Prüfung im Anschluss an das Sommersemester 2004 am 15. Oktober 2004 von bis Uhr

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Prüfung im Anschluss an das Sommersemester 2004 am 15. Oktober 2004 von bis Uhr"

Transkript

1 Note Technische Universität München SS 2004 Zentrum Mathematik apl. Prof. Dr. J. Hartl Höhere Mathematik 2 (Weihenstephan) Prüfung im Anschluss an das Sommersemester 2004 am 15. Oktober 2004 von bis Uhr I II Name Vorname 03 Matrikelnummer Fachsemester Fachrichtung Hörsaal Platz Hinweise: Die Bearbeitung der Aufgaben muss den Lösungsweg eindeutig erkennen lassen. 2. Als Hilfsmittel sind zugelassen: Eigene Aufzeichnungen, Skripten, Formelsammlungen, Lehrbücher, Taschenrechner. Diese Hilfsmittel dürfen während der Prüfung nicht weitergegeben werden Unterschrift:... Summe: Ich wünsche, dass meine Note nach der Korrektur unverzüglich durch Veröffentlichung unter meiner Matrikelnummer im Internet bekanntgegeben wird. I II Unterschrift:... 1

2 1. Die Lebensdauer D eines Bauteils hat eine empirische Verteilungsfunktion, die recht gut angenähert wird durch die Funktion F (x) : h(d x) 0 falls x < 400 (x 400) falls 400 x < falls 500 x Die Einheit von x ist dabei Stunden. Es werden 1000 solche Bauteile gleichzeitig in einer Werkhalle eingebaut.. a) Wie groß ist ungefähr die Anzahl K der Bauteile, die nach 420 Stunden bereits kaputt sind? K 1000 F (420) ( ) Die Lebensdauer von etwa 40 Bauteilen wird höchstens 420 Stunden betragen. Nach 420 Stunden werden also ungefähr 40 Bauteile kaputt sein: K 40. b) Wie groß ist ungefähr die Anzahl N der Bauteile, die nach 480 Stunden noch nicht ausgefallen sein werden? ( )2 F (480) Die Lebensdauer von etwa 640 Bauteilen wird höchstens 480 Stunden betragen. Nach 480 Stunden werden also ungefähr Bauteile noch nicht ausgefallen sein: N 360. c) Wie groß ist ungefähr die Anzahl A der Bauteile, die in der Zeitspanne ausfallen, die zwischen 450 und 480 Stunden nach Inbetriebnahme liegt der Werkhalle liegt? A 1000 F (480) F (450) ( ) ( ) In der angegebenen Zeitspanne werden ungefähr 390 Bauteile ausfallen: A

3 2) Ein Hausverwalter kauft Heizöl für ein Haus. In drei aufeinanderfolgenden Heizperioden gibt er jeweils 4000 Euro dafür aus. Die Preise pro Liter betragen: erste Heizperiode zweite Heizperiode dritte Heizperiode 0,30 Euro pro Liter 0,35 Euro pro Liter 0,32 Euro pro Liter a) Wieviel Liter Heizöl hat der Hausverwalter in den drei Heizperioden insgesamt gekauft? 1. Jahr: ,30 2. Jahr: ,35 3. Jahr: , , 33 Liter 11428, 57 Liter Liter Insgesamt hat der Hausverwalter an Heizöl ungefähr gekauft: 37261,9 Liter b) Wie hoch war der durchschnittliche Heizölpreis d in Euro pro Liter über die drei Heizperioden? d Ausgaben für Heizöl in Euro Heizölmenge in Litern ,30 0,35 0, ,30 0,35 0,32 3 0, 30 0, 35 0, 32 0, 35 0, , 30 0, , 30 0, 35 0, , , , 105 0, , 313 0, 3220 c) Welche Mittelbildung ist zu verwenden, wenn man aus den einzelnen Heizölpreisen pro Liter von mehreren Heizperioden in dem hier gegebenen Zusammenhang den durchschnittlichen Heizölpreis pro Liter ermitteln will? Das (gewogene oder gewichtete) harmonische Mittel. 3

4 3. Zwei Außendienstmitarbeiter, Herr Meier und Herr Huber, haben jeder in seinem Bezirk je einen Umsatz von Euro im Jahr. Aufgrund einer Motivationsschulung verpflichten sich beide, in den nächsten drei Jahren einen durchschnittlichen Umsatzzuwachs von jährlich 10 % zu erreichen. a) Welchen Umsatz U 3 muss Herr Meier im dritten Jahr nach der Verpflichtung erreichen? Umsatz U 0 im Bezugsjahr: Euro Umsatz im dritten Jahr: U 3 U 0 1, Euro 1, Euro b) Herr Meier hat im ersten und im zweiten Jahr nach der Verpflichtung je einen Umsatz von Euro. Im dritten Jahr gelingt es im, seine Verpflichtung zu erfüllen. Herr Huber steigert seinen Umsatz jedes Jahr tatsächlich um genau 10 %. Um wieviel Euro war der Gesamtumsatz von Herrn Huber in den drei Jahren höher als der von Herrn Meier? Im dritten Jahr waren die beiden Umsätze gleich. Es reicht, die beiden ersten Jahre zu berücksichtigen. Mehrumsatz von Herrn Huber im ersten Jahr: U 0 0, Euro Mehrumsatz von Herrn Huber im zweiten Jahr: U 0 (1, 1 2 1) , 21 Euro Euro Mehrumsatz von Herrn Huber insgesamt: Euro. 4

