Ganzrationale Funktionenscharen. 3. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Ganzrationale Funktionenscharen. 3. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr."

Transkript

1 Ganzraionale Funionenscharen. Grades Umfangreiche Aufgaben Lösungen ohne CAS und GTR Alle Mehoden ganz ausführlich Daei Nr. 47 Sand 7. Sepember 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ANALYSIS Funionenraining

2 47 Funionenscharen. Grades Vorwor Diese Sammlung an umfangreichen Aufgaben zu Funionen. Grades mi Parameern sind zur Auswahl für Übungszwece gedach. Meisens Abiurniveau. Die Muserlösungen sind ohne CAS- oder GTR ersell worden, sodass alle Mehoden ausführlich durchgerechne worden sind. Wer dies nich benöig, weil er einen höherwerigen Rechner verwenden darf, ann diese Lösungen dennoch verwenden um die Mehoden zu rainieren und die Lösungen zu vergleichen. Aus folgender Lise ann man erennen, welche Zusazaufgaben vorommen. Inhal Funionserm Inhal Aufgabe Lösung 50 f x x x Orsurve, welche Kurve geh durch P Orsurve Teil Fläche, parallele Tangenen 60 f x x x Wendeangene, Orsurve gemeinsamer Pune aller Scharurven Polynomdivision bzw. Horner-Schema f x x x 9 x Orsurve, Exremer Dreiecinhal Fläche zwischen g und K Schnipun zweier K f(x) x ()x Inegralfläche, gemeins. Kurvenpun Anzahl der Nullsellen in Abh. von 5 64 f x x x x Wendeangene, orhogonaler Schni, Parabel gesuch, Inegralfläche, Kurvenberührung f x x 6x Funionsgleichung aufsellen, Orsurve, x Gerade eil Kurvenfläche, Parabel gesuch Polynomdivision bzw. Horner-Schema f x x x 4 x 4 Funionsgleichung aufsellen, Orsurve exremer Dreiecinhal, exreme Länge Schni zweier Scharurven f x x x 9 Funionsgleichung aufsellen, rechwinliger Schni, exreme Inegralfläche, Teilflächen eines variablen Rechecs f x x x x 4 Funionsgleichung aufsellen, 8 gemeinsamer Kurvenpun, 70 Inegralfläche zwischen zwei Scharurven 9 44 x x f ' x Funionsgleichung aus f' aufsellen, Parabel gesuch, Inegralfläche, längse Sehne, Tang. parallel Wendeangene Polynomdivision bzw. Horner-Schema 0 48

3 47 Funionenscharen. Grades Ganzraionale Funionenscharen. Grades Gegeben is die Funionenschar f durch Aufgabe 50 f x x x für > 0. a) Berechne die Schnipune mi der x-achse, Exrem- und Wendepune. Zeichne das Schaubild K von f für x;,5. b) Berechne die Orsurve C der Tiefpune. Welche Einschränung gib es? c) An welcher Selle u haben K und C eine parallele Tangene? d) Durch welche Pune gehen alle Kurven der Schar? Welche Kurve K geh durch den Pun A4 und welche durch B 4 Es sei Px y ein beliebiger Pun, der nich der Ursprung is. Wie viele Kurven gehen durch P? e) In welchem Verhälnis eil C die von K und der x-achse begrenze Fläche?

4 47 Funionenscharen. Grades 4 Gegeben is die Funion f für durch Aufgabe 60 Wendeangene, Orsurve, Gemeinsamer Kurvenpun f x x x a) Zeige, dass f die Nullselle x N = - ha. Berechne die weieren Nullsellen. b) Berechne Exrem- und Wendepune des Schaubilds K von f. c) Berechne die Gleichung der Wendeangene. Für welches geh diese durch d) Auf welcher Orsurve liegen alle Hochpune? Q 0? e) Zeige, dass sich zwei verschiedene Kurven dieser Schar ses in genau einem Pun schneiden. Gib es einen Pun, durch den alle Scharurven gehen? f) Zeichne die Schaubilder K und K. Aufgabe 6 Orsurve, exremer Dreiecsinhal, Inegralfläche, gemeinsamer Kurvenpun Gegeben is die Funion f für durch 9 f x x x x a) Berechne für das Schaubild K von f die Schnipune mi der x-achse, Exrem- und Wendepune. b) Berechne die Gleichung der Orsurve C der Hochpune. Zeichne K und K sowie die Orsurve C in ein gemeinsames Koordinaensysem. c) Su v sei ein Pun des Schaubilds K zwischen den Nullsellen. Das Lo von S auf die x-achse schneide diese in R. Berechne den Inhal A(u) des Dreiecs ORS. Für welchen Wer von u nimm dieser Inhal einen exremen Wer an. Berechne diesen und enscheide die Ar des Exremweres. d) Die Gerade g durch den Wendepun und den Tiefpun der Kurve K begrenz zusammen mi K eine Fläche. Berechne diese in Abhängigei von. e) Wo schneiden sich zwei verschiedene Scharurven?

