE (4a) Kurzskript GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur zusammen mit weiteren Erläuterungen in der Veranstaltung genutzt werden.

Mehr

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4 1.4 Trigonometrie I Inhaltsverzeichnis 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2 2 Die trigonometrischen Funktionen 4 2.1 Was sind trigonometrischen Funktionen?........................... 4 2.2

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

Die am Goethe-Gymnasium eingeführten Mathematikbücher der Klassen 8, 9 10

Die am Goethe-Gymnasium eingeführten Mathematikbücher der Klassen 8, 9 10 Goethe-Gymnasium Bensheim Fachschaft Mathematik Hilde Zirkler Bensheim, im Juli 006 Übergang Klasse 10 / Klasse 11 Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik 1. Lineare Funktionen

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Arbeitsblatt Mathematik

Arbeitsblatt Mathematik Teste dich! - (1/5) 1 Für eine Taxifahrt zahlt man für jeden gefahrenen Kilometer 1,60. Zusätzlich wird eine Grundgebühr von 2,50 gezahlt. Stelle den Preis für 20 km (40 km; x km) Fahrt als Term dar. 2

Mehr

Lösungen lineare Funktionen

Lösungen lineare Funktionen lineare Funktionen Lösungen 1 Lösungen lineare Funktionen Schnittpunkt gegeben bestimme Funktionsvorschrift. Flächeninhalt von eingeschlossenem Dreieck berechnen. Schnittwinkel gegeben, berechne Steigung.

Mehr

Einführungsphase. Viel Erfolg! Aufgabe 1: Quadratische Funktion Flugbahn (29 Punkte)

Einführungsphase. Viel Erfolg! Aufgabe 1: Quadratische Funktion Flugbahn (29 Punkte) Name: Klasse: 2. Klausur Mathematik Einführungsphase 22.12.2011 Bitte benutze für jede Aufgabe einen neuen Bogen/ein neues Blatt!!! Die Ausführungen müssen in puncto Sauberkeit und Rechtschreibung den

Mehr

Liechtensteinisches Gymnasium

Liechtensteinisches Gymnasium Schriftliche Matura Liechtensteinisches Gymnasium Prüfer: Huber Sven Klassen 7Sa / 7Wa Zeit: 240 Minuten Name: Klasse: Instruktionen: 1) Geben Sie die zur Rechnung nötigen Einzelschritte an. 2) Skizzen

Mehr

Abschlussprüfung 2012 Mathematik schriftlich

Abschlussprüfung 2012 Mathematik schriftlich schriftlich Bemerkungen: Hilfsmittel: Punkteverteilung: Die Prüfungsdauer beträgt 3 Stunden. Beginnen Sie jede Aufgabe mit einem neuen Blatt! Alle Zwischenergebnisse ungerundet weiterverwenden und nur

Mehr

Vektoren im R 2 und R 3

Vektoren im R 2 und R 3 Vektoren im R und R Orientierung Vektoren Koordinatendarstellung Addition und Subtraktion Skalare Multiplikation Skalarprodukt Vektorprodukt Basis, Linearkombination Länge eines Vektors Winkel zwischen

Mehr

Skizzieren Sie das Schaubild von f einschließlich der Asymptote.

Skizzieren Sie das Schaubild von f einschließlich der Asymptote. G13-2 KLAUSUR 24. 02. 2011 1. Pflichtteil (1) (2 VP) Bilden Sie die Ableitung der Funktion f(x) = e2x 1 e x und vereinfachen Sie gegebenenfalls. (2) (2 VP) Geben Sie für die Funktion f(x) = (5 + 3 ) 4

Mehr

7 Beziehungen im Raum

7 Beziehungen im Raum Lange Zeit glaubten die Menschen, die Erde sei eine Scheibe. Heute zeigen dir Bilder aus dem Weltall sehr deutlich, dass die Erde die Gestalt einer Kugel hat. 7 Beziehungen im Raum Gradnetz der Erde Längengrade

Mehr

Klausur Nr. 2. Einführung analytische Geometrie. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 2. Einführung analytische Geometrie. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 2 Einführung analytische Geometrie Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Übungen: Lineare Funktionen

Übungen: Lineare Funktionen Übungen: Lineare Funktionen 1. Zeichnen Sie die Graphen der folgenden Funktionen und berechnen Sie die Nullstelle. a) f: y = 2x - 3 b) f: y = -3x + 6 c) f: y = ¼ x + 3 d) f: y = - 3 / 2 x + 9 e) f: y =

Mehr

Station A * * 1-4 ca. 16 min

Station A * * 1-4 ca. 16 min Station A * * 1-4 ca. 16 min Mit einem 80 m langen Zaun soll an einer Hauswand ein Rechteck eingezäunt werden. Wie lang müssen die Seiten des Rechtecks gewählt werden, damit es einen möglichst großen Flächeninhalt

Mehr

MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 04/05 DES LANDES HESSEN. RUNDE LÖSUNGEN AUFGABENGRUPPE A. L = { 5} oder x = 5, denn x 5 = 0 oder x 5 = 0 x = 5 oder x = 5 x = 5 oder x = 5 L = {... ; ; ; 0; 4; 5;...}, denn x 5 >

Mehr

Seiten 7 / 8 Aufgaben Punktmengen (Die Lösungen sind verkleinert gezeichnet) 1 a) Problemanalyse

Seiten 7 / 8 Aufgaben Punktmengen (Die Lösungen sind verkleinert gezeichnet) 1 a) Problemanalyse Seiten 7 / 8 Aufgaben Punktmengen (Die Lösungen sind verkleinert gezeichnet) 1 a) Problemanalyse k mam 1. näher bei M als bei A (Entfernung von 2 Punkten) 2. weniger als 35mm von A entfernt (Entf. von

Mehr

Musteraufgaben. Fach: Physik - Gleichförmige Bewegung Anzahl Aufgaben: 20. Aufgabe 1. Aufgabe 2. Aufgabe 3. Aufgabe 4

Musteraufgaben. Fach: Physik - Gleichförmige Bewegung Anzahl Aufgaben: 20. Aufgabe 1. Aufgabe 2. Aufgabe 3. Aufgabe 4 Musteraufgaben Fach: Physik - Gleichförmige Bewegung Anzahl Aufgaben: 20 Diese Aufgabensammlung wurde mit KlasseDozent erstellt. Sie haben diese Aufgaben zusätzlich als KlasseDozent-Importdatei (.xml)

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note:

Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: MATHEMATIK - Teil A Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Aufnahmeprüfung 2015 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und

Mehr