5 4. Bei einer Prüfung mit Ankreuz-Aufgaben sind 80 Fragen zu beantworten. Bei jeder Frage gibt es die Möglichkeit, Ja oder Nein anzukreuzen. Es ist jeweils genau eine dieser beiden Antworten richtig. Die Prüfung ist bestanden, wenn mindestens 78 Fragen richtig beantwortet sind. a) Wieviele richtige Antworten sind von einem unvorbereiteten Prüfling zu erwarten, der die Antworten ganz zufällig ankreuzt? Die Hälfte der Fragen, also etwa vierzig. b) Wie groß ist die Wahrscheinlichkeit, dass ein völlig unvorbereiteter Prüfling, der die Antworten ganz zufällig ankreuzt, die Prüfung besteht? w(mindestens 78 Antworten richtig ) w(genau 80 Antworten richtig ) + w(genau 79 Antworten richtig ) w(genau 78 Antworten richtig ) , ( ) 2 2 5

6 5. Ein Obsthändler notiert an sechs aufeinanderfolgenden Tagen den Preis x i (i 1, 2,..., 6) (in Euro pro kg) einer bestimmten Erdbeersorte und die verkaufte Tagesmenge y i (i 1, 2,..., 6) (in kg): x i 4, 70 4, 30 3, 80 4, 70 5, 40 5, 00 y i a) Zeichnen Sie ein Streudiagramm, um einen ersten Eindruck davon zu bekommen, wie die Tagespreise und die verkauften Tagesmengen sich zueinander verhalten ,80 4,00 4,20 4,40 4,60 4,80 5,00 5,20 5,40 5,60 b) Berechnen Sie die Kovarianz s xy der Kilopreise x i und der pro Tag verkauften Mengen in Kilogramm y i (i 1, 2,..., 6). s xy 1 n n 1 i1 (x i x)(y i ȳ). ( alternativ: s xy 1 ( n n 1 i1 x iy i 1 ( n n i1 x i)( n i1 y i)). ) Benötigt wird dazu x 1 27, 90 4, 65 und ȳ Damit ist 6 6 s xy 1 (0, ( 0, 35) (5) + ( 0, 85) (10) + 0, , 75 ( 10) + 5 0, 35 ( 10) 1 (0 1, 75 8, 5 + 0, 25 7, 5 3, 5) 1 ( 21) 4,

7 c) Berechnen Sie den empirischen Korrelationskoeffizienten r xy der Kilopreise x i und der pro Tage verkauften Mengen in Kilogramm y i (i 1, 2,..., 6). r xy P n i1 (x i x)(y i ȳ) Pn i1 (x i x) 2 P n i1 (y i ȳ) 2 5 s xy 0,05 2 +( 0,35) 2 +( 0,85) 2 +0, , , ( 10) 2 +( 10) 2 50 s xy 153, ,35 35 (0,25+12,25+72,25+0,25+56,25+12,25) ,07 7 0, d) Ist auf Grund der gemachten Angaben zu vermuten, dass ein Zusammenhang besteht zwischen den Kilopreisen x i und den pro Tage verkauften Mengen in Kilogramm y i (i 1, 2,..., 6)? Ja, weil r xy deutlich größer ist als Null und nahe bei 1 liegt. e) Ermitteln Sie die Gleichung der Regressionsgeraden in der Gestalt ŷ aˆx + b und zeichnen Sie die Regressionsgerade in die Skizze aus der Teilaufgabe a) ein. Aus der Vorlesung: a a ( n i1 y i) ( n i1 x i) n n i1 y ix i ( n i1 x i) 2 n( n i1 x2 i ) b ȳ x a , 9 6 (70 4, , , , , ) 27, (4, , , , , ) , , 27 b (70 + 4, ) , , , näherungsweise Gleichung der Regressionsgeraden: ŷ ˆx

8 6. An einem psychologischen Institut werden alle Studienbewerber angenommen, aber die Eignung der Studienbewerber für dieses Studium wird durch einen psychologischen Test geprüft. Das Ergebnis des Tests wird nicht bekanntgegeben, aber für eine spätere Auswertung aufbewahrt. Von den Studienbewerbern erreichen 60 % erfolgreich das Diplom. Von den 40 % Studienabbrechern unter den Bewerbern hatten bei der Aufnahme 90 % ein negatives Testergebnis. Von den Studierenden, die ihr Studium erfolgreich abschließen, hatte 1 % bei der Aufnahme ein negatives Testergebnis. Wie groß ist die Wahrscheinlichkeit dafür, dass ein Studienbewerber mit negativem Testergebnis das Diplom nicht schafft? Tipp für die Wahl von Bezeichnungen: w(p )... Der Studienbewerber hat ein positives Testergebnis. w(n)... Der Studienbewerber hat ein negatives Testergebnis. w(d)... Der Studienbewerber erreicht erfolgreich das Diplom. w(a)... Der Studienbewerber bricht das Studium ab. Dann gilt also: w(d) 0, 6, w(a) 0, 4, w A (N) 0, 9, w D (N) 0, 01. Gesucht ist w N (A) Ermittlung von w(n): w N (A) w(na) w(n) w(an) w(n) w(a) w A(N) w(n) w(n) w(an + DN) w(an) + w(dn) w(a) w A (N) + w(d) w D (N) Damit gilt: 0, 4 0, 9 + 0, 6 0, 01 0, , 006 0, 366 w N (A) 0, 4 0, 9 0, 366 0, 9836 Die Wahrscheinlichkeit, dass ein Studienbewerber mit negativem Testergebnis das Diplom nicht schafft, beträgt etwa 98 %. 8

MATHEMATIK 3 STUNDEN

MATHEMATIK 3 STUNDEN EUROPÄISCHES ABITUR 01 MATHEMATIK 3 STUNDEN DATUM : 11. Juni 01, Vormittag DAUER DER PRÜFUNG : Stunden (10 Minuten) ZUGELASSENE HILFSMITTEL : Prüfung mit technologischem Hilfsmittel 1/5 DE AUFGABE B1 ANALYSIS

Mehr

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013)

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013) Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 203) Aufgabe (9 Punkte) Ein metrisches Merkmal X sei in einer Grundgesamtheit vom Umfang n = 200 diskret klassiert.

Mehr

Fachhochschule Düsseldorf Sommersemester Teilfachprüfung Statistik im Studiengang Wirtschaft

Fachhochschule Düsseldorf Sommersemester Teilfachprüfung Statistik im Studiengang Wirtschaft Fachhochschule Düsseldorf Sommersemester 2007 Teilfachprüfung Statistik im Studiengang Wirtschaft Prüfungsdatum: 27.06.2007 Prüfer: Prof. Dr. H. Peters, Diplom-Vw. Lothar Schmeink Prüfungsform: 2-stündige

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur Januar/Februar 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung

Mehr

Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl

Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl Höhere Mathematik 2 (Weihenstephan) 1. Die Gemeinde Fronhausen besteht aus drei Ortsteilen: Neudorf, Wulling und Marking.

Mehr

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.

Mehr

TECHNISCHE UNIVERSITÄT DORTMUND Wintersemester 2010/2011 FAKULTÄT STATISTIK Dr. H. Hansen

TECHNISCHE UNIVERSITÄT DORTMUND Wintersemester 2010/2011 FAKULTÄT STATISTIK Dr. H. Hansen TECHNISCHE UNIVERSITÄT DORTMUND Wintersemester 2010/2011 FAKULTÄT STATISTIK 11.02.2011 Dr. H. Hansen Klausur für den Bachelorstudiengang zur Vorlesung Statistik für Ökonomen Bitte in Druckschrift ausfüllen

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Maturandin, Maturand (Name, Vorname) ... Lehrperson... Klasse...

Maturandin, Maturand (Name, Vorname) ... Lehrperson... Klasse... Kantonsschule Romanshorn MATURITÄTSPRÜFUNGEN 2011 MATHEMATIK 3 Std. Maturandin, Maturand (Name, Vorname) Klasse 4 Mcd hcs... Lehrperson... Klasse... Datum: Dienstag, 14. Juni 2011 Name: Vorname: Punkte:

Mehr

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2015 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 1. Juli Teil B. 9:10 Uhr 10:20 Uhr

QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2015 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 1. Juli Teil B. 9:10 Uhr 10:20 Uhr QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2015 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK 1. Juli 2015 Platzziffer (ggf. Name/Klasse): Teil B 9:10 Uhr 10:20 Uhr Die Benutzung von für den Gebrauch an

Mehr

Erprobungsarbeit Mathematik

Erprobungsarbeit Mathematik Sächsisches Staatsministerium Geltungsbereich: für Klassen 8 für Kultus an Erprobungsschulen Schuljahr 2000/2001 Erprobungsarbeit Mathematik Realschulbildungsgang Allgemeine Arbeitshinweise Die Erprobungsarbeit

Mehr

Aufnahmeprüfung 2014 Mathematik

Aufnahmeprüfung 2014 Mathematik Aufnahmeprüfung Berufsmatura Mathematik 2. April 201 Berufsfachschulen Graubünden Aufnahmeprüfung 201 Mathematik Vorname: - Teil A und B dauern je 5 Minuten. - Teil A ist ohne Taschenrechner zu lösen.

Mehr

Aufgabe 50. Ein Schießbudenbesitzer hat festgestellt, dass die Trefferwahrscheinlichkeit in den späten Abendstunden 0;1 pro Schuss beträgt.

Aufgabe 50. Ein Schießbudenbesitzer hat festgestellt, dass die Trefferwahrscheinlichkeit in den späten Abendstunden 0;1 pro Schuss beträgt. Aufgabe 0 Ein Schießbudenbesitzer hat festgestellt, dass die Trefferwahrscheinlichkeit in den späten Abendstunden 0;1 pro Schuss beträgt. a) Wie hoch ist die Wahrscheinlichkeit, bei Schüssen mindestens

Mehr

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Oberschule B-Kurs/FOR-Klassen Gesamtschule Erweiterungskurs. Mathematik

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Oberschule B-Kurs/FOR-Klassen Gesamtschule Erweiterungskurs. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jahrgangsstufe 10 Mathematik Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Oberschule B-Kurs/FOR-Klassen Gesamtschule Erweiterungskurs

Mehr

Übungsaufgaben zur Klausur Statistik

Übungsaufgaben zur Klausur Statistik Übungsaufgaben zur Klausur Statistik 1.) Mittelwerte und Streumaße I Bei einer Geschwindigkeitskontrolle innerhalb einer geschlossenen Ortschaft notierte die Polizei folgende 20 Messwerte in km/h: 45;

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Ministerium für Schule und Weiterbildung NRW M GK HT 7 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs

Ministerium für Schule und Weiterbildung NRW M GK HT 7 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs Seite 1 von 9 Unterlagen für die Lehrkraft Abiturprüfung 01 Mathematik, Grundkurs 1. Aufgabenart Stochastik mit Alternative 1 (ein- und zweiseitiger Hypothesentest). Aufgabenstellung 1 siehe Prüfungsaufgabe

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 014 MATHEMATIK 6. Juni 014 8:30 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen 6.10.2016 Hochschule Esslingen Übungsblatt 2 Statistik Stichworte: arithmetischer Mittelwert, empirische Varianz, empirische Standardabweichung, empirischer

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008 Aufgabe 1 I) Einige Mitarbeiter

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Statistik I. Übungklausur. Prof. Dr. H. Toutenburg

Statistik I. Übungklausur. Prof. Dr. H. Toutenburg Statistik I Übungklausur Prof. Dr. H. Toutenburg Hinweis: Die Zeitangaben sollen Ihnen aufzeigen wieviel Zeit Ihnen für eine Aufgabe von gewissem Umfang eingeräumt wird. Die Punktzahlen für die einzelnen

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Prüfung zum mittleren Bildungsabschluss 2005

Prüfung zum mittleren Bildungsabschluss 2005 Prüfung zum mittleren Bildungsabschluss 2005 Wahlaufgaben Mathematik x+3 45 Name: Vorname: Klasse: Auch diese Aufgabenblätter sind Bestandteil der Prüfungsarbeit und müssen mit deinem Namen versehen werden.

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Kaufmännische Berufsmatura 2015

Kaufmännische Berufsmatura 2015 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt

Mehr

Hauptschulabschlussprüfung 2006

Hauptschulabschlussprüfung 2006 Hauptschulabschlussprüfung 2006 Pflichtaufgaben 1. Teil Mathematik x+3 45 Name: Vorname: Klasse: Die Aufgabenblätter sind Bestandteil der Prüfungsarbeit und müssen mit deinem Namen versehen werden. Du

Mehr

Angewandte Mathematik

Angewandte Mathematik Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reife- und Diplomprüfung BHS Juni 2016 Angewandte Mathematik Kompensationsprüfung 1 (Cluster 8) Angabe für Kandidatinnen/Kandidaten

Mehr

Aufgabe 5: Stochastik (WTR)

Aufgabe 5: Stochastik (WTR) Abitur Mathematik: Originalprüfung Aufgabe 5: Stochastik (WTR) Nordrhein-Westfalen 2014 GK Das Produkt Fußball Bundesliga ist ein Erfolgsmodell. Die Zuschauerzahlen erreichten in der Saison 2011/12 einen

Mehr

Nachklausur Statistik

Nachklausur Statistik Aufgabe 1 2 3 4 5 6 7 8 9 10 Punkte Summe Punkte Gesamtpunkte: Nachklausur Statistik Hinweise: Die Klausur besteht aus 5 Seiten mit insgesamt 10 Aufgaben. Sie müssen aus jeder der beiden Kategorien jeweils

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2009 / 2010 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Ministerium für Schule und Weiterbildung NRW M GK HT 1 Seite 1 von 6. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs

Ministerium für Schule und Weiterbildung NRW M GK HT 1 Seite 1 von 6. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs Ministerium für Schule und Weiterbildung NRW M GK HT Seite von 6 Unterlagen für die Lehrkraft Abiturprüfung 0 Mathematik, Grundkurs. Aufgabenart Analysis. Aufgabenstellung siehe Prüfungsaufgabe 3. Materialgrundlage

Mehr

Musterklausur zur MSc-Vorlesung Entscheidungsverhalten

Musterklausur zur MSc-Vorlesung Entscheidungsverhalten Dr. Moritz Lukas und Prof. Dr. Markus Nöth Institut für Versicherungsbetriebslehre und Lehrstuhl für Bankbetriebslehre und Behavioral Finance Musterklausur zur MSc-Vorlesung Entscheidungsverhalten Name,

Mehr

Pangea Mathematikwettbewerb FRAGENKATALOG Klasse

Pangea Mathematikwettbewerb FRAGENKATALOG Klasse Pangea Mathematikwettbewerb FRAGENKATALOG 2015 5. Klasse Pangea Ablaufvorschrift Antwortbogen Fülle den Bereich Anmeldedaten auf dem Antwortbogen vollständig aus und achte darauf, dass die entsprechenden

Mehr

Aufnahmeprüfung Mathematik

Aufnahmeprüfung Mathematik Zeit Reihenfolge Hilfsmittel Bewertung Lösungen 90 Minuten Die Aufgaben dürfen in beliebiger Reihenfolge gelöst werden. Taschenrechner ohne Grafik und CAS Beiliegende Formelsammlung Aus der Summe der bei

Mehr

Probeunterricht 2011 an Wirtschaftsschulen in Bayern

Probeunterricht 2011 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 6. Jahrgangsstufe - Haupttermin Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 7: 45 Minuten 45 Minuten Name:....

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

1. Klausur. für bau immo tpbau

1. Klausur. für bau immo tpbau 1. Klausur Höhere Mathematik I/II für bau immo tpbau Wichtige Hinweise Die Bearbeitungszeit beträgt 120 Minuten. Verlangt und gewertet werden alle 6 Aufgaben. Bei Aufgabe 1 2 sind alle Lösungswege und

Mehr

Studiengang (Zutreffendes bitte ankreuzen):

Studiengang (Zutreffendes bitte ankreuzen): Prof. Dr. Ulrich Schwalbe Sommersemester 2006 Klausur Mikroökonomik Matrikelnummer: Studiengang (Zutreffendes bitte ankreuzen): SozÖk Sozma AÖ WiPäd Wiwi Prof. Dr. Ulrich Schwalbe Sommersemester 2006 Klausur

Mehr

Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

ist bekannt, das insgesamt 50% aller produzierten Bauteile fehlerfrei sind.

ist bekannt, das insgesamt 50% aller produzierten Bauteile fehlerfrei sind. Aufgabe 1: Die Firma Gut und teuer kurz Gut produziert elektronische Bauteile. Vor dem Verkauf an die Kunden werden diese sorgfältig geprüft. Von den fehlerfreien werden 95% und von den fehlerhaften 1%

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2010 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2010 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Übungsaufgaben zu Kapitel 2 und 3

Übungsaufgaben zu Kapitel 2 und 3 Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 2 und 3... 2 Aufgabe 1... 2 Aufgabe 2... 2 Aufgabe 3... 2 Aufgabe 4... 3 Aufgabe 5... 3 Aufgabe 6... 3 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9... 5 Aufgabe

Mehr

Pangea Mathematikwettbewerb FRAGENKATALOG Klasse

Pangea Mathematikwettbewerb FRAGENKATALOG Klasse Pangea Mathematikwettbewerb FRAGENKATALOG 205 7. Klasse Pangea Ablaufvorschrift Antwortbogen Fülle den Bereich Anmeldedaten auf dem Antwortbogen vollständig aus und achte darauf, dass die entsprechenden

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 10 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: 1. Übungsaufgaben zu Kapitel 2 und 3... 2 Aufgabe 1... 2 Aufgabe 2... 2 Aufgabe 3... 2 Aufgabe 4... 2 Aufgabe 5... 3 Aufgabe 6... 3 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9... 4 Aufgabe

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung aus.

Mehr

Klausur Stochastik und Statistik 31. Juli 2012

Klausur Stochastik und Statistik 31. Juli 2012 Klausur Stochastik und Statistik 31. Juli 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht aus fünf

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: 1. Aufgabenlösungen... Lösung zu Aufgabe 1:... Lösung zu Aufgabe... Lösung zu Aufgabe 3... Lösung zu Aufgabe 4... Lösung zu Aufgabe 5... 3 Lösung zu Aufgabe... 3 Lösung zu Aufgabe 7...

Mehr

Statistik für Betriebswirte 1 Probeklausur Universität Hamburg Wintersemester 2016/ Dezember 2016

Statistik für Betriebswirte 1 Probeklausur Universität Hamburg Wintersemester 2016/ Dezember 2016 Statistik für Betriebswirte 1 Probeklausur Universität Hamburg Wintersemester 2016/2017 16. Dezember 2016 1 Aufgabe 1: Beschreibung univariater Daten (30 Punkte) Ein Autohändler verkauft Autos in fünf

Mehr

Klausur. Diskrete Mathematik I. Donnerstag, den um 14 Uhr

Klausur. Diskrete Mathematik I. Donnerstag, den um 14 Uhr , Klausur Diskrete Mathematik I Donnerstag, den 29.02.2008 um 14 Uhr Aufgabenblätter Füllen Sie das Deckblattvollständigaus. Prüfen Sie, ob die Klausur 8 Aufgaben enthält.. Kennzeichnen Sie alle verwendeten

Mehr

ABSCHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SCHULABSCHLUSSES 2012 MATHEMATIK

ABSCHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SCHULABSCHLUSSES 2012 MATHEMATIK 10. KLSSE DER MITTELSHULE BSHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SHULBSHLUSSES 2012 MTHEMTIK am 20. Juni 2012 von 8:30 Uhr bis 11:00 Uhr Jeder Schüler muss e i n e von der Prüfungskommission ausgewählte

Mehr

16. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 5 Saison 1976/1977 Aufgaben und Lösungen

16. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 5 Saison 1976/1977 Aufgaben und Lösungen 16. Mathematik Olympiade Saison 1976/1977 Aufgaben und Lösungen 1 OJM 16. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Probeunterricht 2012 an Wirtschaftsschulen in Bayern

Probeunterricht 2012 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Nachtermin Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 9: 45 Minuten 45 Minuten Name:..

Mehr

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2010 MATHEMATIK. Teil B

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2010 MATHEMATIK. Teil B QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2010 BESONDERE LEISTUNGSFESTSTELLUNG AM 30.06.2010 Teil B: 9.10 Uhr bis 10.20 Uhr MATHEMATIK Teil B Bei Teil B der besonderen Leistungsfeststellung zum Erwerb des qualifizierenden

Mehr

QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2016 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 29. Juni Platzziffer (ggf. Name/Klasse): Teil B

QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2016 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 29. Juni Platzziffer (ggf. Name/Klasse): Teil B QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2016 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK 29. Juni 2016 Platzziffer (ggf. Name/Klasse): Teil B 9:10 Uhr 10:20 Uhr Die Benutzung von für den Gebrauch an

Mehr

Kontingenztabelle: Führerschein Ja Nein Ja Nein Auto. Wie viel Prozent der Studierenden besitzen kein Auto?

Kontingenztabelle: Führerschein Ja Nein Ja Nein Auto. Wie viel Prozent der Studierenden besitzen kein Auto? Aufgabe 1: Eine (nicht repräsentative) Umfrage unter 200 Studierenden auf dem Campus der Ruhr-Universität ergab: 130 Studierende besitzen ein Auto, 160 einen Führerschein und 128 sowohl Auto als auch Führerschein.

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 7 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 7 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 10 Unterlagen für die Lehrkraft Abiturprüfung 2012 Mathematik, Leistungskurs 1. Aufgabenart Stochastik mit Alternative 1 (ein- und zweiseitiger Hypothesentest) 2. Aufgabenstellung 1 siehe Prüfungsaufgabe

Mehr

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 00 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 10 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

Prüfung am Ende der Jahrgangsstufe 10. Mathematik. Allgemeine Arbeitshinweise

Prüfung am Ende der Jahrgangsstufe 10. Mathematik. Allgemeine Arbeitshinweise Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Prüfung am Ende der Jahrgangsstufe 10 Schriftliche Prüfung Schuljahr: 2014/2015 Schulform: Oberschule (A-Kurs/EBR-Klasse

Mehr

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet.

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. 11.01.2012 Prof. Dr. Ingo Klein Klausur zur VWA-Statistik Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. Aufgabe 1:

Mehr

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift:

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift: 20-minütige Klausur zur Vorlesung Lineare Modelle im Sommersemester 20 PD Dr. Christian Heumann Ludwig-Maximilians-Universität München, Institut für Statistik 2. Oktober 20, 4:5 6:5 Uhr Überprüfen Sie

Mehr

Gymnasium Muttenz Maturitätsprüfung Mathematik. (Schwerpunktfächer: F/ G / I / L / M / S / W / Z )

Gymnasium Muttenz Maturitätsprüfung Mathematik. (Schwerpunktfächer: F/ G / I / L / M / S / W / Z ) Gymnasium Muttenz Maturitätsprüfung 2006 Mathematik (Schwerpunktfächer: F/ G / I / L / M / S / W / Z ) Kandidatin / Kandidat Name Vorname:... Klasse:... Hinweise - Die Prüfung dauert 4 Stunden. - Jede

Mehr

Übertrittsprüfung 2014

Übertrittsprüfung 2014 Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2014 Aufgaben Prüfung an die 3. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...

Mehr

UNIVERSITÄT DUISBURG-ESSEN

UNIVERSITÄT DUISBURG-ESSEN Art der Prüfung: Kurzklausur für Lehramtsstudierende Termin: Sommersemester 2008 Nachtermin Studiengang: Studierende auf Lehramt, die eine erfolgreiche Teilnahme benötigen; Lehramt Sowi GHR; Lehramt Sowi

Mehr

Klausur Mathematik. Note:

Klausur Mathematik. Note: Fachhochschule Südwestfalen Fachhochschule Münster Hochschule Bochum Verbundstudiengang Wirtschaftsingenieurwesen Hochschule Bochum Hochschule für Technik und Wirtschaft Klausur Mathematik Datum: 18.09.2010

Mehr

Aufgabe 1: Vektorgeometrie (12 Punkte)

Aufgabe 1: Vektorgeometrie (12 Punkte) Mathematik schriftlich Klassen: 4IM, 4S, 4Wa, 4WZ, 5KSW Bemerkungen: Hilfsmittel: Die Prüfungsdauer beträgt 4 Stunden. Beginnen Sie jede Aufgabe mit einem neuen Blatt! Taschenrechner TI-Nspire CAS Der

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure,

Prüfungsklausur Mathematik II für Wirtschaftsingenieure, HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure, 06.07.2015 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 7 8 gesamt erreichbare

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Knarr 07. 09. 009 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure,

Prüfungsklausur Mathematik II für Wirtschaftsingenieure, HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure, 15.7.2014 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 gesamt erreichbare P. 10

Mehr

Klausur der Modulprüfung / Diplomvorprüfung

Klausur der Modulprüfung / Diplomvorprüfung Klausur der Modulprüfung / Diplomvorprüfung für B.Sc. aer / B.Sc. mawi / Dipl. aer / Dipl. geod. / Dipl. autip Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 120 Minuten Erlaubte Hilfsmittel:

Mehr

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele UE Statistik, SS 05, letztes Update am 5. März 05 Übungsbeispiele Beispiele mit Musterlösungen finden Sie auch in dem Buch Brannath, W., Futschik, A., Krall, C., (00) Statistik im Studium der Wirtschaftswissenschaften..

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 27. Juni :30 Uhr 10:20 Uhr. Teil B: 9:10 Uhr 10:20 Uhr.

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 27. Juni :30 Uhr 10:20 Uhr. Teil B: 9:10 Uhr 10:20 Uhr. QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2012 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK 27. Juni 2012 8:30 Uhr 10:20 Uhr Teil B: 9:10 Uhr 10:20 Uhr Teil B Jeder Schüler muss die z w e i von der Feststellungskommission

Mehr

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note Mathematik Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 5 6 4 5 4 6 30 Die Prüfung dauert 45 Minuten.

Mehr

(a) 2 Punkte, (b) 2 Punkte (a) 1 Punkt, (b) 1 Punkt, (c) 2 Punkte (a) 1 Punkt, (b) 3 Punkte

(a) 2 Punkte, (b) 2 Punkte (a) 1 Punkt, (b) 1 Punkt, (c) 2 Punkte (a) 1 Punkt, (b) 3 Punkte Mathematik Aufnahmeprüfung 015 Aufgabe 1 3 4 5 6 7 8 9 10 11 1 Summe Punkte 4 4 3 3 3 3 4 4 4 4 40 Punkte für die Teilaufgaben: (a) Punkte, (b) Punkte (a) 1 Punkt, (b) 1 Punkt, (c) Punkte (a) 1 Punkt,

Mehr

Beispielarbeit. MATHEMATIK (ohne CAS)

Beispielarbeit. MATHEMATIK (ohne CAS) Abitur 008 Mathematik (ohne CAS) Beispielarbeit Seite 1 Abitur 008 Mecklenburg-Vorpommern Beispielarbeit MATHEMATIK (ohne CAS) Hinweis: Diese Beispielarbeit ist öffentlich und daher nicht als Klausur verwendbar.

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 008 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 6. Juni 008 Prüfungsdauer: 09:00 1:00 Uhr Hilfsmittel: Elektronischer,

Mehr

Probeunterricht 2010 an Wirtschaftsschulen in Bayern

Probeunterricht 2010 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 7: 45 Minuten 45 Minuten Name:.... Vorname:.

Mehr

Bearbeitungszeit: 30 Minuten

Bearbeitungszeit: 30 Minuten Vorname: Studiengang: Platz: Aufgabe: 1 2 3 Gesamt Punkte: Bearbeitungszeit: 30 Minuten Zugelassene Hilfsmittel: - eine selbsterstellte, handgeschriebene Formelsammlung (1 Blatt DIN A4, einseitig beschrieben,

Mehr

Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport

Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport Ministerium für Bildung, Jugend und Sport Prüfung am Ende der Jahrgangsstufe 10 Mathematik Schriftliche Prüfung Schuljahr: 2013/2014 Schulform: Allgemeine Arbeitshinweise Die Prüfungszeit beträgt 135 Minuten.

Mehr

Eigenschaften der relativen Häufigkeit ( Zur Erinnerung) Axiomatische Definition der Wahrscheinlichkeit: Vorlesung Statistik WING

Eigenschaften der relativen Häufigkeit ( Zur Erinnerung) Axiomatische Definition der Wahrscheinlichkeit: Vorlesung Statistik WING Eigenschaften der relativen Häufigkeit ( Zur Erinnerung) Axiomatische Definition der Wahrscheinlichkeit: Melanie Kaspar, Prof. Dr. B. Grabowski 1 Aus diesen Eigenschaften lassen sich alle weiteren Eigenschaften

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2012 im Fach Mathematik. 26. April 2012

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2012 im Fach Mathematik. 26. April 2012 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2012 im Fach Mathematik 26. April 2012 Arbeitsbeginn:

Mehr

MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben!

MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben! KANTONALE PRÜFUNG 2015 für den Übertritt in eine Maturitätsschule auf Beginn des 10. Schuljahres GYMNASIEN DES KANTONS BERN MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben! Die Aufgabenserie umfasst

Mehr

Aufgabe. 1.1 Die Oberfläche des Balkens soll mit Holzschutzfarbe gestrichen werden. Berechne die Oberfläche des Balkens in m 2.

Aufgabe. 1.1 Die Oberfläche des Balkens soll mit Holzschutzfarbe gestrichen werden. Berechne die Oberfläche des Balkens in m 2. Name:...... Vorname: Hinweise: ٠ Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! ٠ Zugelassene Hilfsmittel: nicht programmierbarer elektronischer Taschenrechner Aufgabe P 1.0 In der nicht

Mehr

Erprobungsarbeit Mathematik

Erprobungsarbeit Mathematik Sächsisches Staatsministerium Geltungsbereich: für Klassen 8 für Kultus an Erprobungsschulen Schuljahr 2001/2002 Erprobungsarbeit Mathematik Realschulbildungsgang Allgemeine Arbeitshinweise Die Erprobungsarbeit

Mehr

International Finance. Bearbeiten Sie alle sechs Aufgaben A1-A6 und eine der zwei Aufgaben B1-B2!

International Finance. Bearbeiten Sie alle sechs Aufgaben A1-A6 und eine der zwei Aufgaben B1-B2! Kursprüfung International Finance Schwerpunktmodul Finanzmärkte 6 Kreditpunkte, Bearbeitungsdauer: 90 Minuten SS 2012, 25.7.2012 Prof. Dr. Lutz Arnold Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.:

Mehr

MATHEMATIK. Name: Vorname: maximale Punkte 1 a), b) 4 2 a), b), c) 6 3 a), b) Gesamtpunktzahl 38. Die Experten: 1.

MATHEMATIK. Name: Vorname: maximale Punkte 1 a), b) 4 2 a), b), c) 6 3 a), b) Gesamtpunktzahl 38. Die Experten: 1. Berufsmaturität Kanton Glarus Aufnahmeprüfung 2013 Kaufmännische Berufsfachschule Glarus Kaufmännische Richtung MATHEMATIK Name: Vorname: Note Aufgabe Nr. Teilaufgaben erreichte Punkte maximale Punkte

Mehr

Schriftliche Prüfungsarbeit zur erweiterten Berufsbildungsreife und zum mittleren Schulabschluss 2015 im Fach Mathematik. Montag, 11.

Schriftliche Prüfungsarbeit zur erweiterten Berufsbildungsreife und zum mittleren Schulabschluss 2015 im Fach Mathematik. Montag, 11. Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Schriftliche Prüfungsarbeit zur erweiterten Berufsbildungsreife und zum mittleren Schulabschluss 2015 im

Mehr

Prüfung aus Statistik 1 für SoziologInnen. Musterlösung

Prüfung aus Statistik 1 für SoziologInnen. Musterlösung Prüfung aus Statistik 1 für SoziologInnen Gesamtpunktezahl =80 1) Wissenstest (maximal 20 Punkte) Prüfungsdauer: 2 Stunden Musterlösung Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort

Mehr

Besondere Leistungsfeststellung Mathematik - E R S T T E R M I N -

Besondere Leistungsfeststellung Mathematik - E R S T T E R M I N - Sächsisches Staatsministerium für Kultus Schuljahr 006/007 Geltungsbereich: Schüler der Klassenstufe 10 an allgemein bildenden Gymnasien ohne Realschulabschluss Besondere Leistungsfeststellung Mathematik

Mehr

Besondere Leistungsfeststellung Mathematik ERSTTERMIN

Besondere Leistungsfeststellung Mathematik ERSTTERMIN Sächsisches Staatsministerium für Kultus und Sport Schuljahr 010/11 Geltungsbereich: Schüler der Klassenstufe 10 an allgemeinbildenden Gymnasien ohne Realschulabschluss Besondere Leistungsfeststellung

Mehr