5 47 Funionenscharen. Grades 5 Aufgabe 6 Inegralfläche, gemeinsamer Kurvenpun, Anzahl der Nullsellen in Abh. von Gegeben is die Funion f für K sei das Schaubild von f. \ 0 und für x durch f(x) x ( )x a) Unersuche das K auf Schnipune mi der x-achse, Hoch- Tief- und Wendepune. Zeichne K für,5 x,5 in ein Achsenreuz mi Längeneinhei cm. b) K und die posiive x-achse begrenzen eine Fläche. Berechne deren Inhal. c) Besimme die Anzahl der Schnipune mi der x-achse in Abhängigei von. Berechne für > 0 den Inhal der Fläche, die von der Kurve und der posiiven x-achse begrenz wird. Zeige, dass dieser Flächeninhal für = ein absolues Minimum annimm. d) Berechne für die gemeinsamen Pune von K und K. Was folg ohne weiere Rechnung aus diesem Ergebnis für die drei gemeinsamen Pune zweier beliebiger Scharurven? Aufgabe 64 Wendeangene, orhogonaler Schni, Parabel gesuch, Inegralfläche, Kurvenberührung Zu jedem und für x is eine Funion f gegeben durch \ 0 K sei das Schaubild von f. a) Unersuche K auf gemeinsame Pune mi den Koordinaenachsen, Exrem- und Wendepune. f x x x x Zeichne K im Bereich x 4 sowie seine Wendeangene. (Längeneinhei cm) b) Welche Kurve C bilden die Wendepune W der Kurven K für alle zugelassenen Were von? Für welche Were von schneiden C und K einander in W senrech? c) Eine Parabel. Ordnung P geh durch die gemeinsamen Pune von K mi der x-achse und berühr K im Ursprung. Selle deren Gleichung auf und weise nach, dass K und P eine weieren gemeinsamen Pune haben. d) In welchem Verhälnis eil K die von P und der x-achse eingeschlossene Fläche? e) Welche Beziehung muss zwischen r und s ( r s) besehen, dami sich die Kurven K r und K s im Ursprung berühren? Zeige: Zwei Kurven K r und K s, die sich nich im Ursprung berühren, schneiden sich in genau zwei Punen.

6 47 Funionenscharen. Grades 6 Aufgabe 65 Gleichung aufsellen, Inegralfläche, Parabel gesuch, 4 a) Eine Kurvenschar. Grades ha in ihren Wendepunen W ( ) Tangenen mi 9 der Seigung - und schneide die x-achse bei x =. Besimme die Gleichung der Kurvenschar. b) Berechne alle Schnipune mi der x-achse sowie beide Exrempune der Kurve C Zeichne C 6 in eine Achsenreuz für 0,5 x 8 mi LE cm. Besimme die Orsurve K der Wendepune der Kurven C für alle zugelassenen Were von und zeichne K in das vorhandene Schaubild ein. c) C und die x-achse begrenzen eine Fläche. Berechne deren Inhal A(). Die Gerade mi der Gleichung y x zereil diese Fläche in zwei Teilflächen mi den Inhalen A und A. Berechne das Flächenverhälnis A : A. d) G sei die Parabel, die durch den Hochpun und den Tiefpun der Kurve C geh und den Scheiel bei x ha. S g 4 x x 4x. Besimme die Gleichung von G. (Ergebnis: Berechne den Scheiel von G und zeichne G 6 in das vorhandene Achsenreuz ein. e) Der Kurvenbogen von C zwischen Hochpun und Tiefpun und die Parabel G begrenzen ein Flächensüc. Berechne ihren Inhal B().

