gp : Gekoppelte Pendel

Größe: px
Ab Seite anzeigen:

Download "gp : Gekoppelte Pendel"

Transkript

1 U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch gp : Gekoppelte Pendel Dr. Stephan Giglberger Dr. Tobias Korn Manuel März

2 Inhaltsverzeichnis 1 Einführung Vorbereitung.1 Literaturangaben Grundlegendes Bewegungsgleichung der gekoppelten Pendel Schwingungsdauern Kopplungsgrad Fragen und Aufgaben zur Vorbereitung 10 5 Durchführung 11

3 VORBEREITUNG 1 Einführung Die Oszillation zweier identischer, gekoppelter Pendel ist charakterisiert durch die Oszillationsperiode und die Schwebungsdauer. Die Schwebungsdauer ist das Intervall zwischen zwei Zeitpunkten, in denen ein Pendel mit seiner minimalen Amplitude schwingt. Beide Werte können aus den natürlichen Oszillationsperioden für das gekoppelte Pendel berechnet werden, wenn die Oszillationen in bzw. aus der Phase sind. Vorbereitung Folgende Begriffe sollten vor Beginn des Experiments bekannt sein, zum Selbststudium wird auf die aufgelistete Literatur verwiesen: Schwebung Richtmoment Drehmoment harmonischer Oszillator Fadenpendel.1 Literaturangaben Folgende Literatur soll Ihnen bei der Vorbereitung auf diesen Versuch helfen: Heinrich Gobrecht: Bergmann-Schaefer - Lehrbuch der Experimentalphysik, Band I: Mechanik, Akustik, Wärme. Walter de Gruyter, Berlin, 9. Auflage, Wilhelm H. Westphal: Physikalisches Praktikum. Friedrich Vieweg & Sohn Verlagsgesellschaft mbh, Braunschweig, 13. Auflage, Hans J. Eichler, Heinz-Detlef Kronfeldt und Jürgen Sahm: Das Neue Physikalische Grundpraktikum. Springer-Verlag, Berlin, 1. Auflage,

4 3 GRUNDLEGENDES 3 Grundlegendes Bei gekoppelten Pendeln wird die Oszillationsenergie von einem Pendel auf das andere übertragen. Wenn beide Pendel identisch sind und die Oszillation des einen Pendels beginnt, wenn das andere gerade in Ruhe ist, wird durch die gekoppelte Schwingung die Energie mit der Zeit vollständig auf das andere Pendel übertragen, so dass anschließend das erste Pendel gerade zur Ruhe kommt, wenn das andere mit maximaler Amplitude schwingt. Die Zeit zwischen zwei solchen Ereignissen bzw. die Zeit zwischen zwei Fällen minimaler (oder maximaler) Auslenkung nennt man Schwebungsdauer T S. r r ϕ 1 ϕ ϕ 01 ψ 1 ϕ 0 ψ Abbildung 1: Gekoppelte Pendelschwingungen: die Winkel ϕ 01 und ϕ 0 bezeichnen den Winkel der Ruhelage gegenüber der Lotrechten, ψ 1 und ψ sind die Auslenkwinkel aus der Ruhelage. Die Oszillation zweier identischer, gekoppelter, idealer Pendel kann betrachtet werden als Superposition zweier natürlicher Oszillationen (häufig auch als Normalschwingungen oder Eigenmoden bezeichnet). Diese natürlichen Oszillationen werden beobachtet, wenn beide Pendel vollkommen in Phase oder vollkommen außer Phase sind. Im ersten Fall schwingen beide Pendel mit einer Frequenz, als gäbe es überhaupt keine Kopplung. Im zweiten Fall hat der Kopplungseffekt sein Maximum und die inhärente Frequenz ist größer. Sämtliche anderen Frequenzen zwischen diesen beiden Extremfällen können als Superposition dieser beiden natürlichen Oszillationen beschrieben werden

5 3 GRUNDLEGENDES 3.1 Bewegungsgleichung der gekoppelten Pendel ϕ 1 ϕ ϕ 1 =ϕ =ϕ ϕ 1 =ϕ =ϕ Abbildung : Gekoppelte Pendelschwingungen. Links: allgemeiner Fall mit unterschiedlichen, maximalen Auslenkwinkeln ϕ 1 ϕ. Mitte: Oszillation in Phase mit ϕ 1 = ϕ = ϕ. Rechts: Oszillation außer Phase mit ϕ 1 = ϕ = ϕ. 3.1 Bewegungsgleichung der gekoppelten Pendel Pendelschwingung Ein drehbar gelagerter Körper, auf den eine zum Auslenkwinkel ϕ proportionale, rücktreibende Kraft wirkt, führt harmonische Schwingungen aus. Unter Vernachlässigung der Reibung läßt sich folgende Bewegungsgleichung aufstellen: ϕ(t) + ω0 ϕ(t) = 0, (1) wobei mit ω 0 die Eigenkreisfrequenz bezeichnet wird. Die allgemeine Lösung dieser Differentialgleichung zweiter Ordnung lautet: ϕ(t) = a cos(ω o t) + b sin(ω o t) () mit ω 0 : Eigenkreisfrequenz a = ϕ(0) : anfängliche Winkelauslenkung b ω o = ϕ(0)anfängliche Winkelgeschwindigkeit Gekoppelte Schwingung Zur einfacheren Betrachtung soll an dieser Stelle ausschließlich auf die (Feder-)Kopplung zweier mechanischer Pendel eingegangen werden. Weiter sei angenommen, die Schwingungsdauer der - 4 -

6 3 GRUNDLEGENDES 3.1 Bewegungsgleichung der gekoppelten Pendel beiden Pendel sei gleich. Für die Schwingungen ergeben sich folgende Möglichkeiten: 1. Gleichsinnige Schwingung ( in Phase ) Werden beide Pendel um gleiche Auslenkwinkel ψ 1 (0) = ψ (0) ausgelenkt, so schwingen sie parallel nebeneinander. Unter Vernachlässigung der Trägheit der Feder übt sie keine Drehmomente auf die Pendel aus, beide Pendel schwingen mit der selben Frequenz ω 1 = ω = ω gl.. Gegensinnige Schwingung ( gegenphasig ) Werden beide Pendel um gleiche Auslenkwinkel ψ 1 (0) = ψ (0) in entgegengesetzte Richtungen ausgelenkt, so verformt sich die Kopplungsfeder und übt Drehmomente auf die Pendel aus. Die zusätzlichen Drehmomente sind abhängig von der Auslenkung der Pendel ( je weiter die Pendel nach außen schwingen, desto stärker werden sie von der Feder zurückgezogen ). Eine derartige symmetrische Schwingung verläuft mit der Eigenfrequenz ω 1 = ω = ω geg 3. Kopplungsschwingung Ein ausgelenktes Pendel ψ 1 (0) 0 zieht über die Feder an dem zweiten Pendel, das ursprünglich in Ruhe war ψ (0) = 0, und regt es so zur Schwingung mit wachsender Amplitude an. Gleichzeitig verliert das erste Pendel seine Amplitude, bis die gesamte Energie auf das zweite übertragen wurde und das erste zur Ruhe kommt. Dann kehrt sich der gesamte Prozess um und beginnt von Neuem - diesmal in entgegengesetzter Richtung. Für den letztgenannten, allgemeinen Fall der Kopplungsschwingung (auch Schwebungsschwingung genannt), definieren wir ω + Kreisfrequenz, mit der beide Pendel schwingen (die Amplitude ändert sich laufend!). ω Es gilt: ω + ω gl ω geg. Kreisfrequenz, mit der sich die Amplitude der Schwingung ändert (Schwebung). Ausgehend von einem symmetrischen Aufbau, d.h. gleiche Pendellänge, gleiches Trägheitsmoment Θ, gleiche Winkelrichtgröße D ( Rückstellmoment, Verhältnis von Drehmoment zum Drehwinkel), und unter der Annahme einer linearen Kopplung (HOOKEsches Gesetz mit Federkonstante D) gilt für das Drehmoment M 1 des ersten Pendels M 1 = D ϕ 1 + D (rϕ rϕ 1 ) r + M 0 (3) = D ϕ 1 + Dr (ϕ ϕ 1 ) + M

7 3 GRUNDLEGENDES 3.1 Bewegungsgleichung der gekoppelten Pendel Der erste Term beschreibt das rücktreibende Drehmoment, der zweite das zusätzliche Drehmoment aufgrund der Kopplung, M 0 schließlich ergibt sich aus der Vorspannung der Feder. Entsprechend gilt für das zweite Pendel M = D ϕ + Dr (ϕ ϕ 1 ) M 0. (4) Wir wollen im Folgenden relative Winkeländerungen (also Änderungen gegenüber der Ruhelage des Pendels) betrachten, entsprechend definieren wir ψ 1 := ϕ 1 ϕ 01 (5) ψ := ϕ ϕ 0 Da wir einen symmetrischen Aufbau vorausgesetzt haben, gilt ϕ 0 := ϕ 01 = ϕ 0, (6) weshalb Gl. 5 auch geschrieben werden kann als ψ 1 = ϕ 1 ϕ 0 (7) ψ = ϕ + ϕ 0 In der Ruhelage existieren keine Drehmomente: 0 = D ϕ 01 + Dr (ϕ 0 ϕ 01 ) + M 0 (8) 0 = D ϕ 0 Dr (ϕ 0 ϕ 01 ) M 0. (9) Aus der Differenz (8) - (8) ergibt sich M 0 = ( Dr + D ) ϕ 0 (10) Somit kommt man zu M 1 = D ϕ 1 + Dr (ϕ ϕ 1 ) + M 0 (11) = D (ψ 1 + ϕ 0 ) + Dr (ψ ψ 1 ϕ 0 ) + ( Dr + D ) ϕ 0 = D ψ 1 + Dr (ψ ψ 1 ) und entsprechend M = D ψ Dr (ψ ψ 1 ) (1) - 6 -

8 3 GRUNDLEGENDES 3.1 Bewegungsgleichung der gekoppelten Pendel Der Zusammenhang zwischen Drehmoment und Winkelbeschleunigung ist gegeben durch woraus schließlich folgt: Mit der Abkürzung M 1 = Θ ϕ 1 (t) = Θ ψ(t) (13) M = Θ ϕ (t) = Θ ψ(t) (14) ψ 1 (t) = D Θ ψ 1 + Dr Θ (ψ (t) ψ 1 (t)) (15) ψ (t) = D Θ ψ Dr Θ (ψ (t) ψ 1 (t)). (16) ω gl = D Θ k = Dr Θ erhält man nun ein System gekoppelter Differentialgleichungen für ψ 1 (t) und ψ (t), deren Lösung die Pendelbewegung beschreibt: (17) (18) ψ 1 (t) + ω gl ψ 1 = +k (ψ ψ 1 ) (19) ψ (t) + ω gl ψ = k (ψ ψ 1 ) (0) Aus der Summe und der Differenz der Gln. (19) und (0) folgt Durch Substitution d dt (ψ + ψ 1 ) + ωgl(ψ + ψ 1 ) = 0 (1) d dt (ψ ψ 1 ) + ωgl(ψ ψ 1 ) = k (ψ ψ 1 ) () wird Gl. (1) und (1) umgeschrieben in m := = ψ 1 + ψ (3) n := = ψ 1 ψ (4) m + ω gl m = 0 (5) n + (ωgl + k ) n }{{} = 0. (6) ωgeg - 7 -

9 3 GRUNDLEGENDES 3. Schwingungsdauern Die Lösung hiervon stellen harmonische Schwingungen mit den Kreisfrequenzen ω gl bzw. ω geg dar: m(t) = a 1 sin(ω gl t) + a cos(ω gl t) (7) n(t) = a 3 sin(ω geg t) + a 4 cos(ω geg t). (8) Die Rücktransformation ψ 1 (t) = m+n und ψ (t) = m n führt dann zu [ a1 sin(ω gl t) + a cos(ω gl t) ] + [ a 3 sin(ω geg t) + a 4 cos(ω geg t) ] ψ 1 (t) = ψ (t) = [ a1 sin(ω gl t) + a cos(ω gl t) ] [ a 3 sin(ω geg t) + a 4 cos(ω geg t) ] bzw. mit ϕ 1 (t) = ψ 1 (t) + ϕ 0 und ϕ (t) = ψ (t) ϕ 0 : [ a1 sin(ω gl t) + a cos(ω gl t) ] + [ a 3 sin(ω geg t) + a 4 cos(ω geg t) ] ϕ 1 (t) = ϕ (t) = (9) (30) + ϕ 0 (31) [ a1 sin(ω gl t) + a cos(ω gl t) ] [ a 3 sin(ω geg t) + a 4 cos(ω geg t) ] ϕ 0 (3) Der allgemeine Fall der gekoppelten Schwingung ist also eine Überlagerung von zwei Fundamentalschwingungen mit den Kreisfrequenzen ω gl und ω geg. ω gl ist die Frequenz der ungekoppelten (bzw. gekoppelten, aber gleichsinnig schwingenden) Pendel, ω geg ist die Frequenz der gegenphasig schwingenden Pendel. 3. Schwingungsdauern Die Kreisfrequenzen der harmonischen Pendelbewegungen g ω gl = (33) L g + k ω geg = L mit der Pendellänge L und der Ortskonstanten g können verwendet werden, um die natürlichen Oszillationsperioden T gl und T geg zu bestimmen: T gl = π = π L ω gl g T geg = π L = π ω geg g + k (34) - 8 -

10 3 GRUNDLEGENDES 3.3 Kopplungsgrad Mit der Abkürzung ω = ω geg ω gl ω + = ω geg + ω gl (35) ergibt sich die mittlere Periode T m einer gekoppelten Schwingung und daher Die Schwebungsdauer T S ergibt sich entsprechend mit zu π T m = ω + = π T gl + π T geg (36) T m = Tgl T geg T geg + T gl (37) π = ω = π π (38) T S T geg T gl T S = Tgl T geg T gl T geg (39) 3.3 Kopplungsgrad Der Kopplungsgrad K ist ein Maß für die Stärke der Kopplung und ist gegeben durch K := ω geg ωgl ωgeg + ωgl = T gl T geg Tgl + T geg (40) (41) oder äquivalent: K := = Dr D + Dr (4) = ϕ 1 ϕ (43) - 9 -

11 4 FRAGEN UND AUFGABEN ZUR VORBEREITUNG 4 Fragen und Aufgaben zur Vorbereitung 1. Ist die Eigenkreisfrequenz ω geg bei gegenphasiger Schwingung kleiner, gleich oder größer als bei gleichsinniger Schwingung ω gl?. Welche Bedeutung haben gekoppelte Schwingungen in der Molekülphysik? 3. Wie kann man Schwebungen zum Stimmen von Musikinstrumenten verwenden? Warum eignet sich diese Methode insbesonders bei tiefen Frequenzen? 4. Wie kann man mit Schwebungen sehr hohe Frequenzen messen? 5. Wie kann mittels eines sog. FRAHMschen Schlingertanks die Schlingerbewegung eines großen Schiffs verringert werden (Schiffs-Stabilisator)?

12 5 DURCHFÜHRUNG 5 Durchführung Bauen Sie den Versuchsaufbau gemäß der Skizze in Abb. auf. Achten Sie insbesonders auf die Nadellager der beiden Pendel: die Nadeln sind sehr spitz, daher empfindlich; darüber hinaus könnten Sie sich bei unsachgemäßem Umgang an den Spitzen verletzen. Die Kopplungsfeder wird vorerst noch nicht verwendet. Die Pendel sind mit einem Computer verbunden. Mit Hilfe des Programms LJStream (Verknüfung Pendel auf dem Desktop) können die Auslenkungen der Pendel in eine Datei geschrieben werden. Die Daten werden anschließend über die Datenvisualisierung qtiplot ausgewertet. Achtung: der Dezimalpunkt des Datensatzes muss ggfs. in ein Dezimalkomma ersetzt werden, damit es von qtiplot richtig interpretiert werden kann! 1. Justieren Sie bei absolutem Stillstand der Pendel den Offset der Winkelsensoren auf 0,0V.. Lenken Sie nun eines der Pendel leicht aus und beobachten Sie die Schwingung. Nehmen Sie über die Winkelsensoren einen Datensatz auf. Bestimmen Sie die Schwingungsdauer T 01 = π ω 01. Wiederholen Sie den Messvorgang für das zweite Pendel und stellen Sie sicher, dass im Rahmen der Messgenauigkeit T 01 = T 0 gilt. 3. Verbinden Sie nun die Pendel über die Kopplungsfeder miteinander. Notieren Sie sich die Position der Befestigungsstelle. 4. Bestimmen Sie den Kopplungsgrad. Lenken Sie hierzu ein Pendel sehr langsam aus der Ruhelage aus, so dass das daran gekoppelte Pendel möglichst nicht in Schwingung versetzt wird. Bestimmen Sie mit Hilfe von Gleichung 43 den Kopplungsgrad 5. Zeichnen Sie die Schwingung auf, wenn beide Pendel in Phase sind und bestimmen Sie daraus die Periodendauer T gl. 6. Zeichnen Sie die Schwingung auf, wenn beide Pendel gegenphasig sind und bestimmen Sie daraus die Periodendauer T geg. 7. Bestimmen Sie mit Hilfe von Gleichung 41 den Kopplungsfaktor. Vergleichen Sie ihn mit dem in 3 bestimmten Kopplungsfaktor (Fehlerbetrachtung!) 8. Berechnen Sie anhand der natürlichen Perioden T gl und T geg die Oszillationsperiode T m und die Schwebungsdauer T S

13 5 DURCHFÜHRUNG 9. Lenken Sie nun ein Pendel aus der Ruhelage aus und erzeugen so gekoppelte Schwingungen. Zeichnen Sie die gekoppelten Schwingungen auf und bestimmen Sie daraus die Oszillationsperiode T m und die Schwebungsdauer T S. 10. Vergleichen Sie die erhaltenen Werte mit denen, die Sie für die natürlichen Perioden T gl und T geg zuvor berechnet haben. Berücksichtigen Sie eine kurze Fehlerbetrachtung. 11. Wiederholen Sie Aufgabe 3 bis 10 für einen anderen Kopplungsgrad, indem Sie die Feder an einem anderen Punkt der Pendelstange befestigen

Versuch gp : Gekoppelte Pendel

Versuch gp : Gekoppelte Pendel UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum B Versuch gp : Gekoppelte Pendel. Auflage 01 Dr. Stephan Giglberger Inhaltsverzeichnis gp Gekoppelte Pendel

Mehr

Praktikumsprotokoll: Gekoppelte Pendel

Praktikumsprotokoll: Gekoppelte Pendel Praktikumsprotokoll: Gekoppelte Pendel Robin Marzucca, Andreas Liehl 19. Januar 011 Protokoll zum Versuch Gekoppelte Pendel, durchgeführt am 13.01.011 an der Universität Konstanz im Rahmen des physikalischen

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel * k u r z g e f a s s t * i n f o r m a t i v * s a u b e r * ü b e r s i c h t l i c h Musterprotokoll am Beispiel des Versuches M 1 Gekoppelte Pendel M 1 Gekoppelte Pendel Aufgaben 1. Messen Sie für

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

120 Gekoppelte Pendel

120 Gekoppelte Pendel 120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

2.2. Gekoppelte Pendel

2.2. Gekoppelte Pendel . Gekoppelte Pendel 47.. Gekoppelte Pendel Ziel Eine Kopplung von schwingungsfähigen Systemen tritt in vielen Bereichen der Natur und Technik auf. Die dabei auftretenden Phänomene sollen in diesem Versuch

Mehr

M13. Gekoppeltes Pendel

M13. Gekoppeltes Pendel M3 Gekoppeltes Pendel In diesem Versuch werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken werden die Schwingungsdauern

Mehr

Physikalisches Grundpraktikum V10 - Koppelschwingungen

Physikalisches Grundpraktikum V10 - Koppelschwingungen Aufgabenstellung: 1. Untersuchen Sie den Einfluss des Kopplungsgrades zweier gekoppelter physikalischer Pendel auf die Schwingungsdauern ihrer Fundamentalschwingungen. 2. Charakterisieren Sie die Schwebungsschwingung

Mehr

A03 Gekoppelte Pendel

A03 Gekoppelte Pendel A3 Gekoppelte Pendel Beispiele für gekoppelte Oszillatoren Ziele Zahlreiche Phänomene der Physik lassen sich im Rahmen eines Modells gekoppelter Oszillatoren beschreiben: ie Anregung molekularer Schwingungs-

Mehr

Themengebiet: Mechanik

Themengebiet: Mechanik Stand: 15. Januar 018 Seite 1 Themengebiet: Mechanik Der Versuch besteht aus zwei Teilversuchen. Im ersten Teil wird mit einem Reversionspendel die Erdbeschleunigung im Praktikumsraum bestimmt. Im zweiten

Mehr

Anfängerpraktikum WS 2010/2011 Universtität Konstanz Gekoppelte Pendel. John Schneider Jörg Herbel

Anfängerpraktikum WS 2010/2011 Universtität Konstanz Gekoppelte Pendel. John Schneider Jörg Herbel Anfängerpraktikum WS 2010/2011 Universtität Konstanz Gekoppelte Pendel John Schneider Jörg Herbel 14.12.2010 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Ziel des Versuchs 3 2 Physikalische

Mehr

Physik für Oberstufenlehrpersonen. Frühjahrssemester Schwingungen und Wellen

Physik für Oberstufenlehrpersonen. Frühjahrssemester Schwingungen und Wellen Physik für Oberstufenlehrpersonen Frühjahrssemester 2018 Schwingungen und Wellen Zum Einstieg in das neue Semester Schwingungen Schwingungen spielen bei natürlichen Prozessen bedeutende Rolle: -Hören und

Mehr

Versuch M2 für Nebenfächler Gekoppelte Pendel

Versuch M2 für Nebenfächler Gekoppelte Pendel Versuch M2 für Nebenfächler Gekoppelte Pendel I. Physikalisches Institut, Raum HS102 Stand: 9. Oktober 2015 generelle Bemerkungen bitte Versuchsaufbau (links/mitte/rechts) angeben bitte Versuchspartner

Mehr

1.1 Bestimmung der Erdbeschleunigung mit dem Pendel

1.1 Bestimmung der Erdbeschleunigung mit dem Pendel Kapitel 1 Mechanik 1.1 Bestimmung der Erdbeschleunigung mit dem Pendel Aufgaben In diesem Experiment werden die Schwingungen eines physikalischen Pendels untersucht. Aus den Messungen der Schwingungsdauern

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Vorbereitung: Pendel. Marcel Köpke Gruppe

Vorbereitung: Pendel. Marcel Köpke Gruppe Vorbereitung: Pendel Marcel Köpke Gruppe 7 10.1.011 Inhaltsverzeichnis 1 Augabe 1 3 1.1 Physikalisches Pendel.............................. 3 1. Reversionspendel................................ 6 Aufgabe

Mehr

Protokoll. zum Physikpraktikum. Versuch Nr.: 3 Gekoppelte Schwingungen. Gruppe Nr.: 1

Protokoll. zum Physikpraktikum. Versuch Nr.: 3 Gekoppelte Schwingungen. Gruppe Nr.: 1 Protokoll zum Physikpraktikum Versuch Nr.: 3 Gekoppelte Schwingungen Gruppe Nr.: 1 Theoretische Grundlagen Mathematisches Pendel: Bei einem mathematischen Pendel ist ein Massepunkt an einem Ende eines

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I M3 Name: Gekoppelte Pendel Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

Universität Ulm Fachbereich Physik Grundpraktikum Physik

Universität Ulm Fachbereich Physik Grundpraktikum Physik Universität Ulm Fachbereich Physik Grundpraktikum Physik Versuchsanleitung Gekoppelte Pendel Nummer: 02 Kompiliert am: 13. Dezember 2018 Letzte Änderung: 11.12.2018 Beschreibung: Bestimmung der Eigenfrequenzen

Mehr

Protokoll zum Grundversuch Mechanik

Protokoll zum Grundversuch Mechanik Protokoll zum Grundversuch Mechanik Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 006/007 Grundpraktikum I Tutor: Sarah Dierk 09.01.007 Inhaltsverzeichnis 1 Ziel Theorie 3 Versuch

Mehr

Gekoppelte Pendel an der Hafttafel

Gekoppelte Pendel an der Hafttafel Prinzip Schwingungen treten in der Physik in den verschiedensten Zusammenhängen auf, sie sind bei Schaukeln, Federungen im Auto oder Hängebrücken makroskopisch beobachtbar. In der Natur hat man jedoch

Mehr

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M 1 esonanz und Phasenverschiebung bei der mechanischen Schwingung Aufgaben 1. Bestimmen Sie die Frequenz der freien gedämpften Schwingung

Mehr

Feder-, Faden- und Drillpendel

Feder-, Faden- und Drillpendel Dr Angela Fösel & Dipl Phys Tom Michler Revision: 30092018 Eine Schwingung (auch Oszillation) bezeichnet den Verlauf einer Zustandsänderung, wenn ein System auf Grund einer Störung aus dem Gleichgewicht

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Jens Küchenmeister ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Jens Küchenmeister ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Jens Küchenmeister (153810) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Da die Schwingung sowohl in der Natur als auch in der

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Laborversuche zur Physik 1 I - 1

Laborversuche zur Physik 1 I - 1 Laborversuche zur Physik 1 I - 1 Federpendel und gekoppelte Pendel Reyher FB Physik 01.04.15 Ziele Untersuchung ungedämpfter freier Schwingungen Schwingungsdauer beim Federpendel als Funktion verschiedener

Mehr

Gekoppelte Pendel und Kopplungsgrad

Gekoppelte Pendel und Kopplungsgrad Fakultät für Physik un Geowissenschaften Physikalisches Grunpraktikum M Gekoppelte Penel un Kopplungsgra Aufgaben. Messen Sie für rei Stellungen er Kopplungsfeer jeweils ie Schwingungsauer T er gleichsinnigen

Mehr

1.) Skizzieren Sie die Fundamentalschwingung von 2 gekoppelten Pendeln (Skizze der beiden Pendel).

1.) Skizzieren Sie die Fundamentalschwingung von 2 gekoppelten Pendeln (Skizze der beiden Pendel). M3 Name: Gekoppelte Pendel Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine Gruppenlösung!)

Mehr

Inhaltsverzeichnis. 1 Einleitung 2

Inhaltsverzeichnis. 1 Einleitung 2 Inhaltsverzeichnis 1 Einleitung 2 2 Physikalische Grundlagen 2 2.1 Das einzelne Pendel............................... 2 2.2 Das gekoppelte Pendel.............................. 3 2.2.1 Die Bewegungsgleichungen.......................

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Universität Potsdam Institut für Physik und Astronomie Grundpraktikum S4 Erzwungene Schwingungen Dieses Experiment enthält zwei Bestandteile: Es werden Zusammehänge zwischen erregender und erregter Schwingung

Mehr

1. GV: Mechanik. Protokoll zum Praktikum. Physik Praktikum I: WS 2005/06. Protokollanten. Jörg Mönnich - Anton Friesen - Betreuer.

1. GV: Mechanik. Protokoll zum Praktikum. Physik Praktikum I: WS 2005/06. Protokollanten. Jörg Mönnich - Anton Friesen - Betreuer. Physik Praktikum I: WS 005/06 Protokoll zum Praktikum 1. GV: Mechanik Protokollanten Jörg Mönnich - Anton Friesen - Betreuer Stefan Gerkens Versuchstag Dienstag, 9.11.005 Einleitung Im Allgemeinen unterscheidet

Mehr

4.3 Schwingende Systeme

4.3 Schwingende Systeme Dieter Suter - 217 - Physik B3 4.3 Schwingende Systeme Schwingungen erhält man immer dann, wenn die Kraft der Auslenkung entgegengerichtet ist. Ist sie außerdem proportional zur Kraft, so erhält man eine

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

1.) Skizzieren Sie die Fundamentalschwingung von 2 gekoppelten Pendeln (Skizze der beiden Pendel).

1.) Skizzieren Sie die Fundamentalschwingung von 2 gekoppelten Pendeln (Skizze der beiden Pendel). M3 Name: Gekoppelte Pendel Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine Gruppenlösung!)

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

Gekoppeltes Pendel. Abbildung 1: Erdbebenwellen ko nnen große Scha den anrichten. Man unterscheidet longitudinale und transversale Erdbebenwellen.

Gekoppeltes Pendel. Abbildung 1: Erdbebenwellen ko nnen große Scha den anrichten. Man unterscheidet longitudinale und transversale Erdbebenwellen. c Doris Samm 008 1 Gekoppeltes Pendel 1 Der Versuch im U berblick Wasserwellen bereiten Ihnen Vergnu gen, Erdbebenwellen eher nicht, Schallwellen ko nnen manchmal nur Flederma use ho ren (Abb. 1, Abb.

Mehr

IM4. Modul Mechanik. Gekoppelte Pendel

IM4. Modul Mechanik. Gekoppelte Pendel IM4 Modul Mechanik Gekoppelte Pendel Zwei Pendel, zwischen denen Energie ausgetauscht werden kann, werden als gekoppelte Pendel bezeichnet. Auf jedes Pendel wirkt ein durch die Schwerkraft verursachtes

Mehr

AUFZEICHNUNG UND AUSWERTUNG DER SCHWINGUNGEN ZWEIER GLEICHER, GE- KOPPELTER PENDEL.

AUFZEICHNUNG UND AUSWERTUNG DER SCHWINGUNGEN ZWEIER GLEICHER, GE- KOPPELTER PENDEL. Mechanik Schwingungen Gekoppelte Schwingungen AUFZEICHNUNG UND AUSWERTUNG DER SCHWINGUNGEN ZWEIER GEICHER, GE- KOPPETER PENDE. Aufzeichnung der gleichphasigen Schwingung und Bestimmung ihrer T+. Aufzeichnung

Mehr

Aus der Schwingungsdauer eines physikalischen Pendels.

Aus der Schwingungsdauer eines physikalischen Pendels. 2.4 Trägheitsmoment aus Winkelbeschleunigung 69 2.4. Trägheitsmoment aus Winkelbeschleunigung Ziel Bestimmung des Trägheitsmomentes eines Rades nach zwei Methoden: Aus der Winkelbeschleunigung, die es

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Versuch 6/3 Gekoppelte Schwingungen

Versuch 6/3 Gekoppelte Schwingungen Versuch 6/3 Gekoppelte Schwingungen Versuchdurchührung: 19.11.009 Praktikanten: Sven Köppel, Sebastian Helgert Assistent: Simon Untergrasser Theoretischer Hintergrund: Es soll die Bewegung eines einzelnen

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Labor für Technische Physik

Labor für Technische Physik Hochschule Bremen City University of Applied Sciences Fakultät Elektrotechnik und Informatik C A Labor für Technische Physik Prof. Dr.-Ing. Dieter Kraus, Dipl.-Ing. W.Pieper C D B B A E A: Stativstange

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 13. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

4.5 Gekoppelte LC-Schwingkreise

4.5 Gekoppelte LC-Schwingkreise 4.5. GEKOPPELTE LC-SCHWINGKEISE 27 4.5 Gekoppelte LC-Schwingkreise 4.5. Versuchsbeschreibung Ein elektrischer Schwingkreis kann induktiv mit einem zweiten erregten Schwingkreis 2 koppeln. Der Kreis wird

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester 2017 Physik-Institut der Universität Zürich Inhaltsverzeichnis 1 Einführungsversuch (EV) 11 11 Einleitung

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

Versuch 3 Das Trägheitsmoment

Versuch 3 Das Trägheitsmoment Physikalisches A-Praktikum Versuch 3 Das Trägheitsmoment Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 10.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung

Mehr

PS1. Grundlagen-Vertiefung Version

PS1. Grundlagen-Vertiefung Version PS1 Grundlagen-Vertiefung Version 14.03.01 Inhaltsverzeichnis 1 1.1 Freie Schwingung................................ 1 1.1.1 Gedämpfte Schwingung......................... 1 1.1. Erzwungene Schwingung........................

Mehr

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T Kreisbewegung ================================================================== Damit sich ein Körper der Masse m auf einer Kreisbahn vom Radius r, dannmuss die Summe aller an diesem Körper angreifenden

Mehr

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Aufgaben 17 Schwingungen Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen,

Mehr

Versuch 211 Gekoppelte Pendel

Versuch 211 Gekoppelte Pendel Versuch 211 Gekoppelte Pendel I Messaufbau zwei Pendel aus Messing (Dichte: ρ=7,5 g/cm 3 ) Kopplungsfeder (Ring aus Federbronzeband) fest montierter magnetischer Winkelaufnehmer Analog-Digital Wandler

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Mechanische Schwingungen Aufgaben 1

Mechanische Schwingungen Aufgaben 1 Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Fachrichtung Physik Physikalisches Grundpraktikum Versuch: ES Erstellt: M. Kauer B. Scholz Aktualisiert: am 28. 06. 2016 Erzwungene Schwingungen Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Schwingwagen ******

Schwingwagen ****** 5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz

Mehr

Versuch 2 Gekoppelte Pendel. 20. Oktober 2006 durchgefuhrt am 09. Oktober 2006 Betreuer: Tobias Roder

Versuch 2 Gekoppelte Pendel. 20. Oktober 2006 durchgefuhrt am 09. Oktober 2006 Betreuer: Tobias Roder 1 Versuch Gekoppelte Pendel Sascha Hankele sascha@hankele.com Kathrin Alpert kathrin.alpert@uni-ulm.de 0. Oktober 006 durchgefuhrt am 09. Oktober 006 Betreuer: Tobias Roder INHALTSVERZEICHNIS Inhaltsverzeichnis

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

7.4 Gekoppelte Schwingungen

7.4 Gekoppelte Schwingungen 7.4. GEKOPPELTE SCHWINGUNGEN 333 7.4 Gekoppelte Schwingungen Als Beispiel für 2 gekoppelte Schwingungen betrachten wir das Doppelpendel, das in Abb. 7.19 dargestellt ist. Zunächst vernachlässigen wir die

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

Lösung zu Übungsblatt 12

Lösung zu Übungsblatt 12 PN - Physik für Cheiker und Biologen Prof. J. Lipfert WS 208/9 Übungsblatt 2 Lösung zu Übungsblatt 2 Aufgabe Reinhold Messner schwingt in den Bergen: Reinhold Messner öchte den Mount Everest besteigen

Mehr

Versuch P1-15 Pendel Auswertung. Gruppe Mo-19 Yannick Augenstein Patrick Kuntze

Versuch P1-15 Pendel Auswertung. Gruppe Mo-19 Yannick Augenstein Patrick Kuntze Versuch P1-15 Pendel Auswertung Gruppe Mo-19 Yannick Augenstein Patrick Kuntze 3.1.11 1 Inhaltsverzeichnis 1 Reversionspendel 3 1.0 Eichmessung................................... 3 1.1 Reduzierte Pendellänge.............................

Mehr

Lösungen Aufgabenblatt 11

Lösungen Aufgabenblatt 11 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 11 Übungen E1 Mechanik WS 2017/2018 ozent: Prof. r. Hermann Gaub Übungsleitung: r. Martin Benoit und r. Res Jöhr Verständnisfragen

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

4.6 Schwingungen mit mehreren Freiheitsgraden

4.6 Schwingungen mit mehreren Freiheitsgraden Dieter Suter - 36 - Physik B3 4.6 Schwingungen mit mehreren Freiheitsgraden 4.6. Das Doppelpendel Wir betrachten nun nicht mehr einzelne, unabhängige harmonische Oszillatoren, sondern mehrere, die aneinander

Mehr

Vorbereitung. Resonanz. Stefan Schierle. Versuchsdatum:

Vorbereitung. Resonanz. Stefan Schierle. Versuchsdatum: Vorbereitung Resonanz Stefan Schierle Versuchsdatum: 17. 01. 2012 Inhaltsverzeichnis 1 Drehpendel, freie Schwingung 2 1.1 Der Versuchsaufbau.............................. 2 1.2 Trägheitsmoment des Pendelkörpers.....................

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 4 - Angabe Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

Physik I Einführung in die Physik Mechanik

Physik I Einführung in die Physik Mechanik Physik I Einführung in die Physik Mechanik Winter 00/003, Prof. Thomas Müller, Universität Karlsruhe Lösung 13; Letztes Lösungsblatt 1. Torsionspendel (a) Vergleichen Sie die Größen rehwinkel ϕ, Winkelgeschwindigkeit

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

Gekoppeltes Pendel mit measure Dynamics TEP

Gekoppeltes Pendel mit measure Dynamics TEP Gekoppeltes Pendel mit measure Dynamics TEP Verwandte Begriffe Spiralfeder, Gravitationspendel, Federkonstante, Drehschwingung, Drehmoment, Schwebung, Winkelgeschwindigkeit, Winkelbeschleunigung, charakteristische

Mehr

Gekoppelte Pendel (Artikelnr.: P )

Gekoppelte Pendel (Artikelnr.: P ) Lehrer-/Dozentenblatt Gekoppelte Pendel (Artikelnr.: P1003400) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 10-13 Lehrplanthema: Mechanik Unterthema: Schwingungen und Wellen Experiment:

Mehr

Physikalisches Grundpraktikum Abteilung Mechanik

Physikalisches Grundpraktikum Abteilung Mechanik M6 Physikalisches Grundpraktikum Abteilung Mechanik Resonanzkurven 1 Vorbereitung Physikalische Größen der Rotationsbewegung, Zusammenhang zwischen Drehmoment, Winkelbeschleunigung und Trägheitsmoment,

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Versuch M1: Feder- und Torsionsschwingungen

Versuch M1: Feder- und Torsionsschwingungen Versuch M1: Feder- und Torsionsschwingungen Aufgaben: Federschwingungen: 1 Bestimmen Sie durch Messung der Dehnung in Abhängigkeit von der Belastung die Richtgröße D (Federkonstante k) von zwei Schraubenfedern

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 013 Übung 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

Schwingungen und Wellen Teil I

Schwingungen und Wellen Teil I Schwingungen und Wellen Teil I 1.. 3. 4. 5. 6. 7. 8. 9. 10. Einleitung Arten von Schwingungen Lösung der Differentialgleichung Wichtige Größen Das freie ungedämpfte und gedämpfte Feder-Masse-System Ausbreitung

Mehr