Sternentstehung - Sternentwicklung - Endstadien der Sterne

Größe: px
Ab Seite anzeigen:

Download "Sternentstehung - Sternentwicklung - Endstadien der Sterne"

Transkript

1 Sternentstehung - Sternentwicklung - Endstadien der Sterne Aus der stark verdünnten interstellaren Materie werden durch gravitationsbedingte Kontraktion innerhalb von bis 100 Millionen Jahren Sterne geboren. Die Sternentwicklung beschreibt die Veränderung des physikalischen Zustands eines Sterns im Laufe der Zeit. Je nach seiner Masse wird er zum Beispiel zu einem blauen Überriesen oder roten Zwergstern und endet als weißer Zwerg, Neutronenstern oder als schwarzes Loch. Bereits die Kontraktion eines Sternes aus der interstellaren Materie ist kein so einfacher Vorgang wie ursprünglich angenommen. Ein selbständiges Zusammenballen von Materie allein mit Hilfe der Schwerkraft geht nur vor sich, wenn eine verhältnismäßig große Masse daran beteiligt ist. Der Betrag der kleinsten Massen, die selbständig weiter kontrahieren, hängt insbesondere von der Temperatur des Gases und der Dichte im Mittelpunkt der Wolke ab. Je niedriger die Temperatur und je höher die Dichte, desto kleinere Massen können sich verdichten. Da die Temperaturen in den neutralen Wasserstoffwolken wohl nur wenig unter 100 K liegen und die Dichten rund Atome/cm 3 betragen, ist es schwer verständlich, wie auf diesem Wege Einzelsterne entstehen sollen. Selbst die massenreichsten Sterne haben nur 100 Sonnenmassen. Viele Sterne bleiben sogar unter 1 Sonnenmasse. Man stellt sich daher heute meist vor, daß die großen Gaswolken aus rund 100 Sonnenmassen später in einzelne Sterne zerfallen, also zunächst einen offenen Sternhaufen oder eine Assoziation bilden (Fragmentation), die sich dann allmählich verstreut. Immerhin können die massereichsten Sterne vom Spektraltyp O unter günstigen Voraussetzungen auch direkt aus der interstellaren Materie entstehen. Wahrscheinlich spielen aber auch bei der Verdichtung der interstellaren Materie noch andere Faktoren eine Rolle. In Betracht kommen Dichtewellen innerhalb des Milchstraßensystems, die auch häufig für die Bildung der Spiralarme der Galaxis verantwortlich gemacht werden (Dichtewellentheorie nach Lindblad, Lin und Shu). Sie führen zu lokalen Verdichtungen des interstellaren Mediums und regen damit zur Sternentstehung an. Ferner könnte man sich auch Stoßwellen, die von Supernovaexplosionen ausgehen und sich durch die interstellare Materie ausbreiten, als Auslöser der Sternbildung denken.. Mit der Kontraktion des Sterns aus der interstellaren Materie nehmen die Zentraltemperaturen allmählich so hohe Werte an, daß erste atomare Kernumwandlungen in Gang kommen. Noch während der Kontraktionsphase, bei Temperaturen zwischen 1 und 5 Millionen K, mögen sich Lithium, Beryllium und Bor zu Helium umwandeln. Doch ab 5 Millionen Kelvin kommt das für alle Sterne so wichtige Wasserstoff-Brennen in Gang. Die Verwandlung von H in He kann auf zwei verschiedene Wege zustande kommen: Der Bethe-Weizsäcker-Zyklus: Auch Kohlenstoff-Stickstoff-Zyklus genannt, da diese beiden Elemente in ihm eine Rolle spielen. Beim Zyklusbeginn stößt ein Kohlenstoffatom vom Atomgewicht 12 mit einem Proton (Wasserstoffatomkern) zusammen und vereinigt sich zu einem instabilen Stickstoffisotop mit dem Atomgewicht 13. Insgesamt 4 Protonen vereinigen sich zu einem Heliumkern. Das am Anfang hineingesteckte Kohlenstoffatom kommt dagegen wieder unverändert zum Vorschein. Es ist also in diesem Umwandlungsprozess ein Katalysator. Die Energieabgabe geschieht entweder in Form von kinetischer Energie der an zwei Stellen des Zyklus herausfliegenden Positronen und Neutrinos, vor allem aber durch Gammastrahlung. Bei derartigen atomaren Reaktionen (hier einer Kernverschmelzung oder Kernfusion) wird nach der aus der speziellen Relativitätstheorie abgeleiteten Formel E=m c 2 Masse in Energie umgewandelt. Für eine einzelne Verwandlung von 4 Wasserstoffkernen in einen Heliumkern

2 gilt: Ein H-Kern hat die Massenzahl 1,008, ein He-Kern 4,004. Da 4 1,008=4,032 ist die Differenz von 0,028 Masseeinheiten (Massendefekt) in Energie umgewandelt worden. Das sind 25 Millionen Elektronenvolt (25MeV) oder Joule. Die einzelnen Schritte dieses Zyklus dauern unterschiedlich lang. Am langsamsten ist im Mittel der Einfang des 3. Protons mit 320 Millionen Jahren, am schnellsten der Zerfall des Sauerstoffs in 82 Sekunden. Die mittlere Gesamtdauer des Zyklus beträgt 336 Millionen Jahre. Doch verlaufen stets zahlreiche Zyklen nebeneinander, so daß eine kontinuierliche und ergiebige Energieerzeugung über Millionen oder Milliarden Jahre hinweg gewährleistet ist. Der Proton-Proton-Zyklus Bei diesem Zyklus reagieren zwei Protonen unmittelbar miteinander und bilden Deuterium, das sich mit einem weiteren Proton zu Helium vereinigt. Das ist noch nicht das normale Heliumisotop, sondern ein Ispotop mit nur 3 statt 4 Kernteilchen (1 Neutron weniger). Je zwei solcher Kerne vereinigen sich dann zu einem Heliumatom unter Abgabe von 2 Protonen, die erneut in den Zyklus hineingesteckt werden können. Die gesamte Energieabgabe beträgt hier 26 MeV oder 4, J. Der Prozeß geht aber noch langsamer vor sich. Der erste Schritt, die unmittelbare Vereinigung von 2 Protonen, beträgt im Mittel 14 Milliarden Jahre. Der zweite Schritt dauert nur 6 Sekunden der dritte 1 Million Jahre. Welcher der beiden Zyklen der ergibiegere ist hängt von der Temperatur ab. Bereits ab 5 Millionen Kelvin ist der Proton-Proton Zyklus wirksam. Bei etwa 15 Millionen K hat ihn der Bethe-Weizsäcker-Zyklus eingeholt und bei einer Temperatur von über 15 Millionen Kelvin überwiegt die Energieausbeute des Bethe-Weizsäcker-Zyklus. Unsere Sonne verwandelt pro Sekunde 4,2 Millionen Tonnen Masse in Energie. In den 4,5 Milliarden Jahren, die die Sonne nun schon existiert, hat sich dieser Massenverlust erst auf drei Promille der Gesamtmasse aufsummiert. Hertzsprung-Russel-Diagramm (HRD) Große Bedeutung bei allen Fragen der Stellarastronomie einschließlich der Probleme der Sternentwicklung gewann in den letzten Jahrzehnten ein Diagramm, das von Hertzsprung und Russel aufgestellt wurde. Auf der Senkrechten wird die absolute Helligkeit in Größenklassen oder die Leuchtkraft in Einheiten der Sonnenleuchtkraft aufgetragen. Auf der Waagrechten finden sich die Spekralklassen. Da es einen Zusammenhang zwischen Oberflächentemperatur und Farbe des Sterns gibt spricht man auch vom Farben-Helligkeits- Diagramm. Deutlich ordnet sich die Mehrzahl aller Sterne auf einer Hauptreihe an, die sich von links oben nach rechts unten erstreckt. Links oben stehen die blauweißen Sterne hoher Leuchtkraft und Masse, in der Mitte die sonnenähnlichen gelben Sterne und rechts unten die roten Zwergsterne. Im oberen rechten Teil des HRD befinden sich die roten Riesensterne (Riesenast). Links unten finden sich noch einige weiße Zwergsterne. Die übrigen Felder des Diagramms sind so gut wie leer. Über die tatsächliche Häufigkeit der einzelnen Sterntypen im HRD kann nur dann etwas ausgesagt werden, wenn man Sterne bis zu einer bestimmten Maximalentfernung in das Diagramm einträgt, da sonst Sterne hoher Leuchtkraft, die bis in große Entfernungen sichtbar sind, gegenüber den schwächeren Sternen bevorzugt werden.

3 Leuchtkraftklassen Leuchtkraftklassen Ia-0 Ia, Ib Iia, Iib IIIa, IIIb Iva, Ivb Va, Vb VI Bezeichnung Über-Überriesen Überriesen helle Riesen normale Riesen Unterriesen Hauptreihensterne (Zwerge) Unterzwerge Spektraltyp Die Sterne werden auch nach ihrem Spektraltyp eingeteilt. Zu feineren Unterteilung werden die Klassen B bis K in je zehn Unterklassen aufgeteilt: O Blauweiße Sterne, sehr helles Kontinuum mit He-H-Linien. B Bläulichweiße Sterne, helles Kontinuum, starke und breite Linien von He und H. A Weiße Sterne, helles Kontinuum, sehr starke H-Linien. Auftreten von Ca-Linien. F Gelbweiße Sterne, Im violetten und blauen Teil des Kontinuums treten zahlreiche Linien auf. Ca-Lineine verstärkt; Metalllinien. G Gelbe Sterne, die Linien werden zahlreicher und feiner. H-Linien treten zurück, Metalllinien hervor. K Gelbrote Sterne, Metalllinien sehr kräftig, erstmals auch Banden von Molekülen. Kontinuum im Violett und Blau sehr schwach. M Rote Sterne, Starke Banden. Kontinuum nur mehr kräftig von Gelb über Rot. Die Zentraltemperaturen der Sterne, die sich auf er Hauptreihe des Herzsprung-Russell Diagramms befinden, sind um so höher je größer die Gesamtmasse ist. Die Leuchtgiganten blau-weißer Farbe sind so heiß, daß bei ihnen der Bethe-Weizsäcker-Zyklus überwiegt. Bei den gelben und roten Zwergsternen, also auch bei unserer Sonne, ist die Proton-Proton Reaktion-Reaktion ergiebiger. In jedem Fall ist aber bei der Energieerzeugung der Hauptreihensterne nur ein verhältnismäßig kleines Kerngebiet maßgebend, das etwa 12 % des ganzen Wasserstoffvorrates umfaßt. Da keine Durchmischung der Materie im Inneren stattfindet, brennt diese Kerngebiet im Laufe der Zeit auf sich allein gestellt aus, ohne die Wasserstoffvorräte in den äußeren Sternbereichen angreifen zu können. Die Masse Leuchtkraft Beziehung der Sterne zeigt nun, daß Sterne hoher Masse viel verschwenderischer mit ihrem Energievorrat umgehen als solche kleinerer Masse eine Folge der höheren Zentraltemperaturen. Ein Stern mit 15 Sonnenmassen leuchtet nicht nur 15 mal heller, sonder mal heller als die Sonne. Die Umsetzung Masse-Energie vollzieht sich also in einem solchen Stern etwa 670 mal schneller als bei der Sonne. Als Folge ergibt sich sofort, daß dieser Stern 670 mal weniger Zeit braucht, bis sein Wasserstoffvorrat erschöpft ist. Der massenreichere Stern hat also eine bedeutend kürzere Lebenserwartung. Umgekehrt ist es bei den massearmen Sternen. Doch ist die Entwicklung eines Sternes mit dem Abschluß des Wasserstoffbrennens im Kern noch nicht beendet. Läßt nämlich die Energieerzeugung im Kern eines Sterns nach und damit auch der Gas- und Strahlungsdruck kommt das innere Gleichgewicht des Sterns in Unordnung. Die Gravitation macht sich in einer Kontraktion des Kerns bemerkbar. Dadurch steigen die Zentraltemperaturen aber weiter auf über 100 Millionen K an. Nun kann auch das inzwischen angereicherte Helium über Beryllium zu Kohlenstoff aufgebaut werden. Der

4 letztere verbindet sich ab 500 Millionen K mit Heliumkernen zu noch schwereren Elementen. Diese liefern weitere Energie. Die Wasserstoffbrennzone setzt sich allmählich in Richtung Sternoberfläche. Die gesamten Energieproduktionen des Sterns sind jetzt bei weitem größer als zu den Zeiten des Wasserstoffbrennens. Wieder ist das innere Gleichgewicht gestört. Der Gasdruck im Inneren des Sterns wächst an und die äußeren Sternschichten werden solange nach außen gedrängt, bis ein neuer Gleichgewichtzustand erreicht ist. Jetzt ist aus den Hauptreihenstern ein roter Riesenstern geworden. Die Dauer der Expansion selbst ist unterschiedlich, dürfte sich aber wiederum bei den massereichen Sternen schneller vollziehen. Unsere Sonne wir ebenfalls ein Riesenstern. Ihr Durchmesser dürfte etwa auf das 44fache anwachsen, also rund 550 Millionen km. Die Oberflächentemperatur beträgt dann 300 Grad Celsius. Die Leuchtkraft ist 10000mal größer als heute. Es werden noch etwa 3,5 Milliarden Jahre bis zu ihrer Verwandlung in einen Roten-Riesen vergehen. Die Oberflächentemperatur der Erde wird dann allmählich so weit ansteigen, daß das organische Leben zu Grunde gehen muß. Die Zentraltemperaturen in den Riesensternen können schließlich auf über 1 Milliarde K ansteigen. Dabei können Elemente bis etwa zum Calcium mit dem Atomgewicht 40 und vielleicht sogar bis zum Eisen (Atomgewicht 46) aufgebaut werden. Rote Riesensterne haben nach ihrer Expansion vorübergehend ein neues Gleichgewichtsstadium gefunden. Es ist aber lange nicht so stabil wie zu der Zeit, als der Stern noch auf der Hauptreihe stand. Bei fast allen roten Riesen sind daher irgendwelche periodische oder unregelmäßige Veränderungen zu beobachten, vor allem in der Helligkeit und im Spektrum. Die grundlegende Theorie stellten bereits Shapley 1914 und Eddington 1919 auf: Expandiert der Stern, sinkt der Druck im Inneren ab. Dadurch sinken aber auch Temperatur und Helligkeit, der Stern wird etwas röter. Nachdem der Stern seinen Maximaldurchmesser erreicht hat, fällt er wieder etwas zusammen, er kontrahiert. Der Innendruck beginnt wieder anzusteigen, die Temperatur ebenso und die Farbe geht gegen Weiß. Irgendwann einmal reichen die Innentemperaturen des Sterns nicht mehr aus, um immer schwerere Elemente unter Energiefreisetzung aufzubauen. Damit sinkt aber auch der Druck der bisher die Gravitation kompensierte. Das innere Gleichgewicht des alternden Sterns kann nicht mehr aufrecht erhalten werden. Der Kern des Sterns muß in sich zusammenfallen. Damit kommt es aber auch zu einer Trennung des dichten Kerns und der immer weiter aufgeblasenen Hülle: die äußeren Sternschichten werden abgestoßen und es entsteht ein planetarischer Nebel. Zurück bleibt im Inneren ein weißer Zwergstern, der freigesetzte Sternkern. Ein weißer Zwerg besteht aus entarteter Materie. Das mechanische Gleichgewicht wird nicht mehr durch den normalen Gasdruck aufrecht gehalten sondern durch den Elektronendruck. Im entarteten Gas mit seiner Dichte um 1 Million g/cm 3 ist der Druck nicht mehr von Temperatur und Dichte, sonder nur mehr von der Dichte abhängig. Im Verlauf von 1-10 Milliarden Jahren kühlt ein weißer Zwerg allmählich aus und wird dann unsichtbar (schwarzer Zwerg). Die meisten Sterne enden als weißer Zwerg. Das erklärt auch ihre gar nicht so geringe Häufigkeit. Berechnungen zeigen aber, daß es für einen weißen Zwerg eine obere Massengrenze bei 1,5 Sonnenmassen gibt (Chandrasekhar-Grenze). Übersteigt die verbleibende Masse des Sterns diesen Wert so geht der Kollaps weiter in einen Neutronenstern.

5 Massereiche ältere Sterne haben in ihrem Inneren einen Schalenaufbau. Außer H und He nach innen hin die im Laufe der Sternenentwicklung aufgebauten schwereren Elemente C, Si und Fe. Bei der Sonne, also einem Stern geringer Masse hört die Kernfusion bereits beim Kohlenstoff auf, für die nächsthöheren Reaktionen sind über 8 Sonnenmassen erforderlich. Schließlich enthält der Sternkern nur noch Fe (und ähnlich schwere Elemente). Es können keine schwereren Elemente aufgebaut werden, da dies nicht energiefreisetzend sondern verbrauchend sein würde. Jetzt können folgende Prozesse ablaufen: - Eine relativistische Entartung führt dazu, daß die Elektronen, deren Druck bei normaler Entartung zuvor zum Ausgleich der Gravitation diente, immer weniger zum Druck beitragen. Es kommt zum Kollaps. - Die Kerne der Fe-Atome werden bei extrem hohen Temperaturen aufgebrochen. Dies verbraucht Energie, der Druck nimmt ab, ein Kollaps folgt. - Protonen lagern energiereiche Elektronen an und es bilden sich Neutronen oder Neon und Magnesium fangen Elektronen an. Es sinkt der Druck, ein Kollaps folgt. Vermutlich dauert der Kollaps nur 0,1 Sekunden. Dabei entsteht eine Stosswelle, die im Inneren reflektiert wird: Die äußeren Sternschichten explodieren, eine Supernova leuchtet auf, ein gasförmiger Überrest nach Art des Crabnebels bildet sich, zurück bleibt ein Neutronenstern. Dieses Szenario gilt für Supernovae vom Typ II. Bei Typ I erfolgt die Explosion eines weißen Zwergsterns. Dieser war Partner in einem Doppelsternsystem. Vom anderen Partner fließt Materie auf den weißen Zwerg über. Schließlich übersteigt die Masse des weißen Zwergen die Chandrasekhar-Grenze. Er stürzt so abrupt in sich zusammen, daß die freiwerdende Gravitationsenergie den Stern völlig zerreißt. Als Überrest sieht man also nur expandierende Gasfetzen. Bleiben beim Zusammenbruch eines Sterns und einer Supernova Typ II mehr als 2,5 Sonnenmassen übrig, fällt der Sternkern zu einem schwarzen Loch zusammen. Sein sogenannter Schwarzschild Radius beträgt bei 1 Sonnenmasse 2,5 km. Bei größeren Massen ist der Radius größer und umgekehrt. Bei 5 Sonnenmassen beträgt der Radius 20 km. Schwarze Löcher sind also so kompakt, daß keine Strahlung oder materielle Teilchen nach Außen dringen. Sie können also nicht beobachtet werden. Der Nachweis schwarzer Löcher ist nur indirekt möglich.

3.5.5 Sternentstehung und -entwicklung

3.5.5 Sternentstehung und -entwicklung 3.5.5 Sternentstehung und -entwicklung Energiefreisetzung in Sternen durch Kernfusion Problem 1: Energieerzeugung muss irgendwann begonnen haben Wie entstehen Sterne? Problem 2: Irgendwann ist der Kernbrennstoff

Mehr

Sternentwicklung und das Hertzsprung-Russel-Diagramm

Sternentwicklung und das Hertzsprung-Russel-Diagramm Sternentwicklung und das Hertzsprung-Russel-Diagramm Workshop MNU-Tagung Leipzig 2016 Technische Universität Dresden Dr. rer. nat. Frank Morherr Entwicklung der Sterne Sternentwicklung Weißer Zwerg Schwarzes

Mehr

Supernovae. Peter H. Hauschildt. Hamburger Sternwarte Gojenbergsweg Hamburg

Supernovae. Peter H. Hauschildt. Hamburger Sternwarte Gojenbergsweg Hamburg Supernovae Peter H. Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg sn.tex Supernovae Peter H. Hauschildt 16/2/2005 18:20 p.1 Übersicht Was ist eine Supernova? Was

Mehr

Supernova. Katastrophe am Ende eines Sternenlebens W. Stegmüller Folie 2

Supernova. Katastrophe am Ende eines Sternenlebens W. Stegmüller Folie 2 Supernova Katastrophe am Ende eines Sternenlebens 15.01.2008 W. Stegmüller Folie 1 Supernovae Eine Supernova ist das schnell eintretende, helle Aufleuchten eines Sterns am Ende seiner Lebenszeit durch

Mehr

Vom Sterben der Sterne

Vom Sterben der Sterne Vom Sterben der Sterne Weiße Zwerge, Neutronensterne und Schwarze Löcher Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at Fakultät für Physik Universität Wien Vortrag

Mehr

Sterne. Eine kurze Zusammenfassung des Sternenlebens. Jörn Lenhardt. Das Leben der Sterne

Sterne. Eine kurze Zusammenfassung des Sternenlebens. Jörn Lenhardt. Das Leben der Sterne Sterne Eine kurze Zusammenfassung des Sternenlebens Jörn Lenhardt Willkommen Entstehung 1/5 Riesige Gas- und Staubwolken Fast Vakuum Durch Gravitation (Schwerkraft) wird die Wolke zusammengehalten Die

Mehr

Von Weißen Zwergen, Neutronensternen und Schwarzen Löchern

Von Weißen Zwergen, Neutronensternen und Schwarzen Löchern Von Weißen Zwergen, Neutronensternen und Schwarzen Löchern Was uns die Endstadien der Sterne über die Naturgesetze sagen Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at

Mehr

Modul Sternphysik Repräsentativer Fragenkatalog

Modul Sternphysik Repräsentativer Fragenkatalog Modul Sternphysik Repräsentativer Fragenkatalog Elementare Größen Definieren und erläutern Sie folgende Größen: Strahlungsstrom, scheinbare Helligkeit, absolute Helligkeit, bolometrische Helligkeit, Leuchtkraft

Mehr

13. Aufbau und Entwicklung der Sterne

13. Aufbau und Entwicklung der Sterne 13.1 Sterngeburt Kollaps von interstellaren Gaswolken (dunkle oder leuchtende Nebel) Kalte globules 5-15K Folie 1 Sternentstehung Interstellare Wolken: Fragmentation notwendig, da Jeans- Masse in interstellaren

Mehr

13. Aufbau und Entwicklung der Sterne Sterngeburt Kollaps von interstellaren Gaswolken (dunkle oder leuchtende Nebel) Kalte globules 5-15K

13. Aufbau und Entwicklung der Sterne Sterngeburt Kollaps von interstellaren Gaswolken (dunkle oder leuchtende Nebel) Kalte globules 5-15K 13.1 Sterngeburt Kollaps von interstellaren Gaswolken (dunkle oder leuchtende Nebel) Kalte globules 5-15K Folie 1 Sternentstehung Interstellare Wolken: Fragmentation notwendig, da Jeans- Masse in interstellaren

Mehr

Sternentwicklung. Sternentwicklung

Sternentwicklung. Sternentwicklung Übersicht Nebel Vor- n Stadium Endstadium n Stadium Nach- n Stadium Nebel & Vor-n Stadium Entstehung Eigentlich ist die Entstehung eines Sternes unwahrscheinlich, da Dichte der Atome zu gering Temperaturen

Mehr

Sterne, Galaxien und das Universum

Sterne, Galaxien und das Universum Sterne, Galaxien und das Universum Teil 4: Leben nach der Hauptreihe Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 18. April 2017 1 / 49 Übersicht auf dem

Mehr

XI. Sternentwicklung

XI. Sternentwicklung XI. Sternentwicklung Entwicklungszeitskalen Änderungen eines Sterns kann sich auf drei Zeitskalen abspielen: 1) nukleare Zeitskala t n = Zeit, in der der Stern seine Leuchtkraft durch Kernfusion decken

Mehr

Einführung in die Astronomie und Astrophysik II

Einführung in die Astronomie und Astrophysik II Einführung in die Astronomie und Astrophysik II Teil 3 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Astronomische Nachricht der letzten Woche Astronomische Nachricht der letzten Woche

Mehr

Neutronensterne. Belegarbeit von. Steven Kirchner

Neutronensterne. Belegarbeit von. Steven Kirchner Neutronensterne Belegarbeit von Steven Kirchner 2006 Inhaltsverzeichnis 1. Was ist ein Neutronenstern? 2. Die Entstehung eines Neutronensterns 3. Die Eigenschaften eines Neutronensterns 4. Das Magnetfeld

Mehr

8.1 Einleitung Die interstellare Materie Sternentstehung... 3

8.1 Einleitung Die interstellare Materie Sternentstehung... 3 Astronomie Lernheft 8 Sternkunde I: Sternentstehung Inhaltsverzeichnis: 8.1 Einleitung... 2 8.2 Die interstellare Materie... 2 8.3 Sternentstehung... 3 8.4 Fusionsmechanismen... 3 8.4.1 Die Proton-Proton-Reaktion...

Mehr

Sterne, Galaxien und das Universum

Sterne, Galaxien und das Universum Sterne, Galaxien und das Universum Teil 5: Das Ende der Sterne Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 18. April 2017 1 / 56 Übersicht Sterne mit geringer

Mehr

HERTZSPRUNG RUSSELL DIAGRAMM

HERTZSPRUNG RUSSELL DIAGRAMM Vortrag beim PEGASUS-Monatstreffen am 25. August 2016: Das Hertzsprung-Russell- Diagramm zusammengestellt und vorgestellt von Hans Hubner HERTZSPRUNG RUSSELL DIAGRAMM Das HERTZSPRUNG- RUSSELL- DIAGRAMM,

Mehr

Der Lebensweg der Sterne

Der Lebensweg der Sterne Der Lebensweg der Sterne Wahrscheinlich durch die Überreste einer nahen Supernova konnte sich die Sonne samt Planeten bilden. Nach einem Milliarden Jahre langen Leben bläht sie sich nachdem der Wasserstoff

Mehr

Anreicherung der interstellaren Materie mit schweren Elementen. Supernovae

Anreicherung der interstellaren Materie mit schweren Elementen. Supernovae Anreicherung der interstellaren Materie mit schweren Elementen Supernovae Unser heutiges Thema... Sterne können exotherm nur Elemente bis Eisen (Z=26) in ihrem Inneren regulär fusionieren. Wie gelangen

Mehr

Die Milchstraße. Sternentstehung. ( clund Observatory, 1940er) Interstellare Materie (ISM) W. Kley: Theoretische Astrophysik 1

Die Milchstraße. Sternentstehung. ( clund Observatory, 1940er) Interstellare Materie (ISM) W. Kley: Theoretische Astrophysik 1 Die Milchstraße ( clund Observatory, 1940er) Interstellare Materie (ISM) W. Kley: Theoretische Astrophysik 1 Die Galaxie M74 (NGC 628) Sternbild: Fische Abstand: 35 Mio. LJ. Rot: sichtbares Licht - ältere

Mehr

Moderne Instrumente der Sternbeobachtung

Moderne Instrumente der Sternbeobachtung Moderne Instrumente der Sternbeobachtung Sternentstehung/ Sternentwicklung (Steffen Fuhrmann) Sternbeobachtung (Jan Zimmermann) 0. Gliederung 1. historische Entwicklung 2. Definitionen 3. Entstehung eines

Mehr

Sternenentwicklung. Martin Hierholzer. Seminar über Nukleare Astrophysik und Anwendungen - SS04 Institut für Kernphysik - Universität Münster

Sternenentwicklung. Martin Hierholzer. Seminar über Nukleare Astrophysik und Anwendungen - SS04 Institut für Kernphysik - Universität Münster Sternenentwicklung Martin Hierholzer Seminar über Nukleare Astrophysik und Anwendungen - SS04 Institut für Kernphysik - Universität Münster sternenentwicklung.tex Sternenentwicklung Martin Hierholzer 25/5/2004

Mehr

NEUTRONENSTERNE. Eine Reise in die Vergangenheit. Jochen Wambach Institut für Kernphysik TU Darmstadt

NEUTRONENSTERNE. Eine Reise in die Vergangenheit. Jochen Wambach Institut für Kernphysik TU Darmstadt NEUTRONENSTERNE Eine Reise in die Vergangenheit Jochen Wambach Institut für Kernphysik TU Darmstadt NEUTRONENSTERNE Eine Reise in die Vergangenheit Jochen Wambach Institut für Kernphysik TU Darmstadt Was

Mehr

Vom Urknall zur Dunklen Energie

Vom Urknall zur Dunklen Energie Wie ist unser Universum entstanden und wie wird es enden? Wie werden Sterne geboren, leben und sterben dann? Woher kommen die Elemente im Universum? Einleitung Entstehung des Universums vor ungefähr 14

Mehr

Sternentwicklung. Die Lebensgeschichte der Sterne

Sternentwicklung. Die Lebensgeschichte der Sterne Sternentwicklung Die Lebensgeschichte der Sterne @ KVHS-Astro-Stammtisch Reinhard Woltmann 23 04. 2010 1 Gliederung 1. Allgemeines 2. Der Urknall - Am Anfang war das Nichts 3. Entstehung der Elemente -

Mehr

Sternentwicklung (4) Wie Sterne Energie erzeugen Energietransport Triple-Alpha-Prozeß

Sternentwicklung (4) Wie Sterne Energie erzeugen Energietransport Triple-Alpha-Prozeß Sternentwicklung (4) Wie Sterne Energie erzeugen Energietransport Triple-Alpha-Prozeß Wasserstoffbrennen Der Bethe-Weizsäcker-Zyklus Synonym: CNO Zyklus H. Bethe, C.-F. von Weizsäcker 1939 Benötigt Kohlenstoff

Mehr

Sternentwicklung (3) Wie Sterne Energie erzeugen

Sternentwicklung (3) Wie Sterne Energie erzeugen Sternentwicklung (3) Wie Sterne Energie erzeugen Die Leuchtkraft der Sonne Die Leuchtkraft ist eine Strahlungsleistung. Sie gibt die pro Zeiteinheit (Sekunde) von einem Stern im gesamten Spektralbereich

Mehr

Wann sind Sterne stabil? Virialsatz

Wann sind Sterne stabil? Virialsatz Exkurs: Fermisterne Wann sind Sterne stabil? Jede Masse ist bestrebt aufgrund der Eigengravitation zu kontrahieren. Sie kann davon nur durch Kräfte gehindert werden, die entgegengesetzt gerichtet sind...

Mehr

Sterne IV: Sternentwicklung

Sterne IV: Sternentwicklung Sterne IV: Sternentwicklung 7 Dezember, 2006 Laura Baudis, lbaudis@physik.rwth-aachen.de Physikalisches Institut Ib, RWTH Aachen 1 Inhalt Energiereservoire, Zeitskalen Entwicklungswege im HR-Diagramm Sterne

Mehr

Sterne, Galaxien und das Universum

Sterne, Galaxien und das Universum Sterne, Galaxien und das Universum Teil 3: Nebel + Sternentstehung Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 18. April 2017 1 / 40 Übersicht Interstellare

Mehr

Sterne, Doppelsterne und Be-Sterne

Sterne, Doppelsterne und Be-Sterne Sterne, Doppelsterne und Be-Sterne Astrotreff.de m.teachastronomy.com Fh-kiel.de Tagesspiegel.de Von Christian Lipgens Fernandez Inhaltsverzeichnis Entstehung von Sternen Herzsprung-Russel-Diagramm Tod

Mehr

Unsere weitere kosmische Umgebung

Unsere weitere kosmische Umgebung Sachinformationen 3 Unsere weitere kosmische Umgebung Nachbarsterne, Nebel und Sternhaufen in der Milchstraße Galaxien Autor: Dieter Seiwald Wie viele Sterne gibt es? 6000 sind mit freiem Auge sichtbar,

Mehr

Massive Sterne: Gravitationskollaps-Supernovae, Neutronensterne & Pulsare

Massive Sterne: Gravitationskollaps-Supernovae, Neutronensterne & Pulsare Massive Sterne: Gravitationskollaps-, & Uni Mainz Vortrag in Astroteilchenphysik im WS 10/11 18. Januar 2011 Überblick 1 Gravitationskollaps- und Entstehung von n 2 Eigenschaften von n 3 Was ist ein Pulsar?

Mehr

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 7. Anfang und Ende der Welt

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 7. Anfang und Ende der Welt Ziele der Vorlesung: 1.) Die Entwicklung des Universums seit dem Urknall, unsere Heimatgalaxie 2.) Entwicklungszyklen von Sternen mit unterschiedlichen Anfangsmassen, unsere Sonne 3.) Unser Planetensystem

Mehr

Die Macht der Gravitation vom Leben und Sterben der Sterne

Die Macht der Gravitation vom Leben und Sterben der Sterne Die Macht der Gravitation vom Leben und Sterben der Sterne Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at Fakultät für Physik Universität Wien Vortrag am GRG17

Mehr

Die Entstehung der lebenswichtigen Elemente S C H Ö P Fe N

Die Entstehung der lebenswichtigen Elemente S C H Ö P Fe N Die Entstehung der lebenswichtigen Elemente S C H Ö P Fe N Elemente, welche den Aufbau und die Chemie lebender Systeme bestimmen Vier Elemente dominieren die belebte Natur: H, O, C, N (zusammen 96 Masse-%)

Mehr

2. Sterne im Hertzsprung-Russell-Diagramm

2. Sterne im Hertzsprung-Russell-Diagramm 2. Sterne im Hertzsprung-Russell-Diagramm Wie entstand die Astrophysik? Sternatmosphäre Planck-Spektrum Spektraltyp und Leuchtkraftklasse HRD Sternpositionen im HRD Die Sterne füllen das Diagramm nicht

Mehr

Die Endstadien der Sterne und wie es die Physik schafft, sie zu beschreiben

Die Endstadien der Sterne und wie es die Physik schafft, sie zu beschreiben Die Endstadien der Sterne und wie es die Physik schafft, sie zu beschreiben Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at Fakultät für Physik Universität Wien

Mehr

Wie lange leben Sterne? und Wie entstehen sie?

Wie lange leben Sterne? und Wie entstehen sie? Wie lange leben Sterne? und Wie entstehen sie? Neue Sterne Neue Sterne Was ist ein Stern? Unsere Sonne ist ein Stern Die Sonne ist ein heißer Gasball sie erzeugt ihre Energie aus Kernfusion Planeten sind

Mehr

Entwicklung und Ende von Sternen

Entwicklung und Ende von Sternen Entwicklung und Ende von Sternen Seminarvortrag von Klaus Raab 1.) Nebel und deren Verdichtung zu Protosternen 2.) Kernfusion: Energieerzeugung der Sterne 3.) Massenabhängige Entwicklung und Ende von Sternen

Mehr

STERNENTWICKLUNG. Protosterne:

STERNENTWICKLUNG. Protosterne: STERNENTWICKLUNG Über die Sternentwicklung gibt es zurzeit noch keine endgültigen Aussagen. Es ist aber ziemlich wahrscheinlich, dass die Sterne in ganzen Gruppen aus der Verdichtung großer kalter Wolken

Mehr

Sternenentwicklung. Sternenentwicklung. Scheinseminar Astro- und Teilchenphysik SoSe Fabian Hecht

Sternenentwicklung. Sternenentwicklung. Scheinseminar Astro- und Teilchenphysik SoSe Fabian Hecht Fabian Hecht 29.04.2010 Physikalische Grundlagen des Sternenaufbaus Motivation nur beschreibbar mit Wissen über Sternenaufbau 4 Zentrale Grundgleichungen zusammen mit Zustandsgleichungen und Zusammensetzung

Mehr

Typisierung von Sternen (Teil 2) Spektraltyp F und G

Typisierung von Sternen (Teil 2) Spektraltyp F und G Typisierung von Sternen (Teil 2) Spektraltyp F und G Sterne der Spektraltypen F und G Sterne der Leuchtkraftklasse V, die den Spektraltypen F und G zugeordnet werden, bilden die Gruppe der Sonnenähnlichen

Mehr

Der Pistolenstern. der schwerste Stern der Galaxis?

Der Pistolenstern. der schwerste Stern der Galaxis? Der Pistolenstern der schwerste Stern der Galaxis? Der Name! Der Pistolenstern liegt in einer dichten Staub- und Gaswolke eingebettet nahe des galaktischen Zentrums. Die Form dieser Staub- und Gaswolke

Mehr

Sterne in Symbiose Das Drama enger Paare. Sterne in Symbiose - Paare. Inhaltsverzeichnis. Definitionen

Sterne in Symbiose Das Drama enger Paare. Sterne in Symbiose - Paare. Inhaltsverzeichnis. Definitionen Inhaltsverzeichnis Sterne in Symbiose Das Drama enger Paare Sterne in Symbiose - Helena A. Sternkopf Das 12 Drama enger 03.12.2010 Paare Allgemeines Definitionen Das Hertzsprung Russell Diagramm Entwicklungsweg

Mehr

Sterne - Entwicklung und Ende

Sterne - Entwicklung und Ende Sterne - Entwicklung und Ende Anja Scharth 23. Januar 2011 1 Einleitung Durch die enorme Anzahl an Sonnen in unserem Universum sind Supernovae kein sehr seltenes Ereignis. Dies macht es besonders interessant

Mehr

Sonne. Innerhalb der Milchstraße ist die Sonne ein durchschnittlicher, zu den Gelben Zwergen gehöriger Stern. Ihr astronomisches Zeichen ist.

Sonne. Innerhalb der Milchstraße ist die Sonne ein durchschnittlicher, zu den Gelben Zwergen gehöriger Stern. Ihr astronomisches Zeichen ist. Sonne Die Sonne (lat. Sol ; gr. Helios ) ist der Stern im Zentrum unseres Planetensystems, das nach ihr auch Sonnensystem genannt wird. In der gehobenen Umgangssprache wird der Individualname unseres Zentralgestirns

Mehr

Sonnenmasse Sonnenleuchtkraft Oberflächentemperatur der Sonne Lichtgeschwindigkeit Atomare Masseneinheit Elektronenvolt

Sonnenmasse Sonnenleuchtkraft Oberflächentemperatur der Sonne Lichtgeschwindigkeit Atomare Masseneinheit Elektronenvolt Sommersemester 2007 Beispielklausur Musterlösung Allgemeine Regeln Die Bearbeitungszeit der Klausur beträgt eine Stunde. Außer eines Taschenrechners sind keine Hilfsmittel erlaubt. Alle Fragen sind zu

Mehr

Mathis Hartmann. Handout zum Vortrag Stern Entwicklung und Ende. 20.Dezember 2010

Mathis Hartmann. Handout zum Vortrag Stern Entwicklung und Ende. 20.Dezember 2010 Mathis Hartmann Handout zum Vortrag Stern Entwicklung und Ende 20.Dezember 2010 1. Grundlagen 1.1 Historische Entwicklung und wichtige Begriffe Erste Überlegungen über die Struktur des Universums gehen

Mehr

Die Entstehung der Elemente

Die Entstehung der Elemente Die Entstehung der Elemente Ein Vortrag von Shin-Gyu Kang, Birger Buttenschön, Marco Knutzen, Ole Ammon Staack, Frank Schlotfeldt und Alexander Sperl Kiel, 10. Juni 2005 Inhalt Einleitung und Übersicht

Mehr

Spektren von Himmelskörpern

Spektren von Himmelskörpern Spektren von Himmelskörpern Inkohärente Lichtquellen (Prof. Dr. Thomas Jüstel) Anja Strube, 04.06.2014 Inhalt Einführung o Messung von Sternspektren o Spektralklassen der Sterne o Leuchtkraftklassen o

Mehr

Thema heute: Aufbau der Materie, Atommodelle Teil 2

Thema heute: Aufbau der Materie, Atommodelle Teil 2 Wiederholung der letzten Vorlesungsstunde: Atomistischer Aufbau der Materie, historische Entwicklung des Atombegriffes Atome Thema heute: Aufbau der Materie, Atommodelle Teil 2 Vorlesung Allgemeine Chemie,

Mehr

Exkurs: Veränderliche Sterne (6)

Exkurs: Veränderliche Sterne (6) Exkurs: Veränderliche Sterne (6) Einführung: Pulsationsveränderliche In bestimmten Phasen ihrer Entwicklung sind Sterne nicht stabil, sondern oszillieren um einen Gleichgewichtszustand. Solche Sterne nennt

Mehr

Entstehung der kosmischen Strahlung

Entstehung der kosmischen Strahlung Entstehung der kosmischen Strahlung Galaktische und intergalaktische Kosmische Strahlung Im Folgenden soll nur die Komponente der kosmischen Strahlung betrachtet werden, die nicht solaren Ursprungs ist.

Mehr

Ende eines Sternenlebens

Ende eines Sternenlebens Ende eines Sternenlebens 2 In diesem Kapitel betrachten wir die Entwicklung der Sterne nach dem Wasserstoffbrennen und dem Verlassen der Hauptreihe. In Abschn. 2.1 behandeln wir zunächst das Heliumbrennen,

Mehr

Keine Welt ohne explodierende Sterne. Bruno Leibundgut Europäische Südsternwarte (ESO)

Keine Welt ohne explodierende Sterne. Bruno Leibundgut Europäische Südsternwarte (ESO) Keine Welt ohne explodierende Sterne Bruno Leibundgut Europäische Südsternwarte (ESO) Alter der Alpen Entstanden vor etwa 30 bis 35 Millionen Jahren Dinosaurier haben die Alpen nie gekannt! (vor 65 Millionen

Mehr

Endstadien massiver Sterne Supernova Typ II

Endstadien massiver Sterne Supernova Typ II Endstadien massiver Sterne Supernova Typ II Emissionsnebel - Cassiopesia A Entfernung: 11 000 Lichtjahre Beobachtet: 1950 Krebsnebel Entfernung: 6 300 Lichtjahre Beobachtet: 4. Juli 1054 Endstadien massiver

Mehr

Standard Sonnenmodell

Standard Sonnenmodell Standard Sonnenmodell Max Camenzind Akademie HD - Juli 2016 Inhalt Sonnenmodell Die Sonne in Zahlen Aufbau der Sonne Die Sonne im Gleichgewicht Woher stammt die Energie? Nukleare Prozesse im Sonnenkern

Mehr

Kernkollapssuper novae SN Ib, Ic und II. Moritz Fuchs 11.12.2007

Kernkollapssuper novae SN Ib, Ic und II. Moritz Fuchs 11.12.2007 Kernkollapssuper novae SN Ib, Ic und II Moritz Fuchs 11.12.2007 Gliederung Einleitung Leben eines Sterns bis zur Supernova Vorgänge während der Supernova SN 1987 A r-prozesse Was ist interessant an Supernovae?

Mehr

Masterseminar I Supernovae und das expandierende Universum

Masterseminar I Supernovae und das expandierende Universum Masterseminar I Supernovae und das expandierende Universum Yilmaz Ayten 1 23. Juni 2013 1 yayten@students.uni-mail.de 1 2 Inhaltsverzeichnis 1 Motivation 3 2 Supernovae 3 2.1 Kernkollapssupernovae............................

Mehr

Interstellares Medium

Interstellares Medium Interstellares Medium In ferner Zukunft: Alice, eine Astronautin, und ihr Kollege Bob unterhalten sich, wie es ihnen bei ihren Weltraumreisen so ergangen ist. Bob berichtet aufgeregt: Bob: "Bei unserem

Mehr

6. Sterne. 6.1 Die Sterne auf der Hauptreihe Energiequelle normaler Sterne

6. Sterne. 6.1 Die Sterne auf der Hauptreihe Energiequelle normaler Sterne 6. Sterne 6.1 Die Sterne auf der Hauptreihe 6.1.1 Energiequelle normaler Sterne Gravitationskontraktion: 10 7 Jahre (Russell 1919) Umwandlung von Materie in Energie (basierend auf Einstein 1907): DE =

Mehr

Highlights der Astronomie. APOD vom : Carinae Massereiche Sterne, Vorläufer von Supernovae

Highlights der Astronomie. APOD vom : Carinae Massereiche Sterne, Vorläufer von Supernovae Highlights der Astronomie APOD vom28.11.04: Carinae Massereiche Sterne, Vorläufer von Supernovae was sehen wir? 2 große, symmetrische Wolken innere Struktur, dunkle Streifen räumliche Vorstellung einer

Mehr

Sternhaufen. Geburtsorte der Materie. Dr. Andrea Stolte. I. Physikalisches Institut Universität Köln

Sternhaufen. Geburtsorte der Materie. Dr. Andrea Stolte. I. Physikalisches Institut Universität Köln Sternhaufen Geburtsorte der Materie Dr. Andrea Stolte I. Physikalisches Institut Universität Köln Ringvorlesung Astronomie 13. Januar 2010 1 Sternhaufen -- Geburtsorte der Materie I. Am Anfang waren Wasserstoff

Mehr

Junge stellare Objekte

Junge stellare Objekte Junge stellare Objekte 2 Nach den Erläuterungen zur Entstehung der Protosterne bzw. der jungen stellaren Objekte im Allgemeinen in (Heyssler 2014) befassen wir uns in diesem Kapitel mit ihrem Entwicklungsweg

Mehr

Die Sonne. Ein Energieversorger

Die Sonne. Ein Energieversorger 2 Die Sonne Ein Energieversorger Die Sonne ist - direkt oder indirekt - der Motor fast aller Abläufe in der Atmosphäre. Obwohl nur der zweimilliardste Teil der gesamten von der Sonne ausgehenden Strahlung

Mehr

Typisierung von Sternen (Teil 3) Spektraltyp K und M

Typisierung von Sternen (Teil 3) Spektraltyp K und M Typisierung von Sternen (Teil 3) Spektraltyp K und M Sterne der Spektraltypen K und M Hauptreihensterne (Leuchtkraftklasse V) der Spektraltypen K und M sind kühler und kleiner als die Sonne. Ihre Farbe

Mehr

Ein Stern (fast) zum anfassen

Ein Stern (fast) zum anfassen Ein Stern (fast) zum anfassen Natalie Fischer Der Blick in den nächtlichen Sternenhimmel lässt den unbedarften Beobachter kaum erahnen, in welchen teilweise dramatischen Lebensphasen sich die hellen Lichtpunkte

Mehr

Aufgaben Astrophysik

Aufgaben Astrophysik Helligkeiten 1. Berechnen Sie die absolute Helligkeit unserer Sonne (m = 26, m 8) 2. 1923 wurden im Andromeda-Nebel veränderliche Sterne mit m = 20 m entdeckt. Von diesen Veränderlichen vermutete man,

Mehr

Das Interstellare Medium Der Stoff zwischen den Sternen

Das Interstellare Medium Der Stoff zwischen den Sternen Das Interstellare Medium Der Stoff zwischen den Sternen Lord of the Rings Sonne Roter Überriese Nördliche Hemisphäre Nördliche Hemisphäre Südliche Hemisphäre Die 150 nächsten Sterne 60 Lichtjahre

Mehr

Sternhaufen-Klassifikation, Farbe und Leuchtkraft der Astropraxis. Leuchtkraft, Leistung, Infrarotexperimente, Entstehung der Elemente

Sternhaufen-Klassifikation, Farbe und Leuchtkraft der Astropraxis. Leuchtkraft, Leistung, Infrarotexperimente, Entstehung der Elemente Die Suche nach verborgenen Sternen In Bezug zu den SuW-Beiträgen VISTA entdeckt 96 Sternhaufen (Nachricht in 12/2011, S. 14) und Offene Sternhaufen (Welt der Wissenschaft, 8/2011, S. 30) Cecilia Scorza

Mehr

Weltbild der modernen Physik: Relativistische Astrophysik und Kosmologie (SS 2010)

Weltbild der modernen Physik: Relativistische Astrophysik und Kosmologie (SS 2010) Weltbild der modernen Physik: Relativistische Astrophysik und Kosmologie (SS 2010) Liste von (rein theoretisch möglichen) Prüfungsfragen Die Zuordnung der Fragen zu den einzelnen Kapiteln dient nur der

Mehr

Planetologie substellarer Objekte

Planetologie substellarer Objekte Planetologie substellarer Objekte Die meisten der mittlerweile entdeckten Exoplaneten müssen der Gruppe der Gasplaneten zugeordnet werden Auswahleffekt, der den höheren Entdeckungswahrscheinlichkeiten

Mehr

Beobachtungen von Protosternen mit Radioteleskopen

Beobachtungen von Protosternen mit Radioteleskopen Beobachtungen von Protosternen mit Radioteleskopen mit freundlicher Unterstützung von Dirk Muders Silvia Leurini Datenanalyse Datenaufnahme Datenreduktion Datenauswertung Datenvisualisierung Sternentstehung

Mehr

Relativitätstheorie und Kosmologie Teil 2 Unterricht

Relativitätstheorie und Kosmologie Teil 2 Unterricht Relativitätstheorie und Kosmologie Teil 2 Unterricht F. Herrmann und M. Pohlig S www.physikdidaktik.uni-karlsruhe.de 9 DER GEKRÜMMTE RAUM 10 KOSMOLOGIE 9 DER GEKRÜMMTE RAUM Raum und Zeit getrennt behandeln

Mehr

Millionen von Sonnen Sterne als Bestandteile von Galaxien

Millionen von Sonnen Sterne als Bestandteile von Galaxien Millionen von Sonnen Sterne als Bestandteile von Galaxien etwas Werbung Bestellung von Büchern über den Shop der Kuffner Sternwarte: http://www.kuffner.ac.at/ Shop meist nur geringer Lagerstand Fr. Claudia

Mehr

Sterne, Galaxien und das Universum

Sterne, Galaxien und das Universum Sterne, Galaxien und das Universum Teil 6: Die Milchstraße Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 18. April 2017 1 / 50 Die Milchstraße 2 / 50 Übersicht

Mehr

Radioaktivität. Bildungsstandards Physik - Radioaktivität 1 LEHRPLANZITAT. Das radioaktive Verhalten der Materie:

Radioaktivität. Bildungsstandards Physik - Radioaktivität 1 LEHRPLANZITAT. Das radioaktive Verhalten der Materie: Bildungsstandards Physik - Radioaktivität 1 Radioaktivität LEHRPLANZITAT Das radioaktive Verhalten der Materie: Ausgehend von Alltagsvorstellungen der Schülerinnen und Schüler soll ein grundlegendes Verständnis

Mehr

Die Nach-Hauptreihen-Entwicklung

Die Nach-Hauptreihen-Entwicklung 1 Die Nach-Hauptreihen-Entwicklung Die Nach-Hauptreihen-Phase beschreibt die Entwicklungen der Sterne ab dem Ende des zentralen Wasserstoffbrennens bis hin zum allgemeinen Aussetzen der Kernfusionen als

Mehr

Sternentwicklung. Ziele

Sternentwicklung. Ziele Ziele DAS HERTZSPRUNG-RUSSELL DIAGRAMM Eigenschaften von Sternen. Übersicht über Sterntypen: Hauptreihe, Riesen, Zwerge, Neutronensterne. STERNSTRUKTUR UND STERNENTWICKLUNG Modelle als Schlüssel zur Kenntnis

Mehr

Endstadien der Sternentwicklung. Max Camenzind ZAH /LSW SS 2011

Endstadien der Sternentwicklung. Max Camenzind ZAH /LSW SS 2011 Endstadien der Sternentwicklung Max Camenzind ZAH /LSW TUDA @ SS 2011 Übersicht M in < 8 Sonnenmassen Weiße Zwerge (>1 Mrd. in Galaxis, 10.000 in Kugelsternhaufen) 8 < M in < 25 Sonnenmassen Neutronensterne

Mehr

Kapitel 7 Formation und Evolution von kompakten Doppelsternen

Kapitel 7 Formation und Evolution von kompakten Doppelsternen Kapitel 7 Formation und Evolution von kompakten Doppelsternen In dieser Dissertation werden Untersuchungen einer bestimmten Klasse von Doppelsternen beschrieben. In Kapitel 7.1 gebe ich eine kurze Einführung

Mehr

= Synthese der leichten Elemente in den ersten 3 min nach Urknall (T = 10 MeV 0.1MeV)

= Synthese der leichten Elemente in den ersten 3 min nach Urknall (T = 10 MeV 0.1MeV) 3. Primordiale Nukleosynthese = Synthese der leichten Elemente in den ersten 3 min nach Urknall (T = 10 MeV 0.1MeV) Kern Bindungsenergie Häufigkeit (MeV) (% der der sichtbaren Masse) 1 H(= p) 0 71 a) 2

Mehr

Wiederholung Sternentwicklung. Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1

Wiederholung Sternentwicklung. Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1 Wiederholung Sternentwicklung Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1 stellare schwarze Löcher (Kollapsare) stellare schwarze Löcher vs. supermassive schwarze Löcher Historisches Eigenschaften

Mehr

Die Sterne der Milchstraße. Workshop: Die Sterne der Milchstraße

Die Sterne der Milchstraße. Workshop: Die Sterne der Milchstraße Workshop: Die Sterne der Milchstraße 1 Inhaltsverzeichnis 1. Die Eigenschaften von Sternen 3 1.1. Was ist ein Stern?.............................. 3 1.2. Die Farben der Sterne............................

Mehr

6. Sterne. 6.1 Die Sterne auf der Hauptreihe

6. Sterne. 6.1 Die Sterne auf der Hauptreihe 6. Sterne 6.1 Die Sterne auf der Hauptreihe 6.1.1 Energiequelle normaler Sterne Gravitationskontraktion: 10 7 Jahre (Russell 1919) Umwandlung von Materie in Energie (basierend auf Einstein 1907): E = m

Mehr

Wie entstehen Sterne?

Wie entstehen Sterne? Astronomie im Chiemgau e.v. www.astronomie-im-chiemgau.de Vortragsreihe Einführung in die Astronomie zusammen mit den VHS in Haag Obb., Schwindegg, Traunreut und Waldkraiburg unser heutiges Thema lautet

Mehr

Kosmische Blinklichter

Kosmische Blinklichter Kosmische Blinklichter Vortrag für ASVG Nadine Amlacher Mittwoch, 4.Juni 2008 Ablauf Einleitung Theorie Auswertung Resultate Diskussion & Fragen Einleitung Aufgabenstellung Matura-Arbeit: Entfernungsbestimmung

Mehr

I.Physikalisches Institut. Prof. Dr. Susanne Pfalzner. Universität zu Köln

I.Physikalisches Institut. Prof. Dr. Susanne Pfalzner. Universität zu Köln I.Physikalisches Institut Prof. Dr. Susanne Pfalzner Universität zu Köln I.Physikalisches Institut Menschlicher Eindruck: Sterne bestehen ewig Fehleinschätzung! Grund menschliches Leben kurz im Vergleich

Mehr

- Weisse Zwerge - Neutronensterne & Pulsare - Supernovae Ia, IIa - Gamma Ray Bursts

- Weisse Zwerge - Neutronensterne & Pulsare - Supernovae Ia, IIa - Gamma Ray Bursts Astroteilchenphysik, SS 2006, Vorlesung # 5 - Endstadien von Sterne- - Weisse Zwerge - Neutronensterne & Pulsare - Supernovae Ia, IIa - Gamma Ray Bursts Crab-Pulsar Chandrasekhar G. Drexlin, EKP Hertzsprung

Mehr

Sternentwicklung (5) Wie Sterne Energie erzeugen Triple-Alpha-Prozeß: wie geht es weiter

Sternentwicklung (5) Wie Sterne Energie erzeugen Triple-Alpha-Prozeß: wie geht es weiter Sternentwicklung (5) Wie Sterne Energie erzeugen Triple-Alpha-Prozeß: wie geht es weiter Kosmische Elementehäufigkeit Harkinsche Regel: Elemente mit geradzahliger Ordnungszahl sind häufiger als Elemente

Mehr

Einführung in die Astronomie und Astrophysik II

Einführung in die Astronomie und Astrophysik II Einführung in die Astronomie und Astrophysik II Teil 11 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Astronomische Nachricht der Woche Fast Radio Burst zum ersten (?) Mal lokalisiert:

Mehr

Die Entwicklung des Universums vom Urknall bis heute. Gisela Anton Erlangen, 23. Februar, 2011

Die Entwicklung des Universums vom Urknall bis heute. Gisela Anton Erlangen, 23. Februar, 2011 Die Entwicklung des Universums vom Urknall bis heute Gisela Anton Erlangen, 23. Februar, 2011 Inhalt des Vortrags Beschreibung des heutigen Universums Die Vergangenheit des Universums Ausblick: die Zukunft

Mehr

1 Interstellares Gas und Staub

1 Interstellares Gas und Staub Hannes Konrad Martin Wolf Einführung in die Astronomie I 18.01.2008 Johannes Iloff Übung 9 1 Interstellares Gas und Staub Die interstellare Wolke besteht aus atomaren und molekularen Wassestoff, sowie

Mehr

Astronomie Zusammenfassung 12.2 #1

Astronomie Zusammenfassung 12.2 #1 Astronomie Zusammenfassung 12.2 #1 Fixsterne Scheinbare Helligkeit m und absolute Helligkeit M Die Helligkeiten von Sternen wird in Größenklassen eingeteilt. Früher von 1-6, wobei 1 die hellsten Sterne

Mehr

Wiederholung: Typen von Supernovae

Wiederholung: Typen von Supernovae Supernova-Überreste Wiederholung: Typen von Supernovae Thermonukleare Supernovae Immer Doppelsterne mit einem Weißen Zwerg als kompakten Begleiter Explosives C/O-Brennen, welches den Weißen Zwerg zerstört...

Mehr

Supernovae Explosionsmechanismen

Supernovae Explosionsmechanismen Supernovae Explosionsmechanismen Victoria Grinberg La Villa - 31.08.2006 1 Inhaltsüberblick Klassifizierung und Explosionsmechanismen Supernovae vom Typ Ia Vorläuferstern Explosion zusätzliche Betrachtungen

Mehr

Sternentstehung. Von der Molekülwolke zum T-Tauri-Stern. Von Benedict Höger

Sternentstehung. Von der Molekülwolke zum T-Tauri-Stern. Von Benedict Höger Sternentstehung Von der Molekülwolke zum T-Tauri-Stern Von Benedict Höger Inhaltsverzeichnis 1. Unterschied zwischen Stern und Planet 2. Sternentstehung 2.1 Wo entsteht ein Stern? 2.2 Unterschied HI und

Mehr