7 47 Funionenscharen. Grades 7 Aufgabe 66 Gleichung aufsellen, Orsurve, exremer Dreiecsinhal, exreme Srecenlänge, gemeinsame Pune a) Eine Parabelschar. Ordnung ha im Ursprung die Tangene mi der Gleichung und den Exrempun 4 64 Gegeben is nun die Funionenschar E. Welche Gleichung ha die Schar? 7 4 y 4 x f x x x 4 x für > 0. Ihr Schaubild sei K. b) Unersuche K auf Schnipune mi der x-achse, Exrem- und Wendepune. Zeichne K und K 0,5 in eine gemeinsames Koordinaensysem für 0 x 4,5 mi Längeneinhei cm. Welche Gleichung ha die Orsurve der Hochpune? c) Pu v sei ein Pun von K für 0 u 4. Das Lo von P auf die x-achse schneide diese im Lofußpun Q. Berechne den Inhal A(u) des Dreiecs OPQ. Für welchen Wer von u nimm dieser Flächeninhal einen Exremwer an. Besimme die Ar dieses Exremums und seine Größe. d) Die Gerade x = u mi 0 < u < schneide K in A und K 0,5 in B. Für welches u nimm die Srece AB eine exreme Länge an? Besimme die Ar dieses Exremums und seine Größe. e) Zeige, dass sich zwei verschiedene Kurven K und K immer genau zweimal schneiden. Berechne die Abszissen beider Schnipune. Zusaz für CAS-Rechner: Berechne die Länge der Srece zwischen den beiden Schnipunen. Wie groß is diese Länge für und speziell für und?

8 47 Funionenscharen. Grades 8 Aufgabe 67 Gleichung aufsellen, rechwinliger Schni, minimale Inegralfläche, Rechecsfläche eilen Eine ganzraionale Funion f. Grades ha ein Schaubild K, das zum Ursprung symmerisch is, dor die Tangenenseigung ha und die x-achse bei schneide. a) Selle die Gleichung der Funion f auf. (Ergebnis: f x x x). 9 b) Unersuche K auf Exrem- und Wendepune. Zeichne K im Inervall 6;6 und K im Inervall ; mi Längeneinhei cm. Zeige, dass sich diese beiden Kurven rechwinlig schneiden. c) Es sei > 0 und < 0. Berechne die Schnipune der Kurven K und Wo liegen die Schnipune der Kurven K und Beweise: K und. d) Die Schaubilder K und K. K, wenn gil? K schneiden sich genau dann im Ursprung rechwinlig, wenn gil K mi schließen für x 0 eine Fläche vom Inhal A( ) ein. Für welchen Wer von nimm dieser Inhal ein Minimum an? Berechnen diesen minimalen Wer. e) Es sei > 0. Die Parallelen zu den Koordinaenachsen durch den Hochpun von K und die Koordinaenachsen selbs begrenzen ein Rechec. Dieses wird von K in zwei Teilflächen A () und A () zerleg. Zeige, dass das Verhälnis dieser Teilflächen von unabhängig is.

9 47 Funionenscharen. Grades 9 Aufgabe 69 Gleichung aufsellen, gemeinsame Kurvenpune, Fläche zwischen zwei Kurven a) Bei einer Schar Parabeln. Grades gehen alle Kurven durch die Pune A0 4 B x und. In B beräg die Tangenenseigung -. Der Wendepun einer Scharurve lieg bei. Besimme die Gleichung der Parabelschar K. 4 W Zeichne die Schaubilder K - und K - in ein gemeinsames Achsenreuz. f x x x x 4. b) Gegeben is die Funionenschar f durch 8 Beweise durch eine neue Rechnung, dass sich alle Kurven der Schar in zwei von unabhängigen Punen schneiden c) Zeige, dass jede Scharurve genau zwei Exrempune besiz. Gib es eine Selle, die bei einer der Scharurven als Exremselle in Erscheinung reen ann? d) Wie groß is die Fläche, die zwei verschiedene Scharurven zwischen ihren Schnipunen begrenzen? (Seze < voraus). (Anleiung: Beweise zuers, dass dann f x f x,, is). Wie groß is daraufhin die Fläche zwischen K und K? Gib es andere Kurvenpaare, die eine Fläche mi demselben Inhal einschließen?

10 47 Funionenscharen. Grades 0 Aufgabe 70 - (Abiur 98 BW) Parabel gesuch, Inegralfläche, längse Sehne, Wendeangene Die Funion f besiz die Nullselle x O = und ha die Ableiungsfunion f' mi Ihr Schaubild sei C. x x f ' x, x, a) Besimme den Funionserm f x (Ergebnis: x x f x ) Unersuche C auf gemeinsame Pune mi den Koordinaenachsen, Exrem- und Wendepune. Zeichne C für x 9, LE cm. b) Das Schaubild G einer ganzraionalen Funion. Grades g schneide C K auf der y-achse, geh durch den Tiefpun von C und ha für x eine waagreche Tangene. Besimme g (x). (Ergebnis : g x x x ) Zeichne G in das Achsenreuz von Teilaufgabe a) für x 9 ein, Das Kurvensüc von C zwischen Hoch- und Tiefpun begrenz zusammen mi G eine Fläche. Berechne den Inhal dieser Fläche. c) Die Kurven C und G schneiden aus der Geraden x = u (0 < u < 6) eine Sehne aus. Für welchen Wer von u wird diese Sehne am längsen? d) G schneide die x-achse in zwei Sellen x und x (x < x ). Gib es einen Wer von, so dass die Tangene von G an der Selle x parallel zur Wendeangene von C is? Zeichne G in das Achsenreuz von Teilaufgabe a) für x 4 ein, Das Kurvensüc von C zwischen Hoch- und Tiefpun begrenz zusammen mi G eine Fläche. Berechne den Inhal dieser Fläche.

11 47 Funionenscharen. Grades nur auf der Mahe-CD!

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil ANALYSIS Gebrochen raionale Funkionen Aufgabensammlung Teil : Funkionen mi Parameern Funkionenscharen Aufgaben im Abiursil Die Lösungen aller verwendeen Abiuraufgaben sammen von mir Neu eingerichee Sammlung

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

5.5. Abstrakte Abituraufgaben zu Exponentialfunktionen

5.5. Abstrakte Abituraufgaben zu Exponentialfunktionen 5.5. Absrake Abiuraufgaben zu Eponenialfunkionen Aufgabe : Kurvenunersuchung, Inegraion, Opimierungsaufgabe Gegeben is die Funkion f() ( ) e,5. a) Unersuchen Sie das Schaubild von f auf Achsenschnipunke,

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

A.24 Funktionsscharen 1

A.24 Funktionsscharen 1 A.4 Funkionsscharen A.4 Funkionsscharen ( ) Bemerkung: Im Buch Kurvenprobleme gib es viel Aufgaben zu Funkionen, die einen Parameer enhalen. Falls Sie hier also nich genug kriegen... A.4.0 Orskurven (

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung 4.5. Prüfungsaufgaben zu Symmerie und Verschiebung Aufgabe : Symmerie (6) Unersuche die folgenden Funkionen auf Punk- oder Achsensymmerie: a) f() = 6 6 + 4 + 8 + 7 b) f() = 8 5 5 + 5 c) f() = (a 5 b +

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 04 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 04 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz Wachsum Exponenielles Wachsum Aufgabensammlung Teil 2a Auch mi Verwendung von Mehoden aus der Analysis: Wachsumsraen Differenialgleichungen Auch mi CAS-Einsaz Sand: 23. Februar 2012 Daei Nr. 45811 INTERNETBIBLIOTHEK

Mehr

Abiurprüfung Mahemaik 013 Baden-Würemberg (ohne CAS) Wahleil - Aufgaben Analysis A 1 Aufgabe A 1.1 Der Querschni eines 50 Meer langen Bergsollens wird beschrieben durch die x-achse und den Graphen der

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

Lösung Abiturprüfung 1994 Leistungskurs (Baden-Württemberg)

Lösung Abiturprüfung 1994 Leistungskurs (Baden-Württemberg) Lösung Abiurprüfung 1994 Leisungskurs (Baden-Würemberg) Analysis I.1. a) D f = IR / { 1 } f x= = K besiz keine Nullsellen 1x f ' x= 8 1x = 8 K besiz keine Exremsellen senkreche Asymoe : x= 1 waagereche

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Schriftliche Abiturprüfung Mathematik 2013

Schriftliche Abiturprüfung Mathematik 2013 Schrifliche Abiurprüfung Mahemaik 03 Aufgabe (NT 008, Nr) Pflicheil Bilden Sie die Ableiung der Funkion f mi f(x) = 3x e x+ und vereinfachen Sie so wei wie möglich ( VP) Aufgabe (HT 008, Nr ) G is eine

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 1. Übung (KW 43) Schwingender Körper ) Notbremse ) Stahlkugel )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 1. Übung (KW 43) Schwingender Körper ) Notbremse ) Stahlkugel ) 1. Übun KW 43) Aufabe 1 M 1. Schwinender Körper ) Ein schwinender Körper ha die Geschwindiei v x ) = v m cosπ ). Er befinde T sich zur Zei 0 = T am Or x 4 0. Geben Sie den Or x und die Beschleuniun a x

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

Die Eckpunkte A und E liegen in der y-z-ebene; Es wird ein dritter Schnittpunkt der y-z-ebene mit dem Körper berechnet.

Die Eckpunkte A und E liegen in der y-z-ebene; Es wird ein dritter Schnittpunkt der y-z-ebene mit dem Körper berechnet. Lösungen Abiu Leisungsus Mahemai Seie von 9 P Analyische Geomeie. Dasellung de Veoen: BE + FG = BH. C F = AF AF + F = C AF + FC = AC AC FC = AF A ( ;;) B ( ; 4; ) C ( ;; ) D ( ;;) E ( ;;) F ( ; 4; ) G

Mehr

FH- Kurs Mathematik Übungsaufgaben für 2. Klausur

FH- Kurs Mathematik Übungsaufgaben für 2. Klausur Aufgabe 1: Gegeben ist die Funktion f mit 1 f x = x x x + x R 8 3 2 ( ) = ( 3 9 + 27);. a) Untersuchen sie das Schaubild K von f auf Schnittpunkte mit den Koordinatenachsen, Hoch- und Tiefpunkte. Zeichnen

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

5.5. Abituraufgaben zu ganzrationalen Funktionen

5.5. Abituraufgaben zu ganzrationalen Funktionen .. Abituraufgaben zu ganzrationalen Funktionen Aufgabe : Kurvendiskussion, Fläche zwischen zwei Schaubildern () Untersuchen Sie f(x) x x und g(x) x auf Symmetrie, Achsenschnittpunkte, Extrempunkts sowie

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G wwwmhe-ufgbencom Abiurprüfung Mhemik 0 (Bden-Würemberg) Berufliche ymnsien Anlysis, Aufgbe Für jedes mi > is die Funkion g gegeben durch x g (x) = e, x Ds Schubild von g is ( Punke) Nennen Sie drei gemeinsme

Mehr

03 Lineare Fkten-Glgen-Unglgen ohne Lösung.doc. Der beste Lehrer ist jener, der sich nach und nach überflüssig macht.

03 Lineare Fkten-Glgen-Unglgen ohne Lösung.doc. Der beste Lehrer ist jener, der sich nach und nach überflüssig macht. 0 Linere Fen-Glgen-Unglgen ohne Lösungdoc Der bese Lehrer is jener, der sich nch und nch überflüssig mch (George Orwell) 0 Linere Fen-Glgen-Unglgen ohne Lösungdoc Linere Funionen/Gleichungen/Ungleichungen

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung zkm (mi CAS) Miniserium für Landes Nordrhein-Wesfalen Seie 'les l von 6 Zenrale Klausur am Ende der Einführungsphase 202 Mahemaik Aufgabensellung Aufgabe : Unersuchung ganzraionaler Funkionen Gegeben is

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals 1/8 Grundidee der Inegralrechnung Inegralrechnung Die Inegralrechnung is neben der Differenialrechnung der wichigse Zweig der Analysis. Sie is aus dem Problem der Flächen- und Volumenberechnung ensanden.

Mehr

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe 1

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe.. Skizzier man sich mi Hilfe des GTR drei Schaubilder der Schar (z.b. für =, = und = 4) ergeben sich folgende Skizzen:

Mehr

Trainingsheft Analysis Schaubilder schnell zeichnen

Trainingsheft Analysis Schaubilder schnell zeichnen Trainingsheft Analysis Schaubilder schnell zeichnen Schnelles Zeichnen von Kurven: 6 ausführliche Beispiele! Parabeln, Hyperbeln, Gebrochen rationale Funktionen, Wurzelfunktionen als Parabelbögen oder

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Demo: Mathe-CD. Integration Flächenberechnungen. Sammlung von Trainingsaufgaben. Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Demo: Mathe-CD. Integration Flächenberechnungen. Sammlung von Trainingsaufgaben. Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Integration Flächenberechnungen Tet noch nicht fertig Vorabversion! Weitere Aufgaben folgen! Sammlung von Trainingsaufgaben Lösungen in 486 Datei Nr. 48 5 Stand 8. Dezember 008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

4.2. Aufgaben zu quadratischen Funktionen

4.2. Aufgaben zu quadratischen Funktionen .. Aufgaben zu quadratischen Funktionen Aufgabe : Stauchung und Streckung der Normalparabel a) Zeichne die Schaubilder der folgenden Funktionen in das Koordinatensstem. b) Vervollständige die darunter

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

4.1. Aufgaben zu linearen Funktionen

4.1. Aufgaben zu linearen Funktionen .. Aufgaben zu linearen Funktionen Aufgabe : Koordinatensystem a) Gib die Koordinaten der Punkte P - P 8 in dem rechts abgebildeten Koordinatensystem an. b) Markiere die Punkte A( ); B( ); C( ); D( );

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

Grundlegende Aufgaben zu Tangenten. Teil 1: Alle wichtigen Methoden ausführlich erklärt Spezielle Methoden für CAS-Rechner

Grundlegende Aufgaben zu Tangenten. Teil 1: Alle wichtigen Methoden ausführlich erklärt Spezielle Methoden für CAS-Rechner Grundlegende Aufgaben zu angenten ANALYSIS Ganzrationale Funktionen eil : Alle wichtigen Methoden ausführlich erklärt Spezielle Methoden für CAS-Rechner eil : rainingsaufgaben mit sehr ausführlichen Lösungen

Mehr

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten . Feststellungsprüfung Nachprüfung 19.0.005 1. Untersuchen Sie die Funktion p ( ) = + 16 auf Monotonie und geben Sie auf Grund dieses Ergebnisses die Lage des Scheitels an. (10. Der Graph einer ganz rationalen

Mehr

26 31 7 60 64 10. 16 6 12 32 33 9

26 31 7 60 64 10. 16 6 12 32 33 9 Lineare Algebra / Analyische Geomerie Grundkurs Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 4 Fruchsäfe in Berieb der Geränkeindusrie produzier in zwei Werken an verschiedenen Sandoren

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Übungsbeispiele Differential- und Integralrechnung

Übungsbeispiele Differential- und Integralrechnung Übungsbeispiele Differential- und Integralrechnung A) Gegeben ist die Funktion: y = 2x 3 9x 2 + 12x. a) Skizzieren Sie die Funktion im Intervall [ 0,5; 3] b) Diskutieren Sie die Funktion (Nullstellen,

Mehr

1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,2)

1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,2) Vermischte Übungen (1) Verschiebung der Normalparabel 1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,). In der Abbildung

Mehr

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen Mahemaik I Übungsaufgaben 8 Lösungsorschläge on T. Meyer Era-Mahemaik-Übung: 005--06 Aufgabe Berechnen Sie die Ableiung der Funkion f an einer beliebigen Selle 0 ohne Verwendung irgendwelcher Vorkennnisse

Mehr

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme Arbeiaufrag Thema: Gleichungen umformen, Gechwindigkei, Diagramme Achung: - So ähnlich (aber kürzer) könne die näche Klaenarbei auehen! - Bearbeie die Aufgaben während der Verreungunde. - Wa du nich chaff

Mehr

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen .. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen Aufgabe : Kurvendiskussion Untersuche die folgenden Funktionen auf Symmetrie, Achsenschnittpunkte, Etrem- und Wendepunkte und zeichne ein Schaubild

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen. Gegeben ist die Funktion f() = (sin( π )) Ihr Graph sei K. a) Skizzieren Sie K im Intervall [0,]. Geben Sie die Periode von f an. Geben Sie alle Hoch- und Tiefpunkte von K

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

So genannte. Steckbriefaufgaben. für ganzrationale Funktionen. Teil 2: Ganzrationale Funktionen 3. Grades

So genannte. Steckbriefaufgaben. für ganzrationale Funktionen. Teil 2: Ganzrationale Funktionen 3. Grades Analysis Funktionsgleichungen aufstellen So genannte Steckbriefaufgaben für ganzrationale Funktionen Teil 2: Ganzrationale Funktionen 3. Grades Lösungen teilweise auch mit ausführlicher Beschreibung des

Mehr

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung 11PS KINEMATIK P. Rendulić 2011 EINTEILUNG VON BEWEGUNGEN 1 KINEMATIK Die Kinemaik (Bewegunglehre) behandel die Geezmäßigkeien, die den Bewegungabläufen zugrunde liegen. Die bei der Bewegung aufreenden

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Musterlösungen zur Klausur. Grundlagen der Regelungstechnik. vom

Musterlösungen zur Klausur. Grundlagen der Regelungstechnik. vom Muserlösungen zur Klausur Grundlagen der Regelungsecni vom 4.9. Aufgabe : Linearisierung Pune A. Linearisierung des niclinearen Terms der Modellgleicungen, wobei und die üllsände im Gleicgewic sind. B.

Mehr

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum www.mahe-aufgaben.com Analysis: Exp. und beschränkes Wachsum Analysis Übungsaufgaben zum exponeniellen und beschränken Wachsum Gymnasium Klasse 10 Alexander Schwarz www.mahe-aufgaben.com Februar 2014 1

Mehr

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2005 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 2005 Prüfungsdauer: 09:00-12:00 Uhr Hilfsmittel:

Mehr

FERMACELL Gipsfaser-Platten. Bemessung von Wandtafeln nach DIN 1052:2004-08. Mehr Vorteile und Möglichkeiten für den Holzbau durch die neue DIN 1052

FERMACELL Gipsfaser-Platten. Bemessung von Wandtafeln nach DIN 1052:2004-08. Mehr Vorteile und Möglichkeiten für den Holzbau durch die neue DIN 1052 FERMACELL Gipsaser-Plaen Bemessung von Wanaeln nach DIN 05:004-08 Mehr Voreile un Möglicheien ür en Holzbau urch ie neue DIN 05 Mehr Voreile un Möglicheien ür en Holzbau urch ie neue DIN 05 Grunsäzliche

Mehr

Berechnungen am Wankelmotor

Berechnungen am Wankelmotor HTL Saalfelen Wankelmoor Seie von 7 Schmihuber Heinrich heinrich_schmihuber@homail.com Berechnungen am Wankelmoor Link zur Beispielsübersich Mahemaische / Fachliche Inhale in Sichworen: Linieninegral,

Mehr

1 Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an.

1 Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an. Teste dich! - (/6) Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an. 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Gemeinsamkeiten: Beide

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

Hauptprüfung 2010 Aufgabe 4

Hauptprüfung 2010 Aufgabe 4 Haupprüfung Aufgabe Gegeben ind die Punke A(5//), B(//), C(//) und S(//5).. Zeigen Sie, da da Dreieck ABC rechwinklig und gleichchenklig i. Berechnen Sie die Koordinaen de Punke D o, da da Viereck ABCD

Mehr

Kurzrepetition Ökonometrie I - Lösungen

Kurzrepetition Ökonometrie I - Lösungen . Einführung Ökonomerie II - Peer Salder Kurzrepeiion Ökonomerie I - Lösungen Aufgabe (Inerpreaion von Regressionsergebnissen) a) Der prozenuale Aneil der Varianz der abhängigen Variablen, der durch die

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 008 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 6. Juni 008 Prüfungsdauer: 09:00 1:00 Uhr Hilfsmittel: Elektronischer,

Mehr

F u n k t i o n e n Quadratische Funktionen

F u n k t i o n e n Quadratische Funktionen F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die

Mehr

P. v. d. Lippe Häufige Fehler bei Klausuren in "Einführung in die ökonometrische Datenanalyse" Duisburg

P. v. d. Lippe Häufige Fehler bei Klausuren in Einführung in die ökonometrische Datenanalyse Duisburg P. v. d. Lippe Häufige Fehler bei Klausuren in "Einführung in die ökonomerische Daenanalyse" Duisburg a) Klausur SS 0 Klausuren SS 0 bis SS 03 akualisier 9. Augus 03. Sehr viele Teilnehmer rechnen einfach

Mehr

I-Strecken (Strecken ohne Ausgleich)

I-Strecken (Strecken ohne Ausgleich) FELJC 7_I-Srecken.o 1 I-Srecken (Srecken ohne Ausgleich) Woher der Name? Srecken ohne Ausgleich: Bei einem Sprung der Eingangsgrösse (Sellgrösse) nimm die Ausgangsgrösse seig zu, ohne einem fesen Endwer

Mehr

b) Man erwärmt auf einer Herdplatte mit einer Leistung von 2,0 kw zehn Minuten lang zwei Liter Wasser von 20 C.

b) Man erwärmt auf einer Herdplatte mit einer Leistung von 2,0 kw zehn Minuten lang zwei Liter Wasser von 20 C. Wärmelehre. a) Berechne, wie viel Energie man benöig, um 250 ml Wasser von 20 C auf 95 C zu erwärmen? b) Man erwärm auf einer Herdplae mi einer Leisung von 2,0 kw zehn Minuen lang zwei Lier Wasser von

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Aufgaben: Repetition Ökonometrie I - Lösungen

Aufgaben: Repetition Ökonometrie I - Lösungen Ökonomerie I - Peer Salder Aufgaben: Repeiion Ökonomerie I - Lösungen Aufgabe (Radiowerbung für Kino): Die Schäzung der Regressionsgleichung U W u U : Wochenumsaz, W : Werbeausgaben ergib: 000, 07., SE

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Übungen zu Kurvenscharen

Übungen zu Kurvenscharen Übungen zu Kurvenscharen. Gegeben ist die Geradenschar g t : = (t ) ( t) + 9 (t 9) mit D(g t ) = R, t R. a) Zeichnen Sie die Graphen der Funktionen g und g in ein Koordinatensstem. b) Geben Sie die Schnittpunkte

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zur Integralrechnung Stammfunktionsberechnung, Flächenberechnung, Rotationsvolumen, Funktionen zu Änderungsraten (Bearbeitungszeit: 9 Minuten) Gymnasium J1 Aleander Schwarz www.mathe-aufgaben.com

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

Testprüfung (Abitur 2013)

Testprüfung (Abitur 2013) Testprüfung (Abitur 2013) Steve Göring, stg7@gmx.de 3. April 2013 Bearbeitungszeit: Zugelassene Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig), Tafelwerk Name: Punkte:

Mehr

Näherung einer Wechselspannung

Näherung einer Wechselspannung HL Seyr Wechselsromparabel Seie 1 von 1 Nieros Bernhard bernhard.nieros@hl-seyr.ac.a Näherung einer Wechselspannung Mahemaische / Fachliche Inhale in Sichworen: Polynomfunkion, allgemeine Sinusschwingung,

Mehr

III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung

III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung III. Integralrechnung 7. Übungen für die Klausur Teil - Integralrechnung Beachten Sie auch die Materialien aus dem Unterricht. Hier finden Sie viele Übungen, die Sie entweder noch nicht gemacht haben oder

Mehr

Ergänzungen zum Fundamentum

Ergänzungen zum Fundamentum Matura 2014 - Mathematik - Gymnasium Immensee 2 Ergänzungen zum Fundamentum Abstand eines Punktes zu einer Geraden d = AP v v Substitution ohne Grenzen Mit u = g(x) gilt: f(g(x))dx = 1 u f(u)du Matura

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

Physikprotokoll. 1 Versuch Nr.: 7 Moser Guido Dünne Linsen Fulda, den

Physikprotokoll. 1 Versuch Nr.: 7 Moser Guido Dünne Linsen Fulda, den Moser Guido Dünne Linsen Fulda, den 0..998 Dünne Linsen Was sind Linsen? Linsen sind meis Glaskörper, die lichdurchlässig sind und einallende Lichsrahlen ablenken. Die Ablenkung der Srahlen is dabei vom

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 205 (ohne CAS) Baden-Württemberg Wahlteil Analysis Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com März 205 Aufgabe A

Mehr

Flugzeugaerodynamik I Lösungsblatt 2

Flugzeugaerodynamik I Lösungsblatt 2 Flugzeugaerodynamik I Lösungsbla 2 Lösung Aufgabe Bei der vorliegenden Aufgabe handel es sich um die Nachrechenaufgabe der Skele Theorie. a) Der Koeffizien A 1 is durch die Wölbung des gegebenen Skeles

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Prüfung Finanzmathematik und Investmentmanagement 2011

Prüfung Finanzmathematik und Investmentmanagement 2011 Prüfung Finanzmahemaik und Invesmenmanagemen 0 Aufgabe : (0 Minuen) a) Auf der Grundlage einer Lagrange-Opimierung ergib sich die folgende funkionale Form für die (, ) -Koordinaen der (rein riskanen) Randporfolios

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr