Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder )

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder )"

Transkript

1 Aufgabenblatt 8 Aufgabe 1 (M 4. Feder ) Ein Körper der Masse m wird in der Höhe z 1 losgelassen und trifft bei z = 0 auf das Ende einer senkrecht stehenden Feder mit der Federkonstanten k, die den Fall des Körpers bremst. (Die Masse der Feder wird vernachlässigt.) (a) Bis zu welchem Ort z wird die Feder maximal zusammengedrückt? (b) Welche Geschwindigkeit v z3 hat der Körper, wenn die Feder bis zur Stelle z 3 zusammengedrückt ist? (c) Welche Leistung P 3 entwickelt die Feder bei z 3? (d) Stellen Sie die gesamte potentielle Energie des Systems als Funktion von z im Bereich 0.3 m z 0.6 m grafisch dar. Lösen Sie an Hand dieses Diagramms grafisch: Der Körper der Masse m fällt aus der Höhe z 4 auf die Feder. Bis zu welcher Stelle z 5 wird die Feder zusammengedrückt? Überprüfen Sie außerdem das Ergebnis von Aufgabenteil (a) an diesem Diagramm! m =.0 kg, z 1 = 0.60 m, z 3 = 0. m, z 4 = 0.40 m, k = N m 1 Aufgabe (M 4.7 Bus ) Ein vollbesetzter Bus hat die Masse m. (a) Welche Arbeit W 1 bringt der Motor bei jedem Anfahren bis zum Erreichen der Geschwindigkeit v 1 auf ebener Straße auf? (b) Welche maximale Leistung P 1 und welche durchschnittliche Leistung P wären erforderlich, wenn das Anfahren auf einer ebenen Strecke s 1 gleichmäßig beschleunigt erfolgen würde? m = t, v 1 = 30 km h 1, s 1 = 0 m Aufgabe 3 (M 5. Zwei Kugeln ) Zwei Kugeln mit den Massen m 1 = m und m = m bewegen sich mit gleichem Geschwindigkeitsbetrag v aufeinander zu. Welche Geschwindigkeiten v 1 und v ergeben sich nach dem Zusammenstoß, wenn dieser (a) vollkommen elastisch, (b) vollkommen inelastisch erfolgt? (c) Wie groß ist im Fall (b) der Energieverlust E? Jens Patommel Seite 1 von

2 Aufgabe 4 (M 5.4 Stoßpendel ) Ein Stoßpendel besteht aus einer dünnen Stange der Länge l, die am unteren Ende einen Holzklotz mit der Masse m H trägt. Wird eine Kugel der Masse m K in den Holzklotz geschossen, so schlägt das vorher ruhende Pendel um die Strecke x m aus. Wie groß war die Geschwindigkeit v des Geschosses? l l mk v mh 0 xm x l =.0 m, m H = 0.80 kg, m K = 5.0 g, x m = 0 cm Jens Patommel Seite von

3 Lösung zu Aufgabe 1 (a) Die Gesamtenergie E ges setzt sich zusammen aus der potentiellen Energie E g im Schwerefeld der Erde, der potentiellen Energie E F der Feder und der kinetischen Energie E kin. Am Anfang ist die Feder entspannt und der Körper befindet sich in Ruhe, deshalb sind die Federenergie und die kinetische Energie am Anfang 0, die Gesamtenergie beträgt also am Anfang E ges1 = E g1 = mgz 1. Wenn die Feder (bei z ) maximal zusammengestaucht ist, ist der Körper in Ruhe, die kinetische Energie ist dann wiederum Null. Die Gesamtenergie im Zustand der maximal gestauchten Feder beträgt E ges = E g + E F = mgz + 1 kz. Es gilt der Energieerhaltungssatz, wonach die Gesamtenergie konstant ist: E ges1 = E ges = mgz 1 = mgz + 1 kz z + mg k z = mg k z 1. Diese quadratische Gleichung kann man durch quadratische Ergänzung oder mittels p-q-formel nach z auflösen: ( ) z = mg 1 ± 1 + kz 1. k mg Das positive Vorzeichen bedeutet eine Streckung und das negative Vorzeichung eine Stauchung der Feder, wobei das positive Vorzeichung nur dann eine gültige Lösung ergibt, wenn der Körper bei der Aufwärtsbewegung mit der Feder fest verbunden bleibt (mittels eines Kopplungsmechanismus, zum Beispiel durch Magnetkraft). Ist der Körper nur lose mit der Feder verbunden, wird er sich von ihr lösen, sobald die Gleichgewichtslage erreicht ist. Darum brauchen wir uns aber keine Gedanken zu machen, denn gefragt ist nach der Position der maximalen Federstauchung, nicht nach der maximalen Streckung. Die Lösung lautet also z = mg k ( kz 1 mg kg 9.81 m s = 1.96 kn m 1 = 30.0 cm. ) kn m m kg 9.81 m s (b) Die Position z 3 liegt zwischen z und 0, also in jenem Bereich, wo sowohl die Federenergie als auch die kinetische Energie zur Gesamtenergie beitragen. Nach dem Jens Patommel Seite 3 von

