liefern eine nicht maschinenbasierte Charakterisierung der regulären

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "liefern eine nicht maschinenbasierte Charakterisierung der regulären"

Transkript

1 Reguläre Ausdrücke 1 Ziel: L=L M für NFA M L=L(r) für einen regulären Ausdruck r Reguläre Ausdrücke über einem Alphabet Σ Slide 1 liefern eine nicht maschinenbasierte Charakterisierung der regulären Sprachen über Σ. formalisieren den induktiven Aufbau der regulären Sprachen über Σ: Basisobjekte:, {} und {a} für jeden Buchstaben a Σ (Zusammenbau-) Regeln: Konkatenation Vereinigung Kleene-Abschluß Slide 2 Reguläre Ausdrücke 2 Def. Für ein Alphabet Σ sei die Menge RA Σ der regulären Ausdrücke über Σ, kurz RA, (informal) induktiv wie folgt definiert: (B) Die Symbole, und jeder Buchstabe a Σ sind in RA. (R1) Ist r in RA, so auch (r ). (R2) Sind r, s in RA, so auch (rs) und (r + s). Bem. RA besteht aus bestimmten Wörten über {,, (, ),, +} Σ. Aber jedes r RA beschreibt eine Sprache L(r) über Σ. Def. Die Abb. L: RA Σ P(Σ ), r L(r) ( die von r beschriebene Sprache ) sei durch Rekursion über den Aufbau von RA Σ definiert: Basis: Schritt: L( ) :=, L() := {} und L(a) := {a} L((r )) := L(r) L((rs)) := L(r)L(s) L((r + s)) := L(r) L(s)

2 Reguläre Ausdrücke 3 Vereinfachungsregeln: 1. Präferenzregeln Slide 3 bindet stärker als (das nicht geschriebene Zeichen für) Konkatenation und +. Konkatenation bindet stärker als Streiche überflüssige Klammern. Bsp. (r + s)t entspricht ((r + s)(t )) r + st entspricht (r + (s(t ))) rs + t entspricht ((rs) + t) Reguläre Ausdrücke 4 Def. Reguläre Ausdrücke r, r RA heißen äquivalent, in Zeichen r r, falls L(r)=L(r ) gilt. Slide 4 Lemma (Rechenregeln für Äquivalenzen). Für jeden regulären Ausdruck r gilt: r r r + + r r r r r (r + ) ( + r) r r + r r r r r und folglich (r ) r Beweis. Übung

3 NFA in regulären Ausdruck 1 Slide 5 Satz (NFA in regulären Ausdruck). Zu jedem NFA M = ({0, 1,...,s 1}, Σ, q 0, F, δ) findet man einen regulären Ausdruck r über Σ mit L(r) = L M. Beweis. Idee: Finde zu jedem f F :={f 1,..., f t } ein r f RA Σ mit Dann setze r M := r f r ft. L(r f ) = {w Σ f ˆδ(0, w)} Verfeinerung: Für Zustände i, j Q und Schranke 0 k s sei L(i, j, k) := {b 1... b l Weg in G M der Gestalt: b 1 b i 2 b l 1 b l j } }{{} Zwischenzustände aus 0,...,k 1 Finde r i,j,k RA Σ mit L(r i,j,k ) = L(i, j, k). Dann setze r f := r 0,f,s. NFA in regulären Ausdruck 2 Bezeichne m u n einen Weg in G M von m nach n mit Kantenbeschriftung u und Zwischenzuständen aus 0,..., l 1. Dann <l gilt: Slide 6 w L(i, j, k+1) Weg i Weg i w x j k y1 oder k y2 y l k w L(i, j, k) L(i, k, k)l(k, k, k) L(k, j, k) z j mit w = xy 1... y l z Rekursionsgleichungen für r i,j,k mit L(r i,j,k )=L(i, j, k): a a n + i j, L(i, j, 0)={a 1,..., a n } r i,j,0 := a a n + i = j, L(i, i,0)={a 1,..., a n } {} r i,j,k+1 := r i,j,k + r i,k,k (r k,k,k ) r k,j,k

4 -NFA Def. Ein -NFA ist ein NFA M =(Q, Σ, q 0, F, δ), bis auf: δ: Q (Σ {}) P(Q) Slide 7 Interpretation von δ(q, ): M kann im Zustand q nichtdet. in ein q δ(q, ) übergehen, ohne dabei ein Eingabezeichen gelesen zu haben. Graphische Darstellung G M : wie bei NFAs plus -Kanten q q Die Fortsetzung ˆδ: Q Σ P(Q) via graphischer Darstellung: ˆδ(q, w) := {q Q Weg in G M von q nach q mit Kantenbeschriftung w 1,,...,,..., w l,,..., und w = w 1... w l } L M := {w Σ ˆδ(q 0, w) F } Die Fortsetzung ˆδ bei -NFAs formal Def. Sei M =(Q, Σ, q 0, F, δ) ein -NFA. Definiere die Fortsetzung ˆδ: Q Σ P(Q) in zwei Schritten: Slide 8 1. Induktive Definition der Menge -closure(q) Q für q Q. Intuition: q -closure(q) q =q oder q ist in G M von q aus über einen -Weg erreichbar:,..., q q (B) q -closure(q) (R) Wenn p -closure(q), so gilt δ(p, ) -closure(q). 2. Rekursive Definition von ˆδ. ˆδ(q, ) := -closure(q) ˆδ(q, wa) := -closure(r) mit E := δ(p, a) r E p ˆδ(q,w)

5 -NFA in NFA Satz (-NFA in NFA). Zu jedem -NFA M =(Q, Σ, q 0, F, δ) findet man einen NFA M =(Q, Σ, q 0, F, δ ) mit L M =L M. Slide 9 Beweis. Kurzschließen der -Wege, d.h. ersetze jeden a-weg q,...,,a q durch eine direkte a-kante q a q (für a Σ) und erweitere F um jedes q, von dem aus ein q F über einen -Weg erreicht wird. δ (q, a) := {q Q a-weg in G M q,...,,a q } F := {q Q -Weg in G M q,..., q } Bem. Es gilt F F, denn ˆδ(q, )=q. Effizientes Verfahren: -NFA in NFA Slide 10 Verfahren (-NFA in NFA). Sei M =(Q, Σ, q 0, F, δ) ein -NFA. Erzeuge Graphen G M M = (Q, Σ, q 0, F, δ ) mit L M = L M wie folgt: 2. Streiche alle -Kanten. für NFA 1. Für jedes q Q führe die folgenden vier Schritte aus: Markiere alle von q auf -Wegen q,..., q erreichbaren Knoten q. Für jedes a Σ füge eine a-kante q a p von q zu jedem p ein, das von einem markierten Knoten mittels einer a-kante erreicht wird. Existiert ein markiertes p F, so füge q zu F hinzu. Lösche alle Markierungen.

6 Effizientes Verfahren: -NFA in NFA 1 Slide 11 Satz (Regulären Ausdruck in -NFA). Zu jedem regulären Ausdruck r (über Σ) findet man einen -NFA M r =(Q, Σ, q 0, {q r }, δ) mit q 0 q r und L(r)=L Mr. Beweis. Induktion über den Aufbau von RA. I.A. M : M x : x für x Σ {} I.S. M rs : G Mr G Ms Effizientes Verfahren: -NFA in NFA 2 Slide 12 M r+s : G Mr G Ms M r : G Mr

Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften

Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften Endlichkeitstest Eingabe: DFA/NFA M. Frage: Ist die von M akzeptierte Sprache endlich? Nahe liegende Beobachtung: In einem DFA/NFA, der eine unendliche Sprache akzeptiert, muss es einen Kreis geben, der

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 1. Automaten und Sprachen 1.1 Endlicher Automat Einen endlichen Automaten stellen wir uns als Black Box vor, die sich aufgrund einer Folge von

Mehr

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht Formale Systeme, Automaten, Prozesse Übersicht 2 2. Reguläre Ausdrücke 2.3 Nichtdeterministische endliche Automaten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.6 Minimale DFAs und der

Mehr

Kapitel 2: Formale Sprachen Gliederung

Kapitel 2: Formale Sprachen Gliederung Gliederung. Einleitung und Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.. Chomsky-Grammatiken 2.2. Reguläre Sprachen Reguläre Grammatiken, ND-Automaten

Mehr

Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen

Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 18.4. 2012 176 Automatentheorie und formale Sprachen VL 5 Reguläre und nichtreguläre Sprachen Kathrin Hoffmann 18. Aptil 2012 Hoffmann (HAW

Mehr

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}}

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}} 2 Endliche Automaten Fragen 1. Was ergibt sich bei {a, bc} {de, fg}? a) {abc, defg} b) {abcde, abcfg} c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} 2. Was ergibt sich bei {abc, a} {bc, λ}?

Mehr

Endliche Automaten. Endliche Automaten J. Blömer 1/23

Endliche Automaten. Endliche Automaten J. Blömer 1/23 Endliche Automaten Endliche Automaten sind ein Kalkül zur Spezifikation von realen oder abstrakten Maschinen regieren auf äußere Ereignisse (=Eingaben) ändern ihren inneren Zustand produzieren gegebenenfalls

Mehr

äußere Klammern können entfallen, ebenso solche, die wegen Assoziativität von + und Konkatenation nicht notwendig sind:

äußere Klammern können entfallen, ebenso solche, die wegen Assoziativität von + und Konkatenation nicht notwendig sind: 3. Reguläre Sprachen Bisher wurden Automaten behandelt und Äquivalenzen zwischen den verschiedenen Automaten gezeigt. DEAs erkennen formale Sprachen. Gibt es formale Sprachen, die nicht erkannt werden?

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 2: Eigenschaften von regulären Sprachen schulz@eprover.org Software Systems Engineering Alphabet Definition: Ein Alphabet Σ ist eine nichtleere, endliche

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

Formale Sprachen und endliche Automaten

Formale Sprachen und endliche Automaten Formale Sprachen und endliche Automaten Formale Sprachen Definition: 1 (Alphabet) Ein Alphabet Σ ist eine endliche, nichtleere Menge von Zeichen oder Symbolen. Ein Wort über dem Alphabet Σ ist eine endliche

Mehr

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ.

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ. Reguläre Ausdrücke Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (i) ist ein regulärer Ausdruck über Σ. (ii) ε ist ein regulärer Ausdruck über Σ. (iii) Für jedes a Σ ist a ein regulärer

Mehr

Induktive Definitionen

Induktive Definitionen Induktive Definitionen Induktive Definition: Konstruktive Methode zur Definition einer Menge M von Objekten aus Basisobjekten mittels (Erzeugungs-) Regeln Slide 1 Rekursion über den Aufbau: Konstruktive

Mehr

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz.

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz. Chomsky-0-Grammatik Rek. Aufz. Satz T5.2.2: Wenn L durch eine Chomsky-0- Grammatik G beschrieben wird, gibt es eine NTM M, die L akzeptiert. Beweis: Algo von M: Schreibe S auf freie Spur. Iteriere: Führe

Mehr

Automaten und Formale Sprachen ε-automaten und Minimierung

Automaten und Formale Sprachen ε-automaten und Minimierung Automaten und Formale Sprachen ε-automaten und Minimierung Ralf Möller Hamburg Univ. of Technology Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik, Vieweg Verlag 2 Danksagung

Mehr

Automatentheorie und formale Sprachen

Automatentheorie und formale Sprachen Automatentheorie und formale Sprachen VL 4 Reguläre Ausdrücke und reguläre Sprachen Kathrin Hoffmann 10. April 2012 Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 10.4. 2012 114 Aufgabe 13:

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5.

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5. Formale Sprachen Spezialgebiet für Komplexe Systeme Yimin Ge 5ahdvn Inhaltsverzeichnis 1 Grundlagen 1 2 Formale Grammatien 4 Endliche Automaten 5 4 Reguläre Sprachen 9 5 Anwendungen bei Abzählproblemen

Mehr

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben

Mehr

Übungsaufgaben zu Formalen Sprachen und Automaten

Übungsaufgaben zu Formalen Sprachen und Automaten Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel

Mehr

Automaten und Coinduktion

Automaten und Coinduktion Philipps-Univestität Marburg Fachbereich Mathematik und Informatik Seminar: Konzepte von Programmiersprachen Abgabedatum 02.12.03 Betreuer: Prof. Dr. H. P. Gumm Referentin: Olga Andriyenko Automaten und

Mehr

Reguläre Sprachen Endliche Automaten

Reguläre Sprachen Endliche Automaten Endliche Automaten (Folie 54, Seite 16 im Skript) Einige Vorteile endlicher deterministischer Automaten: durch Computer schnell simulierbar wenig Speicher benötigt: Tabelle für δ (read-only), aktueller

Mehr

Satz von Kleene. (Stephen C. Kleene, ) Wiebke Petersen Einführung CL 2

Satz von Kleene. (Stephen C. Kleene, ) Wiebke Petersen Einführung CL 2 Satz von Kleene (Stephen C. Kleene, 1909-1994) Jede Sprache, die von einem deterministischen endlichen Automaten akzeptiert wird ist regulär und jede reguläre Sprache wird von einem deterministischen endlichen

Mehr

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23 1/23 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 9. Januar 2008 2/23 Automaten (informell) gedachte Maschine/abstraktes Modell einer Maschine verhält sich

Mehr

Reguläre Sprachen und endliche Automaten

Reguläre Sprachen und endliche Automaten Reguläre Sprachen und endliche Automaten 1 Motivation: Syntaxüberprüfung Definition: Fließkommazahlen in Java A floating-point literal has the following parts: a whole-number part, a decimal point (represented

Mehr

Formale Sprachen. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Formale Sprachen. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Das Alphabet Σ sei eine endliche

Mehr

Rekursiv aufzählbare Sprachen

Rekursiv aufzählbare Sprachen Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 3 14. Mai 2010 Einführung in die Theoretische

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Induktive Definition

Induktive Definition Rechenregeln A B = B A A (B C) = (A B) C A (B C) = (A B) C A (B C) = A B A C (B C) A = B A C A {ε} A = A A {ε} = A (A {ε}) = A (A ) = A A A = A + A A = A + A + {ε} = A Beispiel. Real-Zahlen = {0,..., 9}

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2 Lösungsblatt 3. April 2 Einführung in die Theoretische Informatik

Mehr

Theoretische Informatik I

Theoretische Informatik I heoretische Informatik I Einheit 2 Endliche Automaten & Reguläre Sprachen. Deterministische endliche Automaten 2. Nichtdeterministische Automaten 3. Reguläre Ausdrücke 4. Grammatiken 5. Eigenschaften regulärer

Mehr

Automaten und formale Sprachen Klausurvorbereitung

Automaten und formale Sprachen Klausurvorbereitung Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen

Mehr

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie

Mehr

5.7 Kontextfreie Grammatiken und Kellerautomaten

5.7 Kontextfreie Grammatiken und Kellerautomaten 130 5.7 Kontextfreie Grammatiken und Kellerautomaten Im letzten Abschnitt haben wir gesehen, dass wir reguläre Sprachen auch mit Hilfe von endlichen Automaten charakterisieren können. Jetzt wollen wir

Mehr

Formale Sprachen, reguläre und kontextfreie Grammatiken

Formale Sprachen, reguläre und kontextfreie Grammatiken Formale Sprachen, reguläre und kontextfreie Grammatiken Alphabet A: endliche Menge von Zeichen Wort über A: endliche Folge von Zeichen aus A A : volle Sprache über A: Menge der A-Worte formale Sprache

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 2. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 1 Einelementiges Alphabet (4 Punkte) (a) Geben

Mehr

7 Endliche Automaten. 7.1 Deterministische endliche Automaten

7 Endliche Automaten. 7.1 Deterministische endliche Automaten 7 Endliche Automaten 7.1 Deterministische endliche Automaten 7.2 Nichtdeterministische endliche Automaten 7.3 Endliche Automaten mit g-übergängen Endliche Automaten 1 7.1 Deterministische endliche Automaten

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Die Chomsky-Hierarchie Definition Sei G = (V, Σ, P, S) eine Grammatik. 1 G heißt vom Typ 3 oder

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik echnische Universität München Fakultät für Informatik Prof. obias Nipkow, Ph.D. ascha öhme, Lars Noschinski ommersemester 2011 Lösungsblatt 5 6. Juni 2011 Einführung in die heoretische Informatik Hinweis:

Mehr

Beispiele für Wortverarbeitung durch NEA. Beispiele für NEA (1) Beispiele für NEA (2) Beispiele für NEA (3) 1.) 1 q 2. q 5. q 1 1 0,1,2. 0 q 2.

Beispiele für Wortverarbeitung durch NEA. Beispiele für NEA (1) Beispiele für NEA (2) Beispiele für NEA (3) 1.) 1 q 2. q 5. q 1 1 0,1,2. 0 q 2. Beispiele für Wortverarbeitung durch NA q, q q 3 q q 4 Wort Weg q, q, q q, q, q, q, q, nicht akzeptierend Weg q, q, q nicht fortsetzbar Weg q, q, q, q, q 3, q 5 nicht fortsetzbar Weg q, q, q, q, q, q q

Mehr

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 2. Mai HA-Lösung. TA-Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 2. Mai HA-Lösung. TA-Lösung Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 2. Mai 2016 HA-Lösung TA-Lösung Einführung in die theoretische Informatik Aufgabenblatt 2 Beachten Sie: Soweit

Mehr

Kapitel 3: Reguläre Grammatiken und Endliche. Automaten

Kapitel 3: Reguläre Grammatiken und Endliche. Automaten Kapitel 3: Reguläre Grammatiken und Endliche Automaten Prof.-Dr. Peter Brezany Institut für Softwarewissenschaft Universität Wien, Liechtensteinstraße 22 090 Wien Tel. : 0/4277 38825 E-mail : brezany@par.univie.ac.at

Mehr

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat Formale Grundlagen der Informatik 1 Kapitel 5 Über reguläre Sprachen hinaus und (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 21. April 2015 Der Kellerautomat - Formal Definition (Kellerautomat

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2016 20.04.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 5: Reguläre Ausdrücke und Grammatiken schulz@eprover.org Software Systems Engineering Reguläre Sprachen Bisher: Charakterisierung von Sprachen über Automaten

Mehr

Automaten und Formale Sprachen

Automaten und Formale Sprachen Automaten und Formale Sprachen Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2011/12 WS 11/12 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien

Mehr

Ein deterministischer endlicher Automat (DFA) kann als 5-Touple dargestellt werden:

Ein deterministischer endlicher Automat (DFA) kann als 5-Touple dargestellt werden: Sprachen und Automaten 1 Deterministische endliche Automaten (DFA) Ein deterministischer endlicher Automat (DFA) kann als 5-Touple dargestellt werden: M = (Z,3,*,qo,E) Z = Die Menge der Zustände 3 = Eingabealphabet

Mehr

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 25. September 2013 Aufgabe 1 Geben Sie jeweils eine kontextfreie Grammatik an, welche die folgenden Sprachen erzeugt, sowie einen Ableitungsbaum

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 8. Reguläre Sprachen II Malte Helmert Gabriele Röger Universität Basel 24. März 24 Pumping Lemma Pumping Lemma: Motivation Man kann zeigen, dass eine Sprache regulär ist, indem man

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (III) 17.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Für jede Sprache L X sind die folgenden Aussagen äquivalent:

Für jede Sprache L X sind die folgenden Aussagen äquivalent: Was bisher geschah Für jede Sprache L X sind die folgenden Aussagen äquivalent: Es existiert ein NFA A mit L = L(A) (L REC(NFA)). Es existiert ein vollständiger NFA B mit L = L(B). Es existiert ein ε-nfa

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Rolf Socher ISBN 3-446-22987-6 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-22987-6 sowie im Buchhandel Einführung.. 13 2 Endliche

Mehr

Reguläre Grammatiken/Sprachen und endliche Automaten

Reguläre Grammatiken/Sprachen und endliche Automaten Reguläre Grammatiken/Sprachen und endliche Automaten Bei regulären Grammatiken ist die Form der Grammatikregeln am stärksten eingeschränkt. Trotzdem lassen sich bereits weite Teile einer natürlichen Sprache

Mehr

Endliche Automaten. Endliche Automaten 1 / 108

Endliche Automaten. Endliche Automaten 1 / 108 Endliche Automaten Endliche Automaten 1 / 108 Endliche Automaten Endliche Automaten erlauben eine Beschreibung von Handlungsabläufen: Wie ändert sich ein Systemzustand in Abhängigkeit von veränderten Umgebungsbedingungen?

Mehr

Der deterministische, endliche Automat. Formale Grundlagen der Informatik 1 Kapitel 3 Mehr zu regulären Sprachen

Der deterministische, endliche Automat. Formale Grundlagen der Informatik 1 Kapitel 3 Mehr zu regulären Sprachen Der deterministische, endliche Automat Formale Grundlagen der Informatik 1 Kapitel 3 Mehr zu regulären Sprachen Frank Heitmann heitmann@informatik.uni-hamurg.de 8. April 2014 Definition (DFA) Ein deterministischer,

Mehr

Typ-1-Sprachen. Satz 1 (Kuroda ( ) 1964)

Typ-1-Sprachen. Satz 1 (Kuroda ( ) 1964) Typ-1-Sprachen Satz 1 (Kuroda (1934-2009) 1964) Eine Sprache L hat Typ 1 (= ist kontextsensitiv) genau dann, wenn sie von einem nichtdeterministischen LBA erkannt wird. Beweis: Sei zunächst L Typ-1-Sprache.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 22.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht:

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht: Prof. Dr. D. Kuske, M.Sc. M. Huschenbe Fachgebie Theoreische Informaik, TU Ilmenau Muserlösung zum 2. Übungsbla Auomaenheorie Die Lösungen der Übungsaufgaben werden durch folgendes Lemma ewas vereinfach:

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 23.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395

Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395 Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395 Turing-Machine Wir suchen ein Modell zur formalen Definition der Berechenbarkeit von Funktionen und deren Zeit- und Platzbedarf. Verschiedene Modelle

Mehr

Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie

Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie Gliederung der Vorlesung. Grundbegriffe. Formale Sprachen/Automatentheorie.. Grammatiken.2..3. Kontext-freie Sprachen 2. Berechnungstheorie 2.. Berechenbarkeitsmodelle 2.2. Die Churchsche These 2.3. Unentscheidbarkeit

Mehr

THEORETISCHE INFORMATIK

THEORETISCHE INFORMATIK THEORETISCHE INFORMATIK Vorlesungsskript Jiří Adámek @ Institut für Theoretische Informatik Technische Universität Braunschweig Dezember 28 Inhaltsverzeichnis Endliche Automaten. Mathematische Grundbegriffe......................

Mehr

Lösungsvorschläge Blatt 4

Lösungsvorschläge Blatt 4 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt 4 Zürich, 21. Oktober 2016 Lösung zu Aufgabe 10 (a) Wir zeigen mit

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 10 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Satz Sei G = (V, Σ, R, S) eine kontextfreie

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014 Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Ulrich Furbach Institut für Informatik Sommersemester 2014 Furbach Grundlagen d. Theoretischen Informatik:

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 29.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Motivation 2. Terminologie 3. Endliche Automaten und reguläre

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 7 15. Juni 2010 Einführung in die Theoretische

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung 09.11.2006 schindel@informatik.uni-freiburg.de 1 Äquivalenzklassen Definition und Beispiel Definition Für eine Sprache L Σ* bezeichnen

Mehr

Statt (r s) schreiben wir in Zukunft meistens rs, gelegentlich auch (r; s).

Statt (r s) schreiben wir in Zukunft meistens rs, gelegentlich auch (r; s). 14 2 REGULÄRE AUSDRÜCKE 2 Reguläre Ausdrücke Wir wollen (i.a. unendliche) Sprachen mit endlichen Mitteln darstellen, z.b. durch Grammatiken, nach denen die Sätze der Sprache gebildet werden dürfen. Es

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 8: kontextfreie Grammatiken Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/37 Überblick Kontextfreie Grammatiken

Mehr

Tutoraufgabe 1 (ɛ-produktionen):

Tutoraufgabe 1 (ɛ-produktionen): Prof aa Dr J Giesl Formale Systeme, Automaten, Prozesse SS 2010 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Hausaufgaben sollen in Gruppen von je 2 Studierenden aus dem gleichen Tutorium

Mehr

Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution

Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution Wiederholung Beschreibungsformen für reguläre Sprachen: DFAs NFAs Reguläre Ausdrücke:, {ε}, {a}, und deren Verknüpfung mit + (Vereinigung), (Konkatenation) und * (kleenescher Abschluss) Abschluss gegen

Mehr

Theoretische Informatik. Alphabete, Worte, Sprachen

Theoretische Informatik. Alphabete, Worte, Sprachen Theoretische Informatik Alphabete, Worte, Sprachen Alphabete, Worte, Sprachen 1. Alphabete und Worte Definitionen, Beispiele Operationen mit Worten Induktionsbeweise 2. Sprachen Definition und Beispiele

Mehr

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem Das Postsche Korrespondenzproblem Eine Instanz des PKP ist eine Liste von Paaren aus Σ Σ : (v 1, w 1 ),..., (v n, w n ) Eine Lösung ist eine Folge i 1,..., i k von Indizes 1 i j n mit v i1... v ik = w

Mehr

16. Die Chomsky-Hierarchie

16. Die Chomsky-Hierarchie 16. Die Chomsky-Hierarchie Die Chomsky-Sprachen sind gerade die rekursiv aufzählbaren Sprachen: CH = RA Da es nicht rekursive (d.h. unentscheidbare) r.a. Sprachen gibt, ist das Wortproblem für Chomsky-Grammatiken,

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Deterministische Kellerautomaten Von besonderem Interesse sind kontextfreie Sprachen,

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 17. DIE CHOMSKY-HIERARCHIE Theoretische Informatik (SoSe 2011) 17. Die Chomsky-Hierarchie 1 / 15 Einleitung Die

Mehr

3) Linearzeit-Eigenschaften

3) Linearzeit-Eigenschaften 3) Linearzeit-Eigenschaften GPS: Linearzeit-Eigenschaften Einführung 129 Linearzeit-Eigenschaften Erinnerung: endliche Trace-Fragmente = Wörter Def.: Σ ω bezeichnet Menge aller unendlichen Wörter (Sequenzen)

Mehr

Operationale Semantik 1

Operationale Semantik 1 Operationae Semantik 1 Side 1 Zie: Geschossene Terme t ι ι sind Programme, die auf Eingabe n die Ausgabe [t] n erzeugen. Ein-/Ausgabekonvention: Eingaben und Ausgaben sind Numerae! Def. Ein Numera ist

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 07.02.2006 28. und letzte Vorlesung 1 Die Chomsky-Klassifizierung Chomsky-Hierachien 3: Reguläre Grammatiken

Mehr

Es gibt drei unterschiedliche Automaten:

Es gibt drei unterschiedliche Automaten: Automatentheorie Es gibt drei unterschiedliche Automaten: 1. Deterministische Endliche Automaten (DEA) 2. Nichtdeterministische Endliche Automaten (NEA) 3. Endliche Automaten mit Epsilon-Übergängen (ε-

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2 Lösungsblatt 23. Mai 2 Einführung in die Theoretische Informatik Hinweis:

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik 0 KIT 10.11.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am

Mehr

TU8 Beweismethoden. Daniela Andrade

TU8 Beweismethoden. Daniela Andrade TU8 Beweismethoden Daniela Andrade daniela.andrade@tum.de 12.12.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Avant Propos Formale Sprachen und Automaten Sie [die Theorie der formalen Sprachen] ist ein Musterbeispiel einer informatischen Theorie, weil es ihr gelingt, einen großen Bestand an Einsichten und Zusammenhängen

Mehr

Endliche Sprachen. Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für

Endliche Sprachen. Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für Endliche Sprachen Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für L. 447 Zusammenfassung Beschreibungsformen für reguläre Sprachen:

Mehr

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S) Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /

Mehr

Mathematische Grundlagen der Informatik 2

Mathematische Grundlagen der Informatik 2 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Emanuel Duss emanuel.duss@gmail.com 12. April 2013 1 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Dieses Dokument basiert

Mehr

Theoretische Informatik 2 bzw. Formale Sprachen und Berechenbarkeit. Sommersemester Herzlich willkommen!

Theoretische Informatik 2 bzw. Formale Sprachen und Berechenbarkeit. Sommersemester Herzlich willkommen! Theoretische Informatik 2 bzw. Formale Sprachen und Berechenbarkeit Sommersemester 2012 Prof. Dr. Nicole Schweikardt AG Theorie komplexer Systeme Goethe-Universität Frankfurt am Main Herzlich willkommen!

Mehr