1. Formale Sprachen Formale Sprachen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1. Formale Sprachen Formale Sprachen"

Transkript

1 1. Formle Sprchen Formle Sprchen 1. Formle Sprchen 1.1. Ws ist eine formle Sprche? Wenn mn einen Gednken in einer ntürlichen Sprche usdrücken will, kommt es im wesentlichen uf 2 Aspekte n: 1. Der korrekte Aufu von Wörtern und Säten gemäß der Grmmtik und der Rechtschreiung, die Syntx. 2. Die Bedeutung, die uf der Grundlge eines syntktisch korrekten Stes von der Sprche üermittelt werden soll, die Semntik. Der weite Punkt entieht sich, uch wenn Ansäte ur Untersuchung der formlen Semntik vorhnden sind, weitgehend einer utomtisierten Üerprüfung. Dgegen knn,.b. eim Kompilieren eines Computerprogrmms, die syntktische Korrektheit n Hnd festgelegter Regeln üerprüft werden. Mn unterscheidet ei der Beschreiung formler Sprchen nicht wischen Wörtern und Säten, sondern etrchtet ein Wort ls Zeichenkette üer einem gegeenen Alphet E. Die Menge ller endlichen Wörter üer E eeichnen wir ls E*: E* = { e 1 e 2...e n n N 0, e i E für lle i {1,..,n} }. Ds "leere Wort" λ der Länge 0 gehört u dieser Menge. Jede Sprche L üer dem Alphet E ist eine Teilmenge von E*: L E*. Wenn eine Menge von Wörtern forml eschreir ist, ws unten näher usgeführt wird, und die Zugehörigkeit eines Worts nur us syntktischen Regeln und nicht durch Semntik oder Interprettion folgt, nennen wir diese Menge eine formle Sprche. Die formlen Sprchen können klssifiiert werden n Hnd der Automten, die diese Sprchen keptieren oder durch Ange sogennnter Grmmtiken. Mn unterscheidet reguläre, kontextfreie, kontextsensitive und llgemeine Sprchen Formle Beschreiung Die formlen Systeme, die eine Sprche eschreien und in der Folge untersucht werden sollen, sind unächst ls Üerlick ohne Anspruch uf Vollständigkeit ufgelistet (weiteres.b. in [SSH]): (1) Mengennottion in der eschreienden Art L = { w w ht estimmte Eigenschften } oder durch Aufählung; (2) Automten, die eine Sprche keptieren; (3) reguläre Ausdrücke; (4) Semi-Thue-Systeme; (5) Chomsky-Grmmtiken. Ein formles System ur Beschreiung einer formlen Sprche L heißt ereugend, wenn jedes Wort w L in endlich vielen "Schritten" ereugt werden knn, nlysierend, wenn es u jedem Wort w L nch endlich vielen "Schritten" ngeen knn, dss w u L gehört. Zu den nlysierenden Systemen gehören.b. die Automten, u den ereugenden Semi- Thue-Systeme und Chomsky-Grmmtiken. Seminrgruppe Informtik Seite 1 von

2 2. Reguläre Sprchen Formle Sprchen 2. Reguläre Sprchen Reguläre Sprchen sind uns schon früher egegnet: Als reguläre Sprchen eeichnet mn genu die Sprchen, die von endlichen Automten keptiert werden. (S. Sprchen endlicher Automten.) Zu jedem endlichen Automten git es lso eine reguläre Sprche und umgekehrt. Wir wollen uns im Folgenden uf die Beschreiung von regulären Sprchen konentrieren. Ds ist notwendig, weil eine llgemeine Untersuchung ller Sprchformen u umfngreich wäre. Ds ist trgfähig, weil ds Konept der formlen Sprchen ereits n diesem Beispiel sichtr wird. Äquivlent u der oen ngegeenen Definition, die sich uf den ereugenden Automten eieht (2), knn eine reguläre Sprche uch ls reguläre Teilmenge von E* definiert werden (1). Die Äquivlen wird nicht ewiesen, sondern soll n Beispielen plusiel gemcht werden Reguläre Teilmengen oder Sprchen von E*: Es sei E ein Alphet. 1. Ein regulärer Ausdruck ist ein Ausdruck einer estimmten Form üer der Zeichenmenge E {,*,,λ,(,)}. 2. Jeder reguläre Ausdruck α legt eindeutig eine ihm ugeordnete Sprche L(α) E* fest. Jede solche Sprche wird ls reguläre Sprche oder reguläre Menge eeichnet. 3. Forml sind reguläre Ausdrücke wie folgt festgelegt: 1. ist ein regulärer Ausdruck, und es gilt L( ) =. 2. λ ist ein regulärer Ausdruck, und es gilt L(λ) = {λ}. 3. Jedes Zeichen E ist ein regulärer Ausdruck, und es gilt L() = {}. 4. Wenn α und α' regulär sind, dnn sind es uch die Vereinigung (α α'), und es gilt L((α α')) = L(α) L(α'), ds Produkt (αα'), und es gilt L((αα')) = L(α)L(α'), die Itertion (α*), und es gilt L((α*)) = L(α)*. Reguläre Sprchen können ls Wortmengen ufgefsst werden, die durch Anwendung der Opertionen Vereinigung, Produkt und Itertion us den Mengen, {λ} und {} für jedes E geildet werden können. Die leere Menge L = ist eine reguläre Sprche (der Automt ht keine erreichren Endustände), eenso wie L = { λ } (Automt, dessen Anfngsustnd der Endustnd ist) und lle endlichen Mengen üer E (Beispiele s. unten). Aus den Elementen der so definierten Sprchen knn mn lle weiteren regulären Sprchen durch Verkettung, Vereinigung und Itertion erhlten. Seminrgruppe Informtik Seite 2 von

3 2.2. Beispiele u den Verknüpfungen Formle Sprchen 2.2. Beispiele u den Verknüpfungen Wir verwenden ls Alphet E = {,}. Es sei α 1 = und dmit L(α 1 ) = {} und α 2 = und dmit L(α 2 ) = {}. Unter der Vereinigung versteht mn: (α 1 α 2 ) mit L(α 1 α 2 ) = L(α 1 ) L(α 2 ) = {} {} = {,} Diese Sprche umfsst lso die wei Worte und. Als Produkt erhält mn: (α 1 α 2 ) mit L(α 1 α 2 ) = L(α 1 )L(α 2 ) = {}{} = {} Die Sprche umfsst ds Wort. Die Itertion ergit: (α 1 *) mit L(α 1 *) = L(α 1 )* = {}* = {λ} {,,,,...} Es entsteht eine unendliche Menge ls Sprche, die Wörter us einer elieigen Anhl des Zeichens umfsst, woei uch ds leere Wort λ dugehört. Hierfür schreit mn uch { n n IN 0}, woei für n = 0 der Fll leeres Wort verstnden wird Zusmmenhng mit endlichen Automten Wir ilden nun die Definitionen der regulären Sprchen uf die endlichen Automten. 1. : Von keinem der Zustände ist der Endustnd erreichr. 2. {λ}: Anfngs und Endustnd stimmen üerein: 3. {}: mit ls Endustnd. 4. ) {} {}: Vom Anfngsustnd geht jeweils eine Knte für und um Endustnd w. usmmengefsst eine Knte mit "doppelter" Beschriftung ( ). Es liegen lso prllele Knten vor: ) {}{} = {}: Üer wird ein Zwischenustnd und dnch üer der Endustnd erreicht. Hier liegt lso eine Verkettung von Knten vor: λ c) {}*: Knte um gleichen Zustnd : Vergleicht mn mit 2., so erkennt mn, dss λ enthlten ist. Seminrgruppe Informtik Seite 3 von

4 2.4. Beispiele Formle Sprchen 2.4. Beispiele Im Folgenden etrchten wir einige Beispiele und stellen die ugehörigen endlichen Automten dr. Zur einfcheren Drstellung der regulären Ausdrücke wird noch vereinrt, dss Klmmern entfllen können, woei für die Reihenfolge ohne Klmmern gilt: Itertionen gehen vor Produkten und diese vor Vereinigungen. Es sei E = {,,c}. Hinweis: Bei den Automtendigrmmen wurden der Üersichtlichkeit hler die Üergänge weggelssen, die u Fehleruständen führen. Es sind lso nur die Knten eingetrgen, welche u "erluten" Zuständen führen, lso einen möglichen Weg um Endustnd drstellen. 1. α = c 2. α = ( )c 3. α = * 4. α = (* c*) Wie können die Wörter dieser Sprche eschrieen werden? Bei den folgenden Beispielen wird für die Sprche eine Beschreiung ngegeen: 5. Es sei E = {,} und L(α) = {w E* w enthält ls weitlettes Zeichen ein } Wie heißt der reguläre Ausdruck? 6. Es sei E = {,} und L(α)= { n n I N } Seminrgruppe Informtik Seite 4 von

5 2.5. Lösungen Formle Sprchen 2.5. Lösungen Es sei E = {,,c}. Hinweis: Bei den Automtendigrmmen sind die Fehlerustände der Üersichtlichkeit wegen weggelssen worden. Beispiel 1 - Sprche α = c L(α) = L() L()L(c) = {} {}{c} = {} {c} = {,c} Beispiel 1 - Automt c α = c Beispiel 2 - Sprche α = ( )c L(α) = (L() L())L(c) = ({} {}){c} = {,}{c} = {c,c} Beispiel 2 - Automt α = ( )c c Beispiel 3 - Sprche α = * L(α) = L(*)L() = L()*L() = {}*{} = {,,,,...} = { n n IN 0} Beispiel 3 - Automt = * Seminrgruppe Informtik Seite 5 von

6 2.5. Lösungen Formle Sprchen Beispiel 4 - Sprche α = (* c*) L(α) = L(* c*)l() = (L(*) L(c*))L() = (L()L(*) L(c*)L())L() = (L()L()* L(c)*L())L() = ({}{}* {c}*{}){} = ({*} {c*}){} = {*,c*}{} = {*,c*} = { n,c m 2 n,m IN 0} Beispielwörter dieser Sprche sind:,,,, c, cc, ccc,... Beschreiung: Wörter eginnend mit gefolgt von elieig vielen er mindestens einem oder oder elieig viele c gefolgt von. Gleichwertig hieru wäre der reguläre Ausdruck: α' = * c*. Die Umformung führt ur selen Sprche. Mn knn lso distriutiv usmultipliieren. Beispiel 4 - Automt α = (* c*) Die Konstruktion des ugehörigen Automten ist etws prolemtisch. Von us geht es mit u einem 2. Zustnd. Andererseits können elieig viele c m Anfng stehen, d.h. es müsste eine Knte mit c wieder u führen. Dnn wäre er.b. ein Wort eginnend mit c... möglich, nämlich mit c wieder u und mit um nächsten Zustnd. Dies knn er gemäß dem regulären Ausdruck nicht sein! Es drf dher keine Knte von mit c u geen. Wir ehelfen uns hierfür mit einem weiteren Zustnd. Dieser muss er von us ohne ein Zeichen erreichr sein, wofür wir ds leere Wort wählen. Bei diesem Beispiel erkennt mn die Notwendigkeit des Üergngs mit dem leeren Wort, d mit c der Üergng von nicht direkt u erfolgen knn. Sonst λ könnte.b. nch elieig vielen c ein folgen. Mn knn er uch nicht mit c einen Üergng u s 3 schffen, d j nicht unedingt ein c m Anfng stehen c muss. Dies entspräche cc* ws nicht identisch u c* ist. Während cc* mindestens ein c enthält, knn c* uch ds leere Wort sein. Die Funktion des Üergngs von us ei diesem Automten ist folgendermßen u verstehen: Wenn ds Eingeeichen ist, erfolgt ein Üergng u, sonst wird üerprüft, o evtl. ein Üergng von dem mit λ erreichren Zustnd erfolgen knn, ws lso.b eim Zeichen oder c möglich wäre. Beispiel 5 - Sprche Es sei E = {,} und L(α) = {w E* w enthält ls weitlettes Zeichen ein } Offensichtlich können unächst elieig viele oder erscheinen, irgend wnn muss ein kommen und dnch noch genu ein Zeichen oder. Der reguläre Ausdruck lutet lso: α = ( )*( ) Seminrgruppe Informtik Seite 6 von

7 2.5. Lösungen Formle Sprchen Beispiel 5 - Automt Es sei E = {,} und L(α) = {w E* w enthält ls weitlettes Zeichen ein } Beispiel 6 - Sprche Es sei E = {,} und L(α)= { n n I N } D ds kleinste n = 1 ist, muss ds Wort mit mindestens einem eginnen. * knn er uch ds leere Wort sein. Wir wählen dher n Stelle von * den regulären Ausdruck *. Dmit gilt: α = *. Beispiel 6 - Automt Es sei E = {,} und L(α)= { n n I N } Hier sei uch einml der komplette Automt mit den Üergängen um Fehlerustnd drgestellt: Fehlerustnd s 3 Seminrgruppe Informtik Seite 7 von

8 2.5. Lösungen Formle Sprchen Aufgen 1. ) ) EA3 EA4 s 3 Nenne für jeden Automten 3 keptierte Wörter. Schreie lle Zustände uf, die der Automt eim Einlesen des Wortes durchläuft. Gi die Sprchen der endlichen Automten EA3 und EA4 n. 2. Zeichne ein Zustndsdigrmm für einen Automten mit der Sprche L = { w w {,}* und w endet uf }. 3. Der drgestellte Automt untersucht, o ein Rechenusdruck mit Addition und Sutrktion von gnen Zhlen und einer Klmmereene "wohlgeformt" ist. Die Einge steht hier für eine elieige Ziffer. [Vgl. Syntxdigrmme] ( ( s 3 ) ( ) ) s 6 ) s 5 s 4 ( ) ( ( ) ( ) s 7 ( ) Seminrgruppe Informtik Seite 8 von

9 3. Automten und Sprchen Formle Sprchen ) Teste den Automten mit dem Term 12+( 3) 4 (4+6). ) Gi ds Eingelphet n und formuliere die u Grunde liegenden Regeln. c) Zeichne ds Digrmm des vereinfchten Automten für Terme ohne Klmmer. d) Erweitere den Automten für eine weitere Klmmereene. e) Welche Änderungen sind nötig, wenn der Automt keine "führenden Nullen" keptieren soll? 4. Wrum knn die Sprche eines endlichen Automten unendlich viele Wörter enthlten? 5. Eine Schleife im Digrmm edeutet, dss es einen Zustnd git, den mn nch einer oder mehreren Eingen ermls erreicht. Suche Schleifen in den oigen Beispielen. Konstruiere selst Automten mit Schleifen. 6. Begründe: Wenn ein Automt mit n Zuständen ein Wort mit mehr ls n Zeichen keptiert, dnn muss ds Zustndsdigrmm (mindestens) eine Schleife enthlten. 7. Begründe: Die Sprche L1 = { n n n {1, 2, 3,...} }, u der Wörter,,,... gehören, ist nicht die Sprche eines endlichen Automten. Vergleiche sie mit der Sprche L2 = { () n n {1, 2, 3,...} } mit den Wörtern,,,..., die durch einen endlichen Automten drstellr ist. (Konstruiere diesen Automten!) 3. Automten und Sprchen Reguläre Sprchen sind durch ihre Automten chrkterisiert. Es git weitere äquivlente Drstellungen durch reguläre Ausdrücke oder Ange einer (rechtslineren) Chomsky- Grmmtik. Dies knn in diesem Rhmen nicht eschrieen werden. Wir verweisen deshl uf weiterführende Litertur,.B. [Snder/Stucky/Herschel, "Automten, Sprchen, Berechenrkeit"] Nicht lle Proleme lssen sich, wie um Teil ereits oen u erkennen wr, mit einem endlichen Automten drstellen. Der Getränkeutomt knn keine elieig hohen Geldeträge speichern, die Sprche L1 = { n n n {1, 2, 3,...} } us Aufge 8 gehört u keinem endlichen Automten. Es fehlt vor llem die Möglichkeit, üer einen unegrenten Speicher u verfügen. Eine Erweiterung in diese Richtung erfolgt durch die Kellerutomten, die einen uneschränkten Speicher ("Keller") hen mit der Einschränkung, dss jeweils nur uf ds oerste Element ugegriffen werden knn. Automten, ei denen diese Einschränkung entfällt, können ls Turing-Mschinen (Aln Turing) modelliert werden. Turing-Mschinen sind (mindestens) eenso leistungsfähig wie ein elieiger moderner Rechner (sogr mit unendlichem Speicherplt) und sind deshl geeignet, die Grenen der Berechenrkeit u untersuchen. Seminrgruppe Informtik Seite 9 von

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

DEA1 Deterministische Version

DEA1 Deterministische Version Endliche Automten 4 Deterministische endliche Automten Zu dem nichtdeterministischen Automten EA git es eine deterministische Version. EA Akzeptor für Wörter üer X = { } mit mindestens einem führenden.

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

Franz Binder. Vorlesung im 2006W

Franz Binder. Vorlesung im 2006W Formle Reguläre und Formle Institut für Alger Johnnes Kepler Universität Linz Vorlesung im 2006W http://www.lger.uni-linz.c.t/students/win/ml Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm δ: Σ (Q

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informtik Sommersemester 27 Üungsltt 3 Üungsltt Wir unterscheiden zwischen Üungs- und Agelättern.

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.2

Algorithmen und Datenstrukturen 1 Kapitel 4.2 Endliche Automten Algorithmen und Dtenstrukturen 1 Kpitel 4.2 Roert Giegerich Technische Fkultät roert@techfk.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Roert Giegerich Endliche Automten

Mehr

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge Formle Grundlgen der Informtik Kpitel 2 und reguläre Sprchen Frnk Heitmnn heitmnn@informtik.uni-hmurg.de 7. April 24 Frnk Heitmnn heitmnn@informtik.uni-hmurg.de /7 Alphet und Wörter - Zusmmengefsst Die

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundegriffe der Informtik Einheit 14: Endliche Automten Thoms Worsch Krlsruher Institut für Technologie, Fkultät für Informtik Wintersemester 2009/2010 1/56 Üerlick Erstes Beispiel: ein Getränkeutomt

Mehr

Teil V: Formale Sprachen

Teil V: Formale Sprachen Formle Sprchen Teil V: Formle Sprchen 1. Sprchen und Grmmtiken 2. Endliche Automten Frnz-Josef Rdermcher & Uwe Schöning, Fkultät für Ingeneurwissenschften und Informtik, Universität Ulm, 2008/09 Formle

Mehr

Kontextsensitive Sprachen. Christian Scheideler Universität Paderborn WS 2014

Kontextsensitive Sprachen. Christian Scheideler Universität Paderborn WS 2014 Kontextsensitive Sprchen Christin Scheideler Universität Pderorn WS 2014 Kontextsensitive Sprchen Definition 5.1.4 Eine Grmmtik heißt kontextsensitiv oder vom Typ Chomsky-1 flls für jede Regel u v gilt

Mehr

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA Ws isher geschh NFA A = (X, Q, δ, I, F ) vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimlutomt: minimler vollständiger DFA Für jede Sprche L X sind die folgenden Aussgen

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 9 13. Juni 2014 Inhlt der heutigen Vorlesung Büchi Automten co-büchi Automten Komplementierung für deterministische Büchi Automten Ein Ziel: den Stz von Büchi-Elgot-Trkhtenrot

Mehr

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur Grundlgen der Theoretischen Infomtik SS 213 Institut für Informtik Prof. Dr. Ulrich Furch Dr. Mnfred Jckel Dr. Björn Pelzer Christin Schwrz Nchklusur Modul Grundlgen der Theoretischen Informtik 4IN118/INLP1

Mehr

Deterministische endliche Automaten

Deterministische endliche Automaten Endliche Automten Idee: endlicher Automt A ht endlich viele innere Zustände liest Einge wєσ* zeichenweise von links nch rechts git zum Schluß eine J/Nein Antwort A Lesekopf w 1 w 2 w n gelesenes Symol

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Grundbegriffe der Mengenlehre

Grundbegriffe der Mengenlehre Reiner Winter Grundegriffe der Mengenlehre 1. Der Mengenegriff Die Mengenlehre wurde von Georg Cntor (1845-1918) egründet. Im Jhre 1895 g er die folgende, erühmt gewordene Begriffsestimmung der Menge n:

Mehr

mathematik und informatik

mathematik und informatik Prof. Dr. André Schulz Kurs 0657 Grundlgen der Theoretischen Informtik A LESEPROBE mthemtik und informtik Ds Werk ist urheerrechtlich geschützt. Die ddurch egründeten Rechte, insesondere ds Recht der Vervielfältigung

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlgen der Theoretischen Informtik / Einführung in die Theoretische Informtik I Bernhrd Beckert Institut für Informtik Sommersemester 2007 B. Beckert Grundlgen d. Theoretischen Informtik:

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA Dnk Vorleung Grundlgen der Theoretichen Informtik / Einführung in die Theoretiche Informtik I Bernhrd Beckert Diee Vorleungmterilien ieren gnz weentlich uf den Folien zu den Vorleungen von Ktrin Erk (gehlten

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013)

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013) Berlin, 17.07.2013 Nme:... Mtr.-Nr.:... Klusur TheGI 2 Automten und Komplexität (Niedermeier/Hrtung/Nichterlein, Sommersemester 2013) 1 2 3 4 5 6 7 8 Σ Bereitungszeit: mx. Punktezhl: 60 min. 60 Punkte

Mehr

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt RWTH Achen Lehrgeiet Theoretische Informtik Rossmnith Dreier Hrk Kuinke SS 2017 Bltt 4 22.5.2017 Lösungsvorschlg zur Vorlesung Formle Sprchen, Automten und Prozesse Aufge T11 1. L, d L, er / L. L, d für

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Zusammenhänge zwischen Sprachen und Automaten:

Zusammenhänge zwischen Sprachen und Automaten: Kellerutomten Jörg Roth 273 4 Kellerutomten Zusmmenhänge zwischen prchen und utomten: $ x 12 v 9 q r 1 x Wir hen isher einen utomtentyp kennen gelernt, den endlichen utomten. Endliche utomten erkennen

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Modul 3: Schaltnetze. Informatik I. Modul 3: Schaltnetze. Schaltnetze. Formale Grundlagen. Huntingtonsche Axiome.

Modul 3: Schaltnetze. Informatik I. Modul 3: Schaltnetze. Schaltnetze. Formale Grundlagen. Huntingtonsche Axiome. Herstsemester 2, Institut für Informtik IFI, UZH, Schweiz Modul 3: Schltnetze Informtik I Modul 3: Schltnetze Einführung in die formlen Grundlgen logischer Beschreiungen Boolesche Alger, Schltlger Vorussetzende

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: ) 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 ) Eenso, denn

Mehr

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2003/04 ILKD Prof. Dr. D. Wgner 14. April 2004 2. Klusur zur Vorlesung Informtik III Wintersemester 2003/2004 Lösung! Bechten Sie: Bringen

Mehr

FORMALE SYSTEME. 6. Vorlesung: Reguläre Ausdrücke. TU Dresden, 27. Oktober Markus Krötzsch

FORMALE SYSTEME. 6. Vorlesung: Reguläre Ausdrücke. TU Dresden, 27. Oktober Markus Krötzsch FORMALE SYSTEME 6. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 27. Oktober 2016 Rückblick Mrkus Krötzsch, 27. Oktober 2016 Formle Systeme Folie 2 von 29 Wiederholung: Opertionen uf Automten

Mehr

mathematik und informatik

mathematik und informatik RR Prof. Dr. André Schulz Modul 31321 Grundlgen der Informtik 01657 Grundlgen der Theoretischen Informtik A 01658 Grundlgen der Theoretischen Informtik B LESEPROBE mthemtik und informtik Der Inhlt dieses

Mehr

Name... Matrikel Nr... Studiengang...

Name... Matrikel Nr... Studiengang... Proeklusur zur Vorlesung Berechenrkeitstheorie WS 201/1 1. Jnur 201 Prof. Dr. André Schulz Bereitungszeit: 120 Minuten [So oder so ähnlich wird ds Deckltt der Klusur ussehen.] Nme... Mtrikel Nr.... Studiengng...

Mehr

7 Modellierung von Abläufen 7.1 Endliche Automaten

7 Modellierung von Abläufen 7.1 Endliche Automaten 7 Modellierung von Aläufen 7. Endliche Automten Mod-7. Endlicher Automt: Formler Klkül zur Spezifiktion von relen oder strkten Mschinen. Sie regieren uf äußere Ereignisse, ändern ihren inneren Zustnd,

Mehr

Spiele und logische Komplexitätsklassen

Spiele und logische Komplexitätsklassen Spiele und logische Komplexitätsklssen Mrtin Horsch 26. Jnur 2006 Inhlt des Seminrvortrges Ehrenfeucht-Frïssé-Spiel mit k Mrken Formeln mit k Vrilen und logische Komplexitätsklssen k-vrileneigenschft logischer

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

1 Grundlagen der Theorie formaler Sprachen

1 Grundlagen der Theorie formaler Sprachen 1 Grundlgen der Theorie formler Sprchen Wir eginnen dmit, dss wir in diesem Kpitel zunchst einige grundlegende Begriffe und Methoden us der Theorie formler Sprchen, insesondere der regulären Sprchen, wiederholen.

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

Endliche Automaten. Stoyan Mutafchiev. Programming Systems Lab, Universität des Saarlandes, Saarbrücken

Endliche Automaten. Stoyan Mutafchiev. Programming Systems Lab, Universität des Saarlandes, Saarbrücken Endliche Automten Stoyn Mutfchiev Progrmming Systems L, Universität des Srlndes, Srrücken Astrct Gegenstnd dieser Areit ist der endliche Automt, sowie die Aschlusseigenschften der Sprchen, die von endlichen

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

Formal Languages and Automata

Formal Languages and Automata Forml Lnguges nd Automt Aufgensmmlung Jn Hldik und Stephn Schulz 10. Novemer 2014 1 Üungsufgen 1.1 Endliche Automten 1.1.1 Aufge Sei Σ = {, }. Geen Sie für die folgenden Sprchen einen DFA n L 0 = {w Σ

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Algorithmen und Datenstrukturen - Maschinenmodelle -

Algorithmen und Datenstrukturen - Maschinenmodelle - Algorithmen und Dtenstrukturen - Mschinenmodelle - Alexnder Sczyr Technische Fkultät sczyr@techfk.uni-bielefeld.de Vorlesung, Universität Bielefeld, Winter 04/05 / 90 Kpitel 3 - Mschinenmodelle Premle

Mehr

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09 Hns U. Simon Bohum, den 7..28 Annette Ilgen Beispiele zur Vorlesung Theoretishe Informtik WS 8/9 Voremerkung: Hier findet sih eine Smmlung von Beispielen und Motivtionen zur Vorlesung Theoretishe Informtik.

Mehr

2. Übungsblatt (mit Lösungen) 3.0 VU Formale Modellierung

2. Übungsblatt (mit Lösungen) 3.0 VU Formale Modellierung . Üungsltt (mit en) 3. VU Formle Modellierung Mrion Brndsteidl, Gernot Slzer 3. Mi 3 (Korrektur 4.6.) Aufge (.3 Punkte) Sei A der folgende Mely-Automt. u/ h/ h/ h/ u/ h/ 3 4 u/ u/ () Geen Sie die Ausge

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

1.1 Grundlagen: Reguläre Ausdrücke

1.1 Grundlagen: Reguläre Ausdrücke 11 Grundlgen: Reguläre Ausdrücke Progrmmtext enutzt ein endliches Alphet Σ von Einge-Zeichen, zb ASCII :-) Die Menge der Textschnitte einer Token-Klsse ist i regulär Reguläre Sprchen knn mn mithile regulärer

Mehr

Algebra - Lineare Abbildungen

Algebra - Lineare Abbildungen Algebr - Linere Abbildungen oger Burkhrdt (roger.burkhrdt@fhnw.ch) 8 Hochschule für Technik . Der Vektorrum Hochschule für Technik Hochschule für Technik 4 Vektorrum Definition: Ein Vektorrum über einen

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Bruchterme. Franz Embacher

Bruchterme. Franz Embacher mthe online Skripten http://www.mthe-online.t/skripten/ Bruchterme Frnz Emcher Fkultät für Mthemtik der Universität Wien E-mil: frnz.emcher@univie.c.t WWW: http://homepge.univie.c.t/frnz.emcher/ In diesem

Mehr

Kapitel 1. Anschauliche Vektorrechnung

Kapitel 1. Anschauliche Vektorrechnung Kpitel 1 nschuliche Vektorrechnung 1 2 Kpitel I: nschuliche Vektorrechnung Montg, 13. Oktoer 03 Einordnung Dieses erste Kpitel ht motivierenden Chrkter. Es führt n die geometrische nschuung nknüpfend die

Mehr

Hans Walser. Geometrische Spiele. 1 Vier gleiche rechtwinklige Dreiecke. 1.1 Allgemeiner Fall

Hans Walser. Geometrische Spiele. 1 Vier gleiche rechtwinklige Dreiecke. 1.1 Allgemeiner Fall Hns Wlser Geometrische Spiele 1 Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fll Wir strten mit einem elieigen rechtwinkligen Dreieck in der ülichen Beschriftung. A c B Strtdreieck C Nun versuchen

Mehr

Übungsblatt 4 - Lösung

Übungsblatt 4 - Lösung Formle Sprchen und Automten Üungsltt 4 - Lösung 26. M 2013 1 Whr oder flsch? Begründe kurz dene Antwort! 1. In enem determnstschen endlchen Automten gt es für jedes Wort w Σ mxml enen kzepterenden Pfd.

Mehr

Karlsruher Institut für Technologie

Karlsruher Institut für Technologie Krlsruher Institut für Technologie Lehrstuhl für Progrmmierprdigmen Sprchtechnologie und Compiler WS 2010/2011 Dozent: Prof. Dr.-Ing. G. Snelting Üungsleiter: Mtthis Brun Lösung zu Üungsltt 1 Ausge: 18.04.2012

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenurg/Ostfrieslnd/Wilhelmshven Fch. Technik, At. Elektrotechnik u. Informtik Prof. Dr. J. Wiee www.et-inf.fho-emden.de/~wiee Mthemtik, Teil B Inhlt:.) Grundegriffe der Mengenlehre.) Mtrizen, Determinnten

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2004/05 ILKD Prof. Dr. D. Wgner 24. Ferur 2005 1. Klusur zur Vorlesung Informtik III Wintersemester 2004/2005 Lösung! Bechten Sie: Bringen

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

13 Rekonfigurierende binäre Suchbäume

13 Rekonfigurierende binäre Suchbäume 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf.

Mehr

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3 Lehrgng: Digitltechnik ( Grundlgen ) Dtum: Nme: Seite: Inhltsverzeichnis: Im Lehrgng verwendete Gtter ( Üersicht ) Seite 3 Aufu von Zhlensystemen deziml, dul ( Infoseite ) Seite 4 ( Areitsltt ) Seite 5

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

1. Rechensteine und der Pythagoräische Lehrsatz.

1. Rechensteine und der Pythagoräische Lehrsatz. 1. Rechensteine und der Pythgoräische Lehrstz. Der Beginn der wissenschftlichen Mthemtik fällt mit dem Beginn der Philosophie zusmmen. Er knn uf die Pythgoräer zurückdtiert werden. Die Pythgoräer wren

Mehr

Einführung in die Lineare Algebra

Einführung in die Lineare Algebra Einführung in die Linere Alger Linere Gleichungssysteme Dieses Kpitels dient zur Motivtion und Vorereitung der systemtischen Drstellung. Wir hen dfür ds wichtigste Prolem der elementren lineren Alger gewählt,

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13 Inhltsverzeichnis Inhltsverzeichnis... 3.Logik... 2 3. Zhlensysteme... 2 3.2 Grundegriffe zweiwertiger Logik... 3 3.3 Rechengesetze für logische Ausdrücke... 9 3.4 Logische Funktionen... 24 3.5 Logische

Mehr

Wirtschaftsmathematik 00053: Mathematik für Wirtschaftswissenschaftler I Kurseinheit 2: Lineare Algebra II. Autor: Univ.-Prof. Dr.

Wirtschaftsmathematik 00053: Mathematik für Wirtschaftswissenschaftler I Kurseinheit 2: Lineare Algebra II. Autor: Univ.-Prof. Dr. Wirtschftsmthemtik 0005: Mthemtik für Wirtschftswissenschftler I Kurseinheit : Linere Alger II Leseproe Autor: Univ.-Prof. Dr. Wilhelm Rödder 5. Linere Gleichungssysteme und Mtrixgleichungen So verwundert

Mehr

5.4 CMOS Schaltungen und VLSIDesign

5.4 CMOS Schaltungen und VLSIDesign Kp5.fm Seite 447 Dienstg, 7. Septemer 2 :55 3 5.4 CMOS Schltungen und VLSI Design 447 r u u r id + + A. 5.39: Progrmmierrer Gitterustein 5.4 CMOS Schltungen und VLSIDesign Die Boolesche Alger eginnt mit

Mehr

wertyuiopasdfghjklzxcvbnmqwertyui

wertyuiopasdfghjklzxcvbnmqwertyui qwertyuiopsdfghjklzxcvnmqwerty uiopsdfghjklzxcvnmqwertyuiopsd fghjklzxcvnmqwertyuiopsdfghjklzx Aufgen M-Beispielen cvnmqwertyuiopsdfghjklzxcvnmq Vorereitung uf die. Schulreit wertyuiopsdfghjklzxcvnmqwertyui

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit bietet, ihre statistischen Meldungen über das Internet auszufüllen und einzureichen.

edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit bietet, ihre statistischen Meldungen über das Internet auszufüllen und einzureichen. Mnuell edatenq Fremdenverkehrs- und Gstgeweresttistik Einleitung edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit ietet, ihre sttistischen Meldungen üer ds Internet uszufüllen und einzureichen.

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert 8. Potenzen 8. Einführung in Potenzen / Wurzeln / Logrithmen Neen den klssischen Grundrechenopertionen git es weitere Opertionen, welche Beziehungen zwischen Zhlen schffen: Potenzieren Rdizieren Wurzelziehen)

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Einführung in die Integrlrechnung Einführung in die Integrlrechnung In der Differentilrechung estnd die ufge u drin, zu einer gegeenen Funktion f deren leitungsfunktion

Mehr

5 Gleichungen (1. Grades)

5 Gleichungen (1. Grades) Mthemtik PM Gleichungen (. Grdes) Gleichungen (. Grdes). Einführung Betrchtet mn und (, Q) und vergleicht sie miteinnder, so git es Möglichkeiten:. > ist grösser ls. = ist gleich gross wie. < ist kleiner

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Wiederholungsaufgaben zum Grundwissenkatalog Mathematik der 7. Jahrgangsstufe

Wiederholungsaufgaben zum Grundwissenkatalog Mathematik der 7. Jahrgangsstufe Gymnsium Stein Wiederholungsufgen zum Grundwissenktlog Mthemtik der. Jhrgngsstufe ) ) Wie viele Symmetriechsen hen jeweils die folgenden Figuren? ) Welche der Figuren sind punktsymmetrisch? ❶ ❷ ❸ ❹ ❺ ❻

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 2015 Bltt 6 26.05.2015 Üungen zur Vorlesung Grundlgen der Mthemtik II Lösungsvorschlg 21. ) Ein Qudrt mit der Seitenlänge + und dmit dem

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Die Keplersche Fassregel

Die Keplersche Fassregel Die Keplersche Fssregel K. Gerer Bei vielen Aufgen, z.b. ei der Lösung von Differentilgleichungen, tucht die Schwierigkeit uf, dss Integrtionen nicht durchgeführt werden können. So können z.b. die folgenden

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm 3 Module in C 5 Glole Vrilen!!!.c Quelldteien uf keinen Fll mit Hilfe der #include Anweisung in ndere Quelldteien einkopieren Bevor eine Funktion us einem nderen Modul ufgerufen werden knn, muss sie deklriert

Mehr