4 Energieerhaltungssatz gilt mgz 1 = mgz kz mv z3 v z3 = ± g(z 1 z 3 ) k m z 3 (1.1) = ± 9.81 m s 1.96 kn m 1 (0.6 m 0.1 m) (0.1 m) kg = ±3.4 m s 1. Das positive Vorzeichen der Geschwindigkeit bedeutet, dass sich der Körper auf dem Weg nach oben und das negative Vorzeichen, dass sich der Körper auf dem Weg nach untern befindet. (c) Die Leistung ist die Zeitableitung der Arbeit bzw. der Energie, die Momentanleistung der Feder beträgt somit P F (t) = dw F(t) = d KR = 1k dz dz(t) dz [ 1 kz(t)] = 1 k dz(t) = 1k z(t) v z(t) = kz(t) v z (t) (4.1) = ±kz(t) }{{} F F (z(t)) g [z 1 z(t)] k m z(t), wobei ich die Kettenregel df(g(x)) = df(g) dg(x) und Gleichung (4.1) mit z dx dg dx 3 z(t) verwendet habe. Zum Zeitpunkt t 3 mit z 3 = z(t 3 ) entwickelt die Feder die Leistung P 3 = P F (t 3 ) = ±kz(t 3 ) g [z 1 z(t 3 )] k m z(t 3) = ±kz 3 g [z 1 z 3 ] k m z 3 = ±1.96 kn 0.1 m 3.4 m s 1 = ±0.67 kw. (d) In den folgenden Diagrammen sind die potentielle Energie (Summe aus Federund Gravitationsenergie) und die Gesamtenergie über der Ortskoordinate z aufgetragen. Aufgrund des Energieerhaltungssatzes ist die Gesamtenergie konstant und daher als horizontale Gerade eingezeichnet. Bei positiven z-werten ist die Feder entspannt, der Beitrag der Feder zur potentiellen Energie also Null, so dass hier die potentielle Energie eine Gerade ist (E pot = E g = mgz). Bei negativen z-werten kommt noch der quadratische Term der Federenergie dazu (E pot = E g + E F = mgz + 1 kz ), wodurch die Kurve eine Parabelform annimmt. Die kinetische Energie ergibt sich als Differenz zwischen Gesamtenergie und potentieller Energie, deren Verlauf ist in der zweiten und dritten Abbildung als schwarze Kurve eingezeichnet. Minimum und Jens Patommel Seite 4 von

5 Maximum der z-koordinate sind durch den Schnittpunkt der Gesamtenergiekurve mit der Kurve für die potentielle Energie gegeben, denn dort wird die kinetische Energie (und somit die Geschwindigkeit) gerade Null. Wir möchten nun ablesen, bis zu welcher Stelle z 5 die Feder maximal zusammengestaucht wird, falls sie in der Höhe z 4 fallengelassen wird. Dazu tragen wir die neue Gesamtenergie als grüne Kurve auf, und zwar so, dass sie die blaue Kurve der potentiellen Energie bei z 4 schneidet (hier sind Geschwindigkeit und kinetische Energie Null). Diese grüne Kurve schneidet die potentielle Energiekurve in einem zweiten Punkt bei z m. Da hier Geschwindigkeit und kinetische Energie Null sind, ist dort die Feder maximal zusammengedrückt. Außerdem lesen wir ab, dass z ungefähr 0.30 m beträgt, was sich im Einklang mit unserem Ergebnis aus Teilaufgabe (a) befindet. E/J E pot E ges1 50 E ges Ekin(z3) Ekin,max z z 5 z z z 1 z /m E/J E ges 50 E pot E kin z z z 1 z /m Jens Patommel Seite 5 von

6 E/J E ges 50 E F E pot E kin z z z 1 z/m E g Lösung zu Aufgabe (a) Die vom Motor zum Anfahren des Busses zu verrichtende Arbeit ist die Differenz aus kinetischer Energie E kin1 nach Erreichen der Geschwindigkeit v 1 und der kinetischen Anfangsenergie E kin0 : W 1 = E kin1 E kin0 = 1 mv 1 0 = 347 kj. (b) Die momentane Leistung P (t) berechnet sich aus der Zeitableitung der zur Beschleunigung verrichteten Arbeit, also der kinetischen Energie: P (t) = dw (t) = d [ 1 mv(t)] = 1 dv(t) mdv dv m v(t) a(t) = 1 = m v(t) a(t) = ma 0 v(t). (.1) Im letzten Schritt wird ausgenutzt, dass die Beschleunigung konstant erfolgt. Wir suchen das Maximum der Leistung im Zeitintervall [0, t 1 ]. Dazu bilden wir die erste Zeitableitung: dp (t) = d [ ma0 v(t) ] dv(t) = ma 0 = ma 0 > 0. Die Zeitableitung der Leistung ist für alle t positiv, P (t) ist somit eine streng monoton wachsende Funktion und hat ihr Maximum am rechten Rand bei t 1. Es gilt Jens Patommel Seite 6 von

7 somit für die maximale Leistung: P 1 = P (t 1 ) = ma 0 v(t 1 ) = ma 0 v 1. (.) Die Beschleunigung erhält man aus der Bewegungsgleichung für konstante Beschleunigung indem man dort die Zeit t 1 einsetzt: und t 1 eliminiert: v(t) = a 0 t, s(t) = 1 a 0t, v 1 = a 0 t 1, s 1 = 1 a 0t 1 t 1 = v 1 (.3) a 0 ( ) v1 = s 1 = 1 a 0 a 0 a 0 = 1 v1 (.4) s 1 Dies setzen wir in (.) ein und erhalten für die maximale Leistung P 1 = ma 0 v 1 = 1 mv3 1 s 1 = 8.9 kw. Den zeitlichen Mittelwert g [t0,t 1 ] einer physikalischen Größe g(t) über ein Zeitintervall [t 0, t 1 ] definiert man ganz allgemein als folgendes Integral: g [t0,t 1 ] = 1 t 1 g(t). t 1 t 0 t 0 Dies wenden wir an, um die durchschnittliche Leistung beim Beschleunigen des Busses zu bestimmen, wobei wir beachten, dass die Leistung als Zeitableitung der Arbeit definiert ist: P = 1 t 1 P (t) t 1 t 0 t 0 = 1 t 1 t 1 t 0 t 0 = 1 t 1 t 0 W (t 1 ) W (t 0 ) dw dw = W (t 1) W (t 0 ) t 1 t 0 1 = mv 1. t 1 Jens Patommel Seite 7 von

8 Die Zeit t 1 wird errechnet, indem wir (.4) in (.3) einsetzen, (.4) (.3) = t 1 = s 1 v 1, so dass wir für die Durchschnittsleistung schlussendlich erhalten: Lösung zu Aufgabe 3 P = 1 4 mv3 1 s 1 = 1 P 1 = kw. (a) Beim vollkommen elastischen Stoß bleiben Energie und Impult erhalten, wodurch man im Falle des zentralen Stoßes zwei Gleichungen für die zwei Geschwindigkeiten nach dem Stoß erhält. Energieerhaltung: Impulserhaltung: 1 1v1 + 1m v = 1m 1v 1 + 1m v ( ) ( ) m 1 v 1 v 1 = m v v m 1 (v 1 v 1) (v 1 + v 1) = m (v v ) (v + v ) (3.1) m 1 v 1 + m v = m 1 v 1 + m v m 1 (v 1 v 1) = m (v v ) (3.) Unter der Voraussetzung, dass v 1 v 1 und v v gilt (ansonsten würden sich die Kugeln ungestört durchdringen), folgt aus (3.1) und (3.) Dies in (3.) eingesetzt ergibt v 1 + v 1 = v + v v = v 1 + v 1 v. (3.3) m 1 (v 1 v 1) = m (v 1 + v 1 v v ) m 1 v 1 m 1 v 1 = m v 1 + m v 1 m v v 1 = (m 1 m )v 1 + m v m 1 + m. Jetzt noch in (3.3) einsetzen liefert die symmetrische Lösung v = (m m 1 )v + m 1 v 1 m 1 + m. Mit m = m 1 = m und v 1 = v = v folgt v 1 = 5 3 v, v = 1 3 v. Jens Patommel Seite 8 von

9 (b) Nach dem vollkommen inelastischen Stoß bewegen sich die beiden Kugeln mit gemeinsamer Geschwindigkeit weiter. Diese Geschwindigkeit ist bereits durch die Impulserhaltung festgelegt: m 1 v 1 + m v = (m 1 + m )v v = m 1v 1 + m v m 1 + m. Einsetzen von m = m 1 = m und v 1 = v = v ergibt v = 1 3 v. (3.4) (c) Der absolute Energieverlust lautet E kin = E kin E kin = 1 m 1v m v 1 (m 1 + m )v = 1 m(v + v 3v ) (3.4) = 1 m(3v 3( 1 3 v) ) = 4 3 v. Um eine bessere Vorstellung zu bekommen, berechnen wir noch schnell den relativen Energieverlust: f = E 4 E = 3 v 3 = 8 mv 9 = 89 %. Rund 89 % der kinetischen Energie wird in Innere Energie (Wärme, Verformung) umgewandelt! Lösung zu Aufgabe 4 Die Impulserhaltung liefert einen Zusammenhang zwischen der gesuchten Geschwindigkeit der Kugel vor dem Einschlag und der Geschwindigkeit des Holzklotzes (mit feststeckender Kugel) unmittelbar nach dem Einschlag: m K v = (m K + m H v ( v = 1 + m ) H v. (4.1) m K Die Energieerhaltung gestattet die Berechnung der Geschwindigkeit v aus der Kenntnis der Höhe h: 1 (m K + m H ) v = (m K + m H ) gh v = gh. (4.) Jens Patommel Seite 9 von

10 Schließlich wird noch ein Zusammenhang zwischen der Höhe h und dem horizontalen Abstand x benötigt, den uns der Satz des Pythagoras liefert: h<l l = (l h) + x m [ ( xm h = l 1 1 l ) ]. (4.3) Jetzt braucht nur noch (4.3), (4.) und (4.1) ineinander eingesetzt zu werden, um das Ergebnis zu erhalten. v = ( 1 + m ) [ H gl ( xm 1 1 m K l ) ] ( = g ) 9.81 m s m g = 71.4 m s 1 ( = 57 km h 1) ( ) 0. m m Quellen Die Aufgaben sind entnommen aus: Peter Müller, Hilmar Heinemann, Heinz Krämer, Hellmut Zimmer, Übungsbuch Physik, Hanser Fachbuch, ISBN: Die Übungsblätter gibt es unter Die Homepage zur Vorlesung findet sich unter Jens Patommel

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln ) Physik ET, WS 0 Aufgaben mit Lösung 6. Übung KW 49) 6. Übung KW 49) Aufgabe M 5. Zwei Kugeln ) Zwei Kugeln mit den Massen m = m und m = m bewegen sich mit gleichem Geschwindigkeitsbetrag v aufeinander

Mehr

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann:

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann: Wenn zwei Körper vollkommen elastisch, d.h. ohne Energieverluste, zusammenstoßen, reicht der Energieerhaltungssatz nicht aus, um die Situation nach dem Stoß zu beschreiben. Wenn wir als Beispiel zwei Wagen

Mehr

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 7. Erde und Mond ) (b) Welche Gewichtskraft hat die Mondlandeeinheit auf dem Mond?

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 7. Erde und Mond ) (b) Welche Gewichtskraft hat die Mondlandeeinheit auf dem Mond? Aufgabenblatt 7 Aufgabe 7.2 Erde und ond ) Die Landeeinheit einer ondsonde habe auf der Erde eine Gewichtskraft von 20 000 N. Der Radius der Erde beträgt r E = 6370 km, einen Faktor 3.6 größer als derjenige

Mehr

E1 Mechanik Musterlösung Übungsblatt 6

E1 Mechanik Musterlösung Übungsblatt 6 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik Musterlösung Übungsblatt 6 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Zwei Kugeln der gleichen Masse mit den Geschwindigkeiten

Mehr

Physikunterricht 11. Jahrgang P. HEINECKE.

Physikunterricht 11. Jahrgang P. HEINECKE. Physikunterricht 11. Jahrgang P. HEINECKE Hannover, Juli 2008 Inhaltsverzeichnis 1 Kinematik 3 1.1 Gleichförmige Bewegung.................................. 3 1.2 Gleichmäßig

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

EXPERIMENTALPHYSIK I - 4. Übungsblatt

EXPERIMENTALPHYSIK I - 4. Übungsblatt Musterlösung des Übungsblattes 5 der Vorlesung ExpPhys I (ET http://wwwet92unibw-muenchende/uebungen/ep1et-verm/uebun EXPERIMENTALPHYSIK I - 4 Übungsblatt VII Die mechanischen Energieformen potentielle

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

Physik 1. Stoßprozesse Impulserhaltung.

Physik 1. Stoßprozesse Impulserhaltung. Physik Mechanik Impulserhaltung 3 Physik 1. Stoßprozesse Impulserhaltung. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik Impulserhaltung 5 Themen Stoßprozesse qualitativ quantitativ Impulserhaltungssatz

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 16. November 25 Übungsblatt Lösungsvorschlag 3 Aufgaben,

Mehr

Übungsblatt 3 ( ) mit Lösungen

Übungsblatt 3 ( ) mit Lösungen Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2011/12 Übungsblatt 3 (25.11.2011) mit Lösungen Vorlesungen: Mo, Mi, jeweils 08:15-09:50 HG Übungen: Fr 08:15-09:45 oder Fr

Mehr

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06)

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06) 7. Übung KW 05/06) Aufgabe 1 M 14.1 Venturidüse ) Durch eine Düse strömt Luft der Stromstärke I. Man berechne die Differenz der statischen Drücke p zwischen dem weiten und dem engen Querschnitt Durchmesser

Mehr

Tutorium Physik 1. Arbeit, Energie, Leistung

Tutorium Physik 1. Arbeit, Energie, Leistung 1 Tutorium Physik 1. Arbeit, Energie, Leistung WS 15/16 1.Semester BSc. Oec. und BSc. CH 3 3. ARBEIT, ENERGIE, LEISTUNG 3.1 Energie: Aufgabe (*) 4 a. Was ist Energie? b. Worin liegt der Unterschied zwischen

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Prüfungsklausur - Lösung

Prüfungsklausur - Lösung Prof. G. Dissertori Physik I ETH Zürich, D-PHYS Durchführung: 08. Februar 2012 Bearbeitungszeit: 180min Prüfungsklausur - Lösung Aufgabe 1: Triff den Apfel! (8 Punkte) Wir wählen den Ursprung des Koordinatensystems

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Beachten sie bitte die Punkteverteilung

Beachten sie bitte die Punkteverteilung Tutor oder Tutorium: Semester: Fachrichtung: Beachten sie bitte die Punkteverteilung Aufgabe Punkte 1 7 2 11 3 6 4 9 5 7 Gesamt 40 Nützliche Formeln und Konstanten: Volumenelement Zylinderkoordinaten:

Mehr

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

V12 Beschleunigte Bewegungen

V12 Beschleunigte Bewegungen Aufgabenstellung: 1. Ermitteln Sie die Fallbeschleunigung g aus Rollexperimenten auf der Rollbahn. 2. Zeigen Sie, dass für die Bewegung eines Wagens auf der geneigten Ebene der Energieerhaltungssatz gilt.

Mehr

Mechanische Schwingungen Aufgaben 1

Mechanische Schwingungen Aufgaben 1 Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Mathematik und Naturwissenschaften

Mathematik und Naturwissenschaften Mathematik und Naturwissenschaften Das Studium des Wirtschaftsingenieurwesens erfordert erweiterte Kenntnisse in Mathematik und Naturwissenschaften. Es ist sehr hilfreich, wenn eine solide Basis bereits

Mehr

Bestimmung von Federkonstanten

Bestimmung von Federkonstanten D. Samm 2014 1 Bestimmung von Federkonstanten 1 Der Versuch im Überblick Ohne Zweifel! Stürzt man sich - festgezurrt wie bei einem Bungee-Sprung - in die Tiefe (Abb. 1), sind Kenntnisse über die Längenänderung

Mehr

Welche der Darstellungen hat das oberflächlichste Niveau? ( ) A) ( ) B) ( ) C) ( ) D)

Welche der Darstellungen hat das oberflächlichste Niveau? ( ) A) ( ) B) ( ) C) ( ) D) Welche der Größen ist extensiv? ( ) Lautstärke eines Kopfhörers ( ) Rasenfläche eines Fußballplatzes ( ) Farbe der Wand in Ihrer Küche ( ) Geschmack eines Kuchens Welche der Darstellungen hat das oberflächlichste

Mehr

2.4 Fall, Wurf und Federkräfte

2.4 Fall, Wurf und Federkräfte 2.4. FALL, WURF UND FEDERKRÄFTE 47 2.4 Fall, Wurf und Federkräfte Sie haben jetzt die Begriffe Arbeit, potentielle und kinetische Energie, sowie die Energieerhaltung kennengelernt. Wir wollen nun einige

Mehr

a) Was ist der Unterschied zwischen einer intensiven und einer extensiven Zustandsgröße?

a) Was ist der Unterschied zwischen einer intensiven und einer extensiven Zustandsgröße? Übung 1 Aufgabe 2.6: Zustandsgrößen, Systeme und Hauptsätze a) Was ist der Unterschied zwischen einer intensiven und einer extensiven Zustandsgröße? b) G sei eine Zustandsgröße mit der Einheit [G] = J.

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Probeklausur - Lösung Technische Universität München 1 Fakultät für Physik 1. Wilhelm Tell (13 Punkte) Wilhelm Tell will mit einem Pfeil (m

Mehr

2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell

2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell 2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell Mit den drei Zustandsgrößen Druck, Temperatur und Volumen konnte der Zustand von Gasen makroskopisch beschrieben werden. So kann zum Beispiel

Mehr

Übungsblatt 13 Physik für Ingenieure 1

Übungsblatt 13 Physik für Ingenieure 1 Übungsblatt 13 Physik für Ingenieure 1 Othmar Marti, (othmarmarti@physikuni-ulmde 1 00 1 Aufgaben für die Übungsstunden Schwingungen 1 Zuerst nachdenken, dann in Ihrer Vorlesungsmitschrift nachschauen

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt ) Physik ET, WS Aufaben mit Lösun. Übun (KW 44). Übun (KW 44) Aufabe (M.3 Schräer Wurf ) Ein Ball soll vom Punkt P (x, y ) (, ) aus unter einem Winkel α zur Horizontalen schrä nach oben eworfen werden. (a)

Mehr

Übung zu Mechanik 3 Seite 48

Übung zu Mechanik 3 Seite 48 Übung zu Mechanik 3 Seite 48 Aufgabe 81 Vor einer um das Maß f zusammengedrückten und verriegelten Feder mit der Federkonstanten c liegt ein Massenpunkt der Masse m. a) Welchen Wert muß f mindestens haben,

Mehr

Physik 1 Zusammenfassung

Physik 1 Zusammenfassung Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................

Mehr

Lösung VIII Veröentlicht:

Lösung VIII Veröentlicht: 1 Impulse and Momentum Bei einem Crash-Test kollidiert ein Auto der Masse 2kg mit einer Wand. Die Anfangs- und Endgeschwindigkeit des Autos sind jeweils v = (- 2 m/ s) e x und v f = (6 m/ s) e x. Die Kollision

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 5. Übung (KW 48) Verschiebungsarbeit )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 5. Übung (KW 48) Verschiebungsarbeit ) 5. Übung (KW 48) Aufgabe 1 (M 4.1 Veschiebungsabeit ) Welche Abeit muss aufgewendet weden, um eine Fede mit Fedekonstanten k (a) ohne Vospannung, d. h. von de Vospannlänge x 1 0, (b) von de Vospannlänge

Mehr

Besprechung am

Besprechung am PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2015/16 Übungsblatt 8 Übungsblatt 8 Besprechung am 08.12.2015 Aufgabe 1 Trouble with Rockets: Eine Rakete mit einer anfänglichen Masse M

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E13 WS 011/1 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 015/16 Übungsblatt 6 Übungsblatt 6 Lösung Aufgabe 1 Gravitation. a) Berechnen Sie die Beschleunigung g auf der Sonnenoberfläche. Gegeben

Mehr

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen.

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen. - 52-2.4 Stoßprozesse 2.4.1 Definition und Motivation Unter einem Stoß versteht man eine zeitlich begrenzte Wechselwirkung zwischen zwei oder mehr Systemen, wobei man sich für die Einzelheiten der Wechselwirkung

Mehr

Kapitel 2 Elastische Stoßprozesse

Kapitel 2 Elastische Stoßprozesse Kapitel Elastische Stoßprozesse In diesem Kapitel untersuchen wir die Auswirkungen von elastischen Kollisionen auf die Bewegungen der Kollisionspartner.. Kollision mit gleichen Massen Elastische Stöße

Mehr

2 Gleichmässig beschleunigte Bewegung

2 Gleichmässig beschleunigte Bewegung 2 Gleichmässig beschleunigte Bewegung Ziele dieses Kapitels Du kennst die Definition der Grösse Beschleunigung. Du kannst die gleichmässig beschleunigte Bewegung im v-t- und s-t-diagramm darstellen. Du

Mehr

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 2. Übung (KW 17/18)

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 2. Übung (KW 17/18) 2. Übung (KW 17/18) Aufgabe 1 (T 3.1 Sauerstoffflasche ) Eine Sauerstoffflasche, die das Volumen hat, enthält ab Werk eine Füllung O 2, die bei Atmosphärendruck p 1 das Volumen V 1 einnähme. Die bis auf

Mehr

v A e y v By = v B sinα 2 = v A 2 v By

v A e y v By = v B sinα 2 = v A 2 v By U Chemnitz Institut für Physik Physikübungen für Wirtschaftsingenieure WS3 Lösungsvorschläge für. Übungsblatt. Die Körper und starten gleichzeitig von einem gemeinsamen Standort, mit v = m/s und mit v

Mehr

Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS013/14 18.1.013 Diese Aufgaben entsprechen der Abschlußklausur, für die 1 ¾ Stunden

Mehr

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls Physik Impuls Impuls Träge Masse in Bewegung Nach dem 1. Newton schen Gesetz fliegt ein kräftefreier Körper immer weiter gradeaus. Je größer die träge Masse desto größer setzt sie einer Beschleunigung

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung

zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Fach: Physik/ L. Wenzl Datum: zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Aufgabe 1: Ein Auto beschleunigt gleichmäßig in 12,0 s von 0 auf 100 kmh -1. Welchen Weg hat es in dieser Zeit

Mehr

Ferienkurs Experimentalphysik Übung 2 - Lösungsvorschlag

Ferienkurs Experimentalphysik Übung 2 - Lösungsvorschlag Ferienkurs Experimentalphysik 1 2011 Übung 2 - Lösungsvorschlag 1. Elastischer Stoß a) Ein Teilchen der Masse m 1 stößt zentral und elastisch mit einem im Laborsystem ruhenden Teilchen der Masse m 2. Wie

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben Technische Mechanik 3 2.2-1 Prof. Dr. Wandinger Aufgabe 1 Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt.

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250

Mehr

Drehbewegungen. Lerninhalte

Drehbewegungen. Lerninhalte Physik Lerninhalte man informiere sich über: Winkelgeschwindigkeit, Winkelbeschleunigung Drehmoment, Drehimpuls, Drehimpulserhaltung Trägheitsmoment, Steiner scher Satz gleichmäßig beschleunigte Drehbewegung

Mehr

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems I.6.3 Potentielle Energie eines Teilchensystems Beispiel: Einzelmassen im Schwerefeld U i = m i gz i jetzt viele Massen im Schwerefeld: Gesamtenergie U = m i gz i m i z i = gm m i = gmz M Man muss also

Mehr

v = x t = 1 m s Geschwindigkeit zurückgelegter Weg benötigte Zeit x t Zeit-Ort-Funktion x = v t + x 0

v = x t = 1 m s Geschwindigkeit zurückgelegter Weg benötigte Zeit x t Zeit-Ort-Funktion x = v t + x 0 1. Kinematik ================================================================== 1.1 Geradlinige Bewegung 1.1. Gleichförmige Bewegung v = x v = 1 m s v x Geschwindigkeit zurückgelegter Weg benötigte Zeit

Mehr

zu / II. Wiederholung zum freien Fall

zu / II. Wiederholung zum freien Fall Fach: Physik/ L. Wenzl Datum:. zu 2.1.4 / II. Wiederholung zum freien Fall Aufgabe 11 (Mechanik, freier Fall) Aus welcher Höhe müssen Fallschirmspringer zu Übungszwecken frei herabspringen, um mit derselben

Mehr

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 6. Übung (KW 03/04) Aufzugskabine )

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 6. Übung (KW 03/04) Aufzugskabine ) 6. Übung (KW 03/04) Aufgabe (M 9. Aufzugskabine ) In einem Aufzug hängt ein Wägestück der Masse m an einem Federkraftmesser. Dieser zeigt die Kraft F an. Auf welche Beschleunigung a z (z-koordinate nach

Mehr

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung.

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung. 3 Grund- und Angleichungsvorlesung Physik. Energie, Arbeit & Leistung. WS 16/17 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Impuls und Impulserhaltung

Impuls und Impulserhaltung Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Impuls und Impulserhaltung Impuls. Einführung und Definition Der Impuls (engl. momentum) eines Körpers ist das, was in der Umgangssprache als Schwung oder Wucht

Mehr

Grundwissen Physik 8. Klasse Schuljahr 2011/12

Grundwissen Physik 8. Klasse Schuljahr 2011/12 1. Was du aus der 7. Klasse Natur und Technik unbedingt noch wissen solltest a) Vorsilben (Präfixe) und Zehnerpotenzen Bezeichnung Buchstabe Wert Beispiel Kilo k 1.000=10 3 1 kg=1000 g=10 3 g Mega M 1.000.000=10

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert M04 Energieumwandlung am Maxwellrad (Pr_PhI_M04_Maxwellrad_6, 14.7.014)

Mehr

Theoretische Physik I Mechanik Blatt 1

Theoretische Physik I Mechanik Blatt 1 PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 1 WS 27/28 8. 1. 27 1. Parabelbahn. Ein Punkt bewege sich auf der Kurve, die durch die Gleichung y 2 = 4ax + 4a 2 a > beschrieben

Mehr

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 4. Übung (KW 22/23)

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 4. Übung (KW 22/23) 4. Übung (KW 22/23) Aufgabe 1 (T 5.1 Eisenstück ) Ein Stück Eisen der Masse m und der Temperatur wird in ein sehr großes Wasserbad der Temperatur T 2 < gebracht. Das Eisen nimmt die Temperatur des Wassers

Mehr

Klausur Physik 1 (GPH1) am

Klausur Physik 1 (GPH1) am Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 18.9.09 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab

Mehr

Allgemeine Bewegungsgleichung

Allgemeine Bewegungsgleichung Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit

Mehr

Aufgabe 1 - Schiefe Ebene - (10 Punkte)

Aufgabe 1 - Schiefe Ebene - (10 Punkte) - schriftlich Klasse: 4AW (Profil A) - (HuR) Prüfungsdauer: Erlaubte Hilfsmittel: Bemerkungen: 4h Taschenrechner TI-nspire CAS Der Rechner muss im Press-to-Test-Modus sein. Formelsammlung Beginnen Sie

Mehr

Brückenkurs Physik SS11. V-Prof. Oda Becker

Brückenkurs Physik SS11. V-Prof. Oda Becker Brückenkurs Physik SS11 V-Prof. Oda Becker Überblick Mechanik 1. Kinematik (Translation) 2. Dynamik 3. Arbeit 4. Energie 5. Impuls 6. Optik SS11, BECKER, Brückenkurs Physik 2 Beispiel Morgens um 6 Uhr

Mehr

5. Arbeit und Energie

5. Arbeit und Energie 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit

Mehr

Impuls- und Energieerhaltungssatz, Stoßgesetze

Impuls- und Energieerhaltungssatz, Stoßgesetze Impuls- und Energieerhaltungssatz, Stoßgesetze Gruppe 4: Daniela Poppinga, Jan Christoph Bernack Betreuerin: Natalia Podlaszewski 6. Januar 2009 1 Inhaltsverzeichnis 1 Impuls- und Energieerhaltungssatz,

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen 1-E Galileo Galilei und der schiefe Turm von Pisa Galileo Galilei (1564-164) Der berühmte italienische Wissenschaftler Galileo Galilei stellte das korrekte Fallgesetz auf. 1590

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Massenpunkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung ist die Bahn vorgegeben:

Mehr

Klausur 3 Kurs 11Ph1e Physik

Klausur 3 Kurs 11Ph1e Physik 2011-03-16 Klausur 3 Kurs 11Ph1e Physik Lösung 1 An einem Masse-Feder-Pendel und an einem Fadenpendel hängt jeweils eine magnetisierbare Masse. urch einen mit jeweils konstanter (aber möglicherweise unterschiedlicher)

Mehr

Physik für Mediziner und Zahmediziner

Physik für Mediziner und Zahmediziner Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf

Mehr

Blatt 4. Stoß und Streuung - Lösungsvorschlag

Blatt 4. Stoß und Streuung - Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 211 Blatt 4. Stoß und Streuung - Lösungsvorschlag Aufgabe 4.1. Stoß Zwei

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr

Schiefe Ebene / Energieerhaltung

Schiefe Ebene / Energieerhaltung GP_A0093 Nr. 5: 1. Eine Stahlkugel der Masse 2,5 kg wird in der gezeichneten Lage von einem ortsfesten Elektromagneten gehalten. Der Strom wird nun abgeschaltet und die Kugel rollt den Abhang hinunter.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

6 Bestimmung linearer Funktionen

6 Bestimmung linearer Funktionen 1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

2.4 Stoßvorgänge. Lösungen

2.4 Stoßvorgänge. Lösungen .4 Stoßvorgänge Lösungen Aufgabe 1: a) Geschwindigkeit und Winkel: Für die Wurfhöhe gilt: H = v 0 g sin Die zugehörige x-koordinate ist: x 1 = v 0 g sincos Aus diesen beiden Gleichungen lässt sich die

Mehr

Mechanik. Entwicklung der Mechanik

Mechanik. Entwicklung der Mechanik Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Klausur 3 Klasse 11c Physik Lösungsblatt

Klausur 3 Klasse 11c Physik Lösungsblatt 16.05.00 Klausur 3 Klasse 11c Physik Lösungsblatt Bei den Aufgaben dürfen Sie ausschließlich die Programme Cassy-Lab, erive 5 und Excel benutzen. Alle schriftlichen Überlegungen und Ergebnisse müssen auf

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

Arbeit, Energie und Impuls I (Energieumwandlungen)

Arbeit, Energie und Impuls I (Energieumwandlungen) Übungsaufgaben Mechanik Kursstufe Arbeit, Energie und Impuls I (Energieumwandlungen) 36 Aufgaben mit ausführlichen Lösungen (35 Seiten Datei: Arbeit-Energei-Impuls Lsg) Eckhard Gaede Arbeit-Energie-Impuls_.doc

Mehr

Labor zur Vorlesung Physik. Versuch 2: Energie- und Impulserhaltung

Labor zur Vorlesung Physik. Versuch 2: Energie- und Impulserhaltung Labor zur Vorlesung Physik Versuch : Energie- und Impulserhaltung Abb : Luftkissen-Fahrbahn. Zur Vorbereitung Die folgenden Begriffe müssen Sie kennen und erklären können: Impuls, Energie, kinetische und

Mehr

6. Übungsblatt zur Experimentalphysik 1

6. Übungsblatt zur Experimentalphysik 1 6. Übungsblatt zur Experimentalphysik (Besprechung ab dem 3. Dezember 2006) Aufgabe 6. Loch in der Regentonne Eine h 2m hohe, voll gefüllte Regentonne steht ebenerdig. Versehentlich wird nun die Regentonne

Mehr

Physik 1. Kinematik, Dynamik.

Physik 1. Kinematik, Dynamik. Physik Mechanik 3 Physik 1. Kinematik, Dynamik. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik 5 Themen Definitionen Kinematik Dynamik Physik Mechanik 6 DEFINITIONEN Physik Mechanik 7 Was ist

Mehr

Übungsauftrag zur Kinematik - Lösungen

Übungsauftrag zur Kinematik - Lösungen Übungsauftrag zur Kinematik - Lösungen Aufgaben zu Bewegungsdiagrammen 1. Autofahrt Die Bewegung eines Autos lässt sich durch folgendes Diagramm beschreiben: (a) Beschreibe die Bewegung so genau wie möglich

Mehr

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte)

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte) Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1 Aufgabe 1: Schiefe Ebene Auf einer reibungsfreien, schiefen Ebene mit dem Winkel 30 befindet sich eine Kiste der Masse m = 100 kg zunächst in Ruhe.

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

GYMNASIUM MUTTENZ" MATURITÄTSPRÜFUNGEN! 2010! PHYSIK! KLASSE! 4AB

GYMNASIUM MUTTENZ MATURITÄTSPRÜFUNGEN! 2010! PHYSIK! KLASSE! 4AB GYMNASIUM MUTTENZ" MATURITÄTSPRÜFUNGEN! 2010! PHYSIK! KLASSE! 4AB Examinator: Experte: Bestimmungen Lösungen! -! Rechnungsaufgaben sind zuerst formal zu lösen, d.h. der Weg zum Resultat muss aus der Herleitung

Mehr

Probeklausur PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)

Probeklausur PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) CURANDO Probeklausur PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@uni-ulm.de) 30. 11. 005 Prüfungstermin 30. 11. 005, 13:15 bis 14:00 Name Vorname Matrikel-Nummer

Mehr

II. Kinematik - Geschwindigkeit und Beschleunigung

II. Kinematik - Geschwindigkeit und Beschleunigung EXPERIMENTALPHYSIK I - 1 Übungsblatt I Physikalische Größen und Einheiten Zur Bearbeitung der folgenden Aufgaben schlagen Sie bitte in den Standard-Physik-Lehrbüchern nach (Gerthsen, Tipler, Bergmann-Schaefer,

Mehr

Energieformen beim Trampolinspringen

Energieformen beim Trampolinspringen Energieformen beim Trampolinspringen Stand: 26.08.2015 Jahrgangsstufen 8 Fach/Fächer Physik Kompetenzerwartungen Die Schülerinnen und Schüler nutzen das Prinzip der Energieerhaltung, um die bei Energieumwandlungen

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraft und Beschleunigung Masse: Seit 1889 ist die Einheit der Masse wie folgt festgelegt: Das Kilogramm ist die Einheit der Masse; es ist gleich der Masse des Internationalen Kilogrammprototyps